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Analytical and computer simulation results are reported on the effect of spatial fluctuations of the external
field index on the dynamics of a high-current electron ring in a modified betatron. These nonlinear studies
clearly demonstrate that the external field-index fluctuations are, in general, harmless to the high-current
ring. In addition, it was found that a small (I"J 1%) temperature spread parallel to the direction of
propagation excites oscillations in the rms emittance, but the amplitude of these oscillations is substantially
lower than in a conventional betatron.

I. INTRODUCTION

The modified betatron belongs to the class of cyclic induction accelerators, i.e., the
electrons are accelerating by an inductive electric field. So far three different cyclic
induction accelerators have been proposed: the conventional betatron,1-3 the modified
betatron4- 14 and the stellatron. 15 The modified betatron includes, in addition to the
time-varying betatron magnetic field that is responsible for the acceleration, a strong
toroidal magnetic field that substantially improves the stability of the conventional
betatron. In the stellatron, the addition of a stellarator field to the modified betatron
substantially reduces the displacement of the orbit that is due to energy mismatch.
However, beam trapping and resonances appear to be presently unsolved problems.

The linear dynamics of a high-current electron ring in a modified betatron geometry
has been studied extensively4-14 during the last few years. These studies are mainly
motivated by extensive evidence suggesting that the modified betatron has the
potential to confine high-current electron rings, even in the presence of a substantial
transverse emittance.16

However, in any practical device, nonlinearities will be present and their effect on the
dynamics of the beam should be carefully considered. The sources of nonlinearities in a
high-current modified betatron are numerous. Probably the most important of these
are: (i) large ring displacements from the minor axis of the. torus, (ii) azimuthal
perturbations in the magnetic fields, (iii) the gradient of the toroidal magnetic field,
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(iv) non-uniform particles and current densities in the ring and (v) rapid field-index
spatial variations.

The nonlinear dynamics of very tenuous electron rings in a modified betatron ac
celerator has been studied recently by Chernin. 17 His studies were limited to quadratic
nonlinearities in the absence of self-fields and image fields from the surrounding walls.
For azimuthally symmetric fields, he concluded that the quadratic nonlinearities are
quite harmless to the electron ring.

In this paper, we use a computer simulation code to study the effect of several
nonlinearities on the dynamics of the electron ring. The nonlinearities that are due to
the azimuthal perturbations of the fields are not included in our studies. A substantial
fraction of our effort is focused on the effect of the large spatial fluctuations of the field
index. By comparing the electron-ring evolution in fields of constant field index n with
that in fields of large an/or, it becomes clear that the field-index fluctuations are, in
general, harmless to high-current rings. It should be noticed that an/or in the
simulation is larger than that expected to be present in the NRL modified betatron.

Additional conclusions to be drawn for our results are that a small ( '" 1%) azimuthal
temperature spread excites oscillations in the rms emittance, but the amplitude of these
oscillations is substantially lower than in a conventional betatron. 16 Furthermore, a
large emittance growth and beam expansion are observed when the electrons cross the
single-particle resonance, i.e., when their frequency 0) = O. The expansion of the beam
can be effectively reduced by a large toroidal magnetic field.

II. COMPUTER SIMULATION RESULTS

a. Description of the Particle in Cell Computer Code

The computer code has been described previously.l! Here we provide a very brief
summary with emphasis on a recent modification related to the initial loading of the
particles. Briefly, the particle simulation code is 2D in configuration and 3D in velocity
space. It computes self-consistently all self fields, except the self Be field. This
assumption is valid provided v/y is small. In addition, the radiative term (displacement
current) is ignored, i.e., the code uses the Darwin model for Maxwell's equations.

The electrostatic potential is computed from Poisson's equation

(1)

and the magnetic vector potential from

(2)

with the boundary condition <1> = Ae = 0 at the conducting wall.
Equations (1) and (2) are solved by Fourier decomposition in the z - r direction and

then by Gaussian elimination of the resultant tridiagonal matrix of equations obtained
from a 3-point differencing scheme for Vr

2
. The inverse Fourier transform yields Ae and

<1> on the grid. The particle velocities in the toroidal direction are obtained using the
conservation of cannonical momentum. Therefore, the equation for Ae is not properly
time centered because the velocities from the previous time step are used to calculate
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the currents from the canonical momenta. This method was chosen primarily for its
speed and simplicity, but care must be taken in applying the code when the inductive
acceleration of particles in the toroidal direction is significant.

