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An analytic and numerical scheme is developed to determine self-consistent equilibria in modified betatrons.
As the beam undergoes adiabatic changes, its behavior is determined by a series of time-dependent equilibria.
At any time, these equilibria are characterized by the number of particles in a drift (~) surface, and the
toroidal flux through a ~ surface. In this paper, the evolution of the drift surfaces is followed during beam
acceleration and self-flux diffusion, and beam equilibria are found for various levels of flux-diffusion
compensation. As the beam accelerates, it reaches a certain energy at which it makes a transition from
diamagnetic to paramagnetic poloidaldrift. This transition is characterized by a change in topology of the ~
surfaces. Depending on the change in shape at transition, the new ~ surface can either be confined in the
liner or run into the liner. Conditions for confined orbits at the transition are given for parameters of the
NRL modified-betatron experiment. During flux diffusion, it is found that large adjustments in external fields
are necessary to maintain equilibrium. It may be possible to overcome this difficulty by placing a set of
external coils at the liner to compensate for the decaying eddy currents. When the distribution of currents in
these coils mimic the surface currents exactly, no adjustments in external fields are necessary. However, beam
equilibrium is very sensitive to the azimuthal error in this distribution.

I. INTRODUCTION

The evolution of a high-current electron beam in a modified betatron 1-4 during self
flux diffusion and acceleration is described in this paper. An investigation is also made
of the effect on beam equilibrium of the presence of a discrete set of coils designed to
compensate for flux diffusion. Our results are based on calculations of equilibrium
solutions of the cold-fluid equations and their adiabatic evolution, as described in
earlier works. 5 ,6

In Fig. 1, we show a schematic diagram of the modified betatron together with the
experimental parameters we use (unless otherwise specified). The motion of electrons is
broken into several time scales: the poloidal (r-z plane) cyclotron motion in the
toroidal Be) field with period of about 10- 11 sec, the toroidal major rotation in the
vertical field of about 10- 8 sec, the poloidal drift, vp , in the Be field of about 10- 7 sec,
the time scales for flux diffusion on the order of 10 - 4 sec, and finally the time scale for
acceleration ro..; 10- 3 sec. Notice that from about the first microsecond to the first
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FIGURE 1 Modified betatron schematic with typical parameters.

100 microseconds of the beam's existence, the dominant process is the diffusion of the
beam self fields through the liner walls. A crucial issue for the modified betatron then
is whether the beam can survive this flux diffusion. If it cannot, external regulating coils
are needed and the question becomes: just how accurate must the current in the
regulating coils be controlled? This paper will address this issue. In contrast to
concurrent studies 7-10 using particle simulations, the very long time scales involved in
flux diffusion and acceleration dictate a fluid description that averages out the
individual motion of electrons and studies the 'adiabatic development of the beam on
time scales longer than the poloidal drift period.

In our axisymmetric system at steady state, all the forces on the beam are in the
poloidal plane. 11 The outward yv2

0 jr centrifugal force and hoop stresses are balanced
by the inward Ve x Bz force and the defocusing effects of the self electric field and image
charge are balanced by the focusing forces due to the external index 11, the poloidal self
magnetic pinch force (~ x Bp ) and the vp x Be force. In a high-current betatron, the
repulsive electrostatic forces dominate the attractive forces due to external and
magnetic pinching (at sufficiently low y.) Thus, the additional vp x Be is necessary for
equilibrium and the resulting electron drift is diamagnetic. The other forces in the
poloidal plane, the inertia and centrifugal forces due to poloidal motion, are neglected
in our formalism because they are negligible when the toroidal field is sufficiently large
and the density and energy sufficiently small.

In Refs. [5J and [6J, it is shown that the fluid canonical angular momentum Po
characterizes the equilibria because many important fluid quantities are functions of Po
and because surfaces of constant Po are drift surfaces of single electrons. It follows that
beam equilibria can only exist on those Po surfaces that are closed within the confining
conducting wall.