In several runs, the particles were loaded in the code at t = 0 using a cylindrical K-V
distribution. In these runs, the electrons quickly acquired an "energy spread". This
"thermalization" is due to the fact a cylindrical K-V distribution is not appropriate for
high-current electron rings that have large aspect ratio fo/fb , where f o is the major and
f b the minor radius of the ring. The reason is that a cylindrical K-V distribution
requires that the potential be the same on both the left and right side of the beam.
However, in a actual ring there is a potential difference between the inner and outer
edge. Thus, a ring that has been incorrectly initialized tries to attain a more physical
distribution, but in the absence of dissipation this can be achieved only temporarily. In
the process, a spread in y is developed, which is equivalent to temperature. In all the
results presented in this paper, the code was loaded at t = 0 correctly, i.e., taking into
account the asymmetry of the potential across the ring.

b. Results Without Temperature in the Azimuthal Direction

Figure 1 shows the modified-betatron geometry and the system of coordinates that will
be used in our subsequent discussion. The center of the electron ring is located away
from the center of the minor cross-section of the torus and at a distance
~ = (~f2 + ~Z2)1/2. Results from the computer simulation are shown in Fig. 2. The
various parameters for this run are listed in Table I. At t = 0, the 5-kA electron ring is
located on the horizontal symmetry plane and at a distance ~ = 8 cm, i.e., half-way
between the minor axis and the wall of the toroidal chamber. It is apparent from the
small variations of the ring envelope [Figs. 2a and 2bJ that the ring is reasonably well
matched. As shown in Table I, the external field index n is constant and equal to 0.42.

z

Toroidal
Chamber

~z +8z

~2= ~r2+ ~Z2

r = ro +~r +8 r

z = ~z + 8z
FIGURE 1 Modified-betatron configuration and system of coordinates.
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FIGURE 2 Temporal variation of the rms radial distance of electrons from the center of the minor cross
section of the ring; (b) temporal variation of the rms vertical distance of electrons from the center of the
minor cross section of the ring; (c) orbit of the ring's center in the r-z plane; (d) temporal variation of ring
kinetic energy. In this run, the external-field index is uniform. The various parameters are listed in Table I.

For such a value of n, linear theory!!,!3 predicts that the minor axis of the ring has two
modes of oscillation, slow (bounce frequency) and fast (cyclotron frequency corre
sponding to the toroidal field). The orbit of the ring axis associated with the slow or
bounce mode is approximately a circle that is centered around the ring equilibrium
position. Although the run was terminated before the ring could complete a full bounce
period, it is clear from Fig. 2c that the center of the ring describes an orbit that is similar
to that predicted by the theory. Both modes of oscillation are quite apparent. The
radius of the fast mode Pi can be computed approximately from the expression
PI == voEN/rbQ(j, where Vo is the azimuthal velocity, EN is the normalized emittance, r b is
the ring radius and Qo the cyclotron frequency of the local toroidal magnetic field. The
time interval between two successive arrows in the figure is 20 nsec.
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TABLE I

Parameters of the Run Shown in Fig. 2

Run No. M14D

Initial beam energy Yo = 7.117
Beam current 1 (KA) = 5 KA
Major radius ro (em) = 100
Initial beam minor radius r b (em) = 3
Torus minor radius a (em) = 16
Initial beam center position r i (em) = 108
Betatron magn. field at ro, Z = 0, Boz (G) = 136.2
Toroidal magn. field at ro, Z = 0, Boo (G) = 388
Initial emittance f (rad - em) = 0.1

Initial temperature spread (half-width) l1y = 0
y

External field index n = 0.42 (Constant)
Self field index ns = 1.34
Wall resistivity p = 0
Timd step (nsee) = 100 ps
No. of particles = 1024
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The ring kinetic energy also oscillates with the two characteristic modes as may be
seen in Fig. 2d. The variation of y can be computed approximately by integrating the
energy rate equation

(3)

using for the self magnetic vector potential the expression

(4)

In Eq. (4), I r is the ring current, a is the minor radius of the torus and ~ is the distance
between the ring minor axis and that of the torus. It should be noticed that Eq. (4) does
not include toroidal effects and therefore is valid only for low v/y rings.

Since I r = -leINve/2nr, where N is the total number of electrons in the ring and the
external part of the magnetic vector potential remains constant, we get from Eqs. (3)
and (4)

y(t) - y(O) = 2vo{~) [1/2 + In(alrb(O)) + In(1 - ~2(0)la2)]
r(O

- ~~) [1/2 + In(a/rb(t)) + In(1 - A2(t)/a 2 )J }, (5)

where Vo is the Budker parameter when the ring center is located at ro, i.e.,

(6)

In the fast mode, y changes through the transverse oscillations of the ring envelope.
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Since in this fast time scale rand 1\ remain approximately constant, Eq. (5) becomes

roy(t) - y(O) == 2vo -lnIrb(t)jrb(O)].
r

In the slow mode, y changes mainly through the variation of the ring current, which
results from the changing r. Since the contribution from the variation of rb and 1\ are in
general small, Eq. (5) gives

y(t) - y(O) == 2voro[lj2 + In(ajrb(O)) + In(l - 1\2(0)ja 2)][r(t) - r(O)Jjr(t)r(O). (7)

Equation (7) predicts that y(t) decreases with r(t). In addition, for the results of
Fig. 2d, Eq. (7) predicts a reduction in y between t == 0 and t == 80 nsec of 0.18, which
is in excellent agreement with the computer simulation results.

As was stated before, the run shown in Fig. 2 was made using a constant external
field index. The purpose of this run was to serve as a "bench mark" for the rest of the
runs that were made with a variable external-field index. The radial profile of the
betatron field· and the variation of the external field index are shown in Fig. 3. The
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FIGURE 3 Variation of the betatron magnetic field and external-field index with radial distance at three
vertical (z) positions.
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FIGURE 4 (a) Temporal variation of the rms radial distance of electrons from the center of the minor
cross section of the ring; (b) temporal variation of the rms vertical distance of electrons from the center of the
minor cross section of the ring; (c) orbit of the ring center in the r-z plane; (d) temporal variation of ring
kinetic energy. In this run, the external-field index varies as shown in Fig. 3. The various parameters are listed
in Table II.

assumed variation is in effect greater than that expected to be present in a well-designed
device.

The effect of the external field-index variations on the dynamics of the ring is shown
in Fig. 4. The parameters of this run are listed in Table II and, with the exception of the
external-field index, are identical to those of run listed in Table I. By comparing
Figs. (2) and (4), it may be concluded that the variation of the field index does not have a
profound effect on the dynamics of the ring. Although some details are different, the
gross features of the two runs are very similar. The most pronounced new feature of the
results in Fig. 4 is the slow time-scale variation of the ring envelope. As the ring moves
from its initial position at z = 0 to z =1= 0, the field index is reduced and the ring
becomes unmatched, resulting in envelope oscillations.
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TABLE II

Parameters of the Run Shown in Fig. 4

Run No. M16A

Initial beam energy Yo = 7.117
Beam current I (KA) = 5
Major radius ro (cm) = 100
Initial beam minor radius rb (cm) = 3
Torus minor radius a (cm) = 16
Initial beam center position ri (cm) = 108
Betatron magn. field at ro, z = 0, Boz (G) = 136.2
Toroidal magnetic field at ro, z = 0, Boo (G) = 388
Initial emittance € (rad - cm) = 0.1

T •• I f 8.ynltla temperature spread (hal-width) - = 0
y

External field index n = see Fig. 3
Self field index ns = 1.34
Wall resistivity p = 0
Time step (nsec) = 100
No. of particles = 1024

Snapshots of the minor cross section of the ring and the magnetic field lines
corresponding to the total magnetic field are shown in Fig. 5. As can be easily
computed, the zero magnetic field point occurs at ~ rbl2.