The key to calculating the equilibrium is the calculation of the Pe surfaces. It is
shown5

,6 that the fluid energy E == ymc 2 + qq, and g == rBo are constant on the
Po level curves, and that the Pe(r, z) surfaces can be found by specifying
the dependence of E and g on Po. For parameters that vary slowly compared with the
poloidal drift period, the evolution of the beam may be considered adiabatic. The



MODIFIED-BETATRON FLUX DIFFUSION 187

adiabatic constants of the motion are Po itself, and the toroidal flux enclosed by a Po
curve, <Pt(~). (Because we assume that the beam is cold, the third invariant, the
magnetic moment Jl is zero.) These two constants of the motion determine the
evolution of E(Po, t) and g(Po, t), and thus generate an evolving series of Po surfaces.

In a previous works
,6 the behavior of the equilibria during flux diffusion and

acceleration was presented for a modified betatron with rectangular boundaries. In this
paper, we present results for a circular boundary (relevant to the current NRL design)
and use a modified version of the original iterative computer code in which the outer
loop iterations have been accelerated with a fast direct elliptic solver. We find no
radically different results in this new geometry. If the beam is positioned exactly right in
the chamber, it can survive flux diffusion. However, in practice the beam cannot be
exactly positioned, so flux-compensation coils are required. We test the sensitivity of
the equilibrium during flux diffusion to errors in currents in the compensating coils.
The beam is much more sensitive to errors in current distribution at high current than
at low current. However, this sensitivity to field errors is much smaller than in the
previously studied case with rectangular boundaries. In addition, the window of
acceptable field indices for acceleration is wider because of the shape of the new
confining wall, and a much larger volume of parameter space is examined here than in
our previous work.

After injection and trapping, the beam in the modified betatron is accelerated in three
phases: (1) preacceleration, (2) diffusion, and (3) main acceleration. We will deal with
the diffusion and acceleration phases since they occur on time scales of at least two
orders of nlagnitude greater than the poloidal drift period. In our discussion of
diffusion, we will examine the effect of imperfect flux diffusion compensation on beam
equilibria. A discussion of the numerical-solution procedure and the new elliptic solver
can be found in the appendix.

II. FLUX DIFFUSION

(a) Constant Energy

Flux diffusion is simulated in our system by specifying the boundary conditions on the
flux, \jJ == rA(h as

(1)

where \jJr is the well-known flux of a thin ring carrying beam current / 11
, \jJe is due to the

external vertical field coils and the constant \jJo is determined so that ~ at the reference
orbit is conserved. The constant € reflects the degree of diffusion; € == 0 represents no
flux diffused and € == 1 full flux diffusion. The flux \jJo is the additional flux through the
major orbit that must be provided by external coils. In this set of calculations, the
energy of the beam is held constant while the vertical field is adjusted appropriately to
hold the beam at the initial equilibrium radius ro, as discussed in Refs. [5] and [6]~ In
the first of these runs, r0 == 100 cm, the field index, 11 == 0.5, and as shown in Fig. 2, we
find that the vertical field Bv increases 20% from Bv == 120 G with no flux diffused,
to Bv == 155 G with all the flux diffused; \jJo also increases during diffusion from
o to 2.36 x 105 G-cm2, but \jJ(r0) remains almost constant. We shall explain the
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FIGURE 2 Flux diffusion at constant energy.

interdependence of these variables shortly. In Fig. 3 we show the Po surfaces before and
after flux diffusion. The x-point at approximately 90 cm hardly moves toward the beam
at all, so there is no threat of transition to the paramagnetic curves outside the
separatrix. This then contrasts to our findings with rectangular geometry where the
separatrix moves in during diffusion, ultimately disrupting the equilibrium.

If flux diffusion were to occur with a centered beam and constant external fields, the
beam would lose energy and its equilibrium radius would decrease because the
decrease in equilibrium radius associated with the reduction of Yo is greater than the
increase in equilibrium radius associated with the enhanced image forces. 7 (The 1jy 2

cancellation of image charge forces and image current forces is weaker for smaller y). In
our calculations, energy and equilibrium radius are fixed, so the vertical field increases
to prevent the increase in roproduced by the enhanced outward hoop and image forces.