Similar results to those shown in Fig. 4 were also obtained for smaller initial ring
displacements Ll(O). Figure 6 shows the results for Ll(O) == 5 cm. The parameters of this
run are listed in Table III. In all the runs, we carefully avoided crossing the beam
resonance, i.e., the radial frequency

where

ffi,2 = (~:zy [~2 - n(t)~ - nsr//a2
],

~ == [1 + 2(vly)(0.5 + In alrb )] - 1,

was kept different than zero. The implications of crossing th.e resonance are presently
under investigation.

c. The Effect of Temperature

In the system of coordinates shown in Fig. 1, the equations describing the motion of
individual electrons in a constant-radius beam with Ll == 0 having an azimuthal energy
spread Ll yIyo are

~ .• 2 ~ (r\ I ) A • C 2 Llyur + O)r ur - ~~06 Yo LlZ == --,
ro Yo

(8)

(9)
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FIGURE 5 Snap-shots of the electron ring minor cross section and magnetic-field lines corresponding to
the total magnetic field. The infinite-conductivity vacuum chamber has a circular minor cross section. The
major axis of the torus is located to the left and at 100 cm from the center of the minor cross section of the
torus. The various parameters are listed in Table II.

the azimuthal energy spread in the beam. Equations (8) and (9) do not include the
toroidal corrections in the fields and therefore are valid only for low v/Yo beams.

In the Larmor frame, i.e., a frame that rotates with a constant frequency
QL = 1/2(Qoo/Yo), Eqs. (8) and (9) take the form

(10)

(11)
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FIGURE 6 (a) Temporal variation of the rms radial distance of electrons from the center of the minor
cross section of the ring; (b) temporal variation of the rms vertical distance of electrons from the center of the
minor cross section of the ring; (c) orbit of the ring center in the r-z plane; (d) temporal variation of ring
kinetic energy. In this run the external-field index varies as shown in Fig. 3. The parameters for this run are
listed in Table III.

where

K 2 = ((02 + nL
2 )/vo

2
, (02

the toroidal angle.
(02

r (Oz
2

, i.e., n = 1/2,8r' = d8r/ds, s roe and eis
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TABLE III

Parameters of the Run Shown in Fig. 5

Run No. M05A

Initial beam energy Yo = 6.994
Beam current I (KA) = 4.76
Major radius ro (em) = 100
Initial beam minor radius r b (em) = 3
Torus minor radius a (em) = 16
Initial beam center position r i (em) = 105
Betatron magn. field at ro, z = 0 Boz (G) = 136.2
Toroidal magn. field at ro, z = 0, Boo (G) = 388
Initial emittance € (rad - em) = 0.1

Initial temperature spread (half-width) /1y = 0
y

External field index n = see Fig. 3
Self field index ns = 1.33
Wall resistivity p = 0
Time step (nsee) = 100 ps
No. of particles = 1024
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Equations (10) and (11) describe forced oscillations and have a resonance at 0) = O.
The solution of Eqs. (10) and (11) when K is independent of s is

and

A. ~ A. ~] 8r'(0) . ~ (QLS)8r = [ur(O) - uro cos Ks + -- SIn Ks + uro cos - ,
K Vo

(12a)

where

OZ = oz(O) cos Ks + ~ [02"(0) - orOOL/vO] sin Ks + oro sin (nLs), (12b)
J( Vo

When 0) = 0, the solution of Eqs. (12) is

and

(13b)

In addition to the purely oscillatory terms, Eqs. (13) have two terms that make their
amplitude increase with s. Therefore when 0) = 0 the beam radius will rapidly increase
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and thus the model, which is based on rb = constant, breaks down. Furthermore, ns

and co are functions of rb and thus neither remains constant as rb increases. Therefore, in
our subsequent discussion, we will assume that co =1= O.

The rms beam emittance is defined by

(14)

Substituting Eqs. (12a) and (12b) into Eq. (14) and taking averages over a K-V
distribution, we obtain

...... 2

~6 = <of2 (O)<of/ 2 (O) + or/{<of2(O)[xK sin Ks + x' cos KS]2

+ <of/ 2 (O)[x cos Ks - ~ sin KS]2}, (15)

where

(QLS)
X = cos -;;; - cos Ks

for the r-component

QL . (QLS) ..x' = --SIn - + KSInKs
Vo Vo

and

(16)

. (QLS) (QL) .X = SIn - - - sIn Ks
Vo Kvo

If the initial conditions are such that

for the z-component
(17)

Eq. (15) becomes

WhenQL2 » 0)2, the two components of the rms emittance become

...... 2

~ = <8f2(O)<8f'2(O)
16

+ 2(oroOLfvo)2<of2(O) [1 - cos (~::J]. (19)
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and