In the next run, we set ro = 95 cm and find that Bv decreases from Bv = 121 G to
Bv = 81 G during flux diffusion, while '1Jo increases from 0 to 6.62 X 10 5 G-cm 2 (see
solid lines in Fig. 2). The ~ surface after diffusion is shown in Fig. 4. This time the
separatrix does move closer to the beam, from about 4 cm to 1 cm away when flux has
diffused, but again the beam is not disrupted.

The explanation for the decrease in Bv is connected to the shift in the self magnetic
field during diffusion. As the repelling image currents in the wall decay, the net forces on
the beam point· inward due to the electrostatic attraction to the inner (nearer) wall.
Thus the imposed inward force, that from Bv , must also decrease to maintain roo The
external flux ('1Jo) again increases to compensate for the loss of self flux andBv flux at the
beam: Thus ·the question of how Bv must change during flux diffusion is extremely
sensitive to beam position.
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FIGURE 4 Po topology with flux diffusion at ro = 95 em, E = 1.

(b) Constant Vertical Field

In another set of runs, we diffuse the self flux, but fix Bv and allow the energy to adjust
during diffusion. As in the fixed-energy results, the separatrix does not move closer to
the beam when ro = 100 cm, but comes within 0.25 cm of the beam when ro = 95 cm.
Since the separatrix in the latter case hits the wall of the torus, this is a potentially
dangerous situation, and beam disruption is likely to occur for beam with ro = 95 cm.
In Fig. 5, we show the effect on beam energy Yo, on flux \fI(r0), and on the external flux
\flo of flux diffusion with constant vertical field Bv • At ro = 100 cm, the energy decreases
during diffusion, from Yo = 3.8 to y = 2.0, to counter the increased outward (in the r
direction) forces on the beam. At ro = 95 cm, the energy increases during diffusion,
from y = 4.3 to y = 6.45. This time the net force from the image currents is outward
and its loss must be compensated by increased centrifugal forces.

When the flux diffuses at constant energy, \fI(ro) remains nearly constant but Bv
changes dramatically (Fig. 2). With flux diffusion at constant Bv , Yo and \fI(r0) both
change dramatically (Fig. 5). In fact, during flux diffusion, our results show that Yo and
\fI(ro) are related linearly, exactly as they are during acceleration. This follows because
Po = rmyvo - e\fl is a constant of the motion, and rand vo( ~ c) are almost constant
during flux diffusion. The behavior of \flo (which must be supplied externally) in Figs. 2
and 5 can be directly inferred from the behavior of \fJ(ro). The change in flux at beam
center is produced by three effects

(2)
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FIGURE 5 Flux diffusion with constant Bvert .

where o/e is the flux due to the vertical field, o/f is due to self-flux (which can change
because of diffusion through the walls or because of a change in beam parameters) and
0/0 is the constant external flux. During flux diffusion at constant energy, o/(ro) is almost
constant and %maintains "'(r0) by compensating for the loss of self-flux and the loss or
gain of flux from the increasing or decreasing Bv field (Fig. 2). During flux diffusion with
constant Bv , o/(ro) is tied to Yo and % again must supply the necessary flux according to
Eq. (2) (Fig. 5).

III. FLUX-DIFFUSION COMPENSATION

Because it may not be possible to adjust the vertical field rapidly enough to maintain
equilibrium, and furthermore, because the proper increase in Bv or "'0 with € is
extremely sensitive to the beam position in the linear, it has been proposed that a
discrete set of coils be used to compensate for the decay of eddy currents. In this section,
we simulate the results of an error in this process of compensation.

We suppose that the set of external conductors is placed along the minor cross
section of the torus having a poloidal distribution resembling the distribution of wall
currents in a perfect conductor. We suppose further that the error made in this
compensation produces a sinusoidal variation of flux at the boundary (the self-flux at
the boundary would be identically zero if compensation were perfect). Then the
boundary condition on 0/ becomes

'" = o/e + €\ji + 0/0' (3)

where \ji oscillates along the walls; that is

\ji(r, z) = o/m cos 16<p, (4)

where o/m is the maximum value of o/r and <p signifies the poloidal angle.
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Figure 6 shows the results for € = 0.25 and 1.0. These curves should be compared to
Fig. 3a which corresponds to € = O. The presence of the coils is markedly seen in
Fig. 6a, but the distance between the separatrix and the beam decreases only by 1.5 cm
between € = 0.25 and € = 1.0, and the separatrix remains well away from the beam.
Furthermore, and in contrast to our previous constant-energy flux-diffusion results,
the vertical field Bv increases only 0.83% between € = 0 and € = 1. These results are
very optimistic in that they show that the beam is not affected by flux diffusion as long
as the diffusion is compensated by the discrete coils. Furthermore, the beam is not
sensitive to the level of discretization error.

IV. POLOIDAL ERROR

Next we consider the possibility that an error is made in the poloidal distribution of
currents in the coils described above. Suppose this error is represented with the
following boundary condition on '11

(5)

where again o/m is the maximum value of flux produced by a thin ring of current
carrying beam current I, and <p signifies poloidal angle. As shown in Fig. 7, we find that
both the vertical field necessary to maintain the equilibrium radius and the external flux
'110 are very sensitive to these poloidal errors, and that this sensitivity increases with
beam current. Equivalently, one would find that for a fixed external field, the
equilibrium radius is very sensitive to the degree of poloidal error. The change in Bv for
5% poloidal error is 18% for I = 10 kA, 8% for I = 3 kA, and 3% for I = 1 kA. Thus
when compensating for flux diffusion with external coils, it is essential that poloidal
errors in current distribution in these coils be very small.

V. ACCELERATION

To treat acceleration of beam, we assume perfect flux diffusion compensation, and
increment Eo, the energy at the equilibrium radius (or O-point of the Po surface). As in
the rectangular geometry, we find that because of the increased focusing forces and
cancellation of electric and magnetic self forces, the separatrix moves in toward the
beam as its energy increases. Ultimately the separatrix hits the outer edge of the beam
and the transition from diamagnetic to paramagnetic motion occurs. The beam will
almost certainly not survive this transition if the separatrix intersects the linear wall.

We now find that as Yo increases from about 4 to 10 (the transition energy), the orbit
is confined during the transition for 0.4 ~ 11 ~ 0.6, but is not confined for field index
11 = 0.3 or 11 = 0.7. The Po topology for two field indices, 11 = 0.5 and 11 = 0.7 is
shown in Fig. 8 just before the edge of the beam undergoes transition. In the 11 = 0.5
case, the energy Yo = 9.26, and the separatrix is well contained in the linear. In the
11 = 0.7 case, the energy Yo = 8, and the separatrix (in this case a hidden level curve
with two x points at r = 99 cm, Z = ±4 cm) runs into the linear.

At this point a few other considerations are worth mentioning. We have done some
acceleration calculations at beam current of 1 kA and found that the beam will survive
the paramagnetic transition for a broader range of field indexes (almost as high as
0.3 ~ 11 ~ 0.7). We have also investigated the consequences of initializing the beam
with a much flatter density profile than usual and found no effect.
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VI. SUMMARY

The effects of flux diffusion, inadequate flux-diffusion compensation, and acceleration
on the beam in the modified betatron have been examined in this paper. Our formalism
assumes that the poloidal drift in the toroidal field is well below the Brillouin limit
("slow mode"), that the parameters affecting the beam change adiabatically, and that
the beam is cold. This last constraint will be relaxed in a future publication, where we
will investigate the effects of transverse emittance on equilibria and adiabatic
evolution. We find that beam equilibrium can be lost during flux diffusion unless the
diffusion is accurately compensated. Specifically, not only must the total current in the
coils cancel the beam current, but even the current distribution in the wall must be
accurately medeled. The sensitivity of the beam to current distribution error goes from
relatively insensitive for a l-kA beam to very sensitive for a lO-kA beam. We also find
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that a 10-kA beam will survive the diamagnetic to paramagnetic transition provided
the field index is within the limits 0.4 S 11 S 0.6.
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APPENDIX

Description of the Iterative Equilibrium Code

In this appendix, we discuss the equations governing the self-consistent equilibrium of
a modified betatron, and give an outline of the solution procedure. Our method is
reminiscent of that used by Grad for calculating the adiabatic compression of a two
dimensional plasma. 12- 14

The cold-fluid equation of motion for the beam in equilibrium is

(6)

where p = ymv y is the relativistic factor (1 - v2 /e 2
)1/2, B is the magnetic induction,

and <p the scalar potential. By toroidal symmetry, we can write

B = V\fJ x va + gVa, (7)

where \fJ = rAois the poloidal flux, Ao the toroidal component of the vector potential,
g == rBo, and athe toroidal angle. Using Ampere's law and the toroidal component of
Eq. (6), we can show that the level curves of the toroidal canonical angular momentum

Po = ymrv() + q\fJIe

constitute drift surfaces of the electrons in the poloidal plane and that

g = g(Po)·

(8)

(9)

If poloidal inertia and centrifugal force are ignored, the poloidal component of
Eq. (6) implies that the energy

E = yme 2 + qq, (10)



MODIFIED-BETATRON FLUX DIFFUSION

is a function of Po, and that

Vo g dg dE
- - -- - = - == Q(Po),
r 41tnr 2 dPo dPo

where n(r, z) is the density.
Defining K(Po) == g(dgldPo), we can rewrite Eq. (11) for the density,

K(Po)
n=-------

41tr2 [voir - Q(Po)]'

Finally we compute the electrostatic potential <p and poloidal flux \jJ from

V*\jJ = 41tnervolc,

197

(11)

(12)

(13)

(14)

where V*\jJ = rL.V • (r - L.V\jJ), and the boundary conditions for acceleration are those of
a conducting wall; <p = 0 and \jJ = \jJe + \jJo where \jJe is the flux due to the external
vertical-field coils and \jJo is a constant. For flux diffusion, we model the flux on the
boundary to be

(15)

where \jJr is the well-known flux due to a thin ring carrying beam current I, and € is a
measure of how much flux has diffused. For both acceleration and flux diffusion, \jJo is
an externally imposed constant flux chosen so that Po at the reference orbit is conserved.
\jJo must be supplied by an external coil to maintain equilibrium during flux diffusion or
acceleration, and is defined to be zero at the first equilibrium.

The elliptic Eqs. (13) and (14) are solved using a special fast Fourier technique that is
able to handle circular (or more general) boundaries. The general idea is to solve the
elliptic equations in a rectangular region enclosing the actual boundary. In this
rectangular region, the usual technique of Fourier transforming in one direction and
solving the resulting tridiagonal system in the other direction works. Next a "Green's
function" matrix is generated that computes the discrete surface charges on the real
boundary necessary to produce the desired potential (or flux) there. IS

-
I7 This

approach can also be interpreted as a method of permuting the matrix obtained by
standard finite difference in the disc to a matrix on which the standard FFT methods
will work. Is In this elegant framework, Neumann boundary conditions on irregular
regions can also be dealt with easily.

In our computer code, Eqs. (8)-(14) are solved iteratively for the given experimental
parameters such as beam current, radius, energy, etc., and for given values of boundary
conditions on <p and \jJ. Beam equilibrium at any point later in the acceleration or flux
diffusion cycle can be found merely by specifying the energy of the beam or the
boundary conditions on \jJ. The new equilibrium is found by conserving the adiabatic
constants of the motion.