Since 0)2 sjQoeve ~ 0 when Qoe » co, the amplitude of the oscillatory terms is very
small. This is contrary to the conventional betatron, in which very small energy spread
results in very large oscillations of the rms emittance. 16

Results from the computer simulation with a small parallel temperature spread are
shown in Fig. 7. The various parameters for this run are listed in Table IV. When a
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FIGURE 7 (a) Temporal variation of the rms radial distance of electrons from the center of the minor
cross section of the ring; (b) temporal variation of the rms vertical distance of electrons from the center of the
minor cross section of the ring; (c) orbit of the ring's center in the r-z plane; (d) temporal variation of ring
kinetic energy. In this run the external-field index is uniform, but the electrons have a 1% (half-width)
temperature spread along the toroidal direction. The various parameters for this run are listed in Table IV.



168 C. AGRITELLIS, S. J. MARSH AND C. A. KAPETANAKOS

TABLE IV

Parameters of the Run Shown in Fig. 7

Run No. J02A

Initial beam energy Yo = 7.004
Beam current I (KA) = 5 KA
Major radius ro (em) = 100
Initial beam minor radius rb (em) = 2
Torus minor radius a (em) = 16
Initial beam center position rj (em) = 105
Betatron magn. field at ro, Z = 0, Boz (G) = 140
Toroidal magn. field at ro, Z = 0, Boo (G) = 725
Initial emittance € (rad - em) = 0.1

Initial temperature spread (half-width) l1.y = 1%
y

External field index n = 0.42
Self field index ns = 2.984
Wall resistivity p = 0
Time step (nsee) = 100 ps
No. of particles = 1024

parallel energy spread is present, the matching becomes more difficult and the beam
envelope starts to oscillate. These oscillations result in the growth of the ring rms
emittance and are discussed later.

The ring dynamics in the presence of temperature is similar to that in the absence of
temperature, provided that even with the expansion of the beam radius, 0)2 remains
different than zero. In one run, the various parameters were assigned values such that
0)2 would go through zero after a small expansion of the beam radius. A very rapid
increase in the beam envelope was observed that was accompanied by a large growth of
the rms emittance in approximately 100 nsec. However, the expansion had no
noticeable effect on the macroscopic motion of the center of the beam, at least for the
duration of the run.

The large expansion of the beam envelope that has been observed in this run is
related to the unrealistically low value of the toroidal magnetic field used. Since reliable
numerical analysis requires several cells across the minor cross-section of the ring, it
was necessary to work with large minor radius rings, which can be matched only at low
toroidal magnetic field. Specifically, the applied matching field for the 3-cm minor
radius, 5-kA ring is 388G, at least five times smaller than that contemplated for the
NRL modified betatron.

According to Eqs. (13), the terms with amplitude that increases linearly with s also
vary in inverse proportion with Be. Therefore a large toroidal field can effectively
reduce the expansion of the beam when the single-particle resonance (0) = 0) is
crossed.

The rms emittance as a function of time for Til i= 0 is shown in Fig. 8a. The various
parameters are listed in Table IV. The corresponding result for Til = 0 is shown in
Fig. 8b. With the exception of the temperature, the various parameters for this run are
identical to those listed in Table IV. Since in the numerical results

and
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FIGURE 8 (a) Temporal variation of the rms emittance E" €z and their average (Er + Ez)/2, when there is a
1%(half-width) temperature spread Tll in the toroidal direction. The various parameters for this run are
listed in Table IV; (b) as in (a) but with Tll = O.

Eqs. (19) and (20) predict that

i.e., t r and t z are either in phase or approximately 1800 out of phase. Figure 8a shows
that t r and t z are 1800 out of phase. This appears to be a general result and has been
observed in all the runs with temperature or equivalent temperature.

The secular emittance growth in Fig. 8a is attributed to the radial expansion of the
ring. This is also a general result and is observed in all unmatched rings with or without
temperature. Among the various nonlinearities, such as field fluctuations, wall, density
and radial expansion, the last appears to be the most pronounced.

III. CONCLUSIONS

Some preliminary experimental results 18 together with the extensive equilibrium5
-

14

and stability analysis19
-

24 indicate that the modified-betatron concept has the poten
tial to lead to the development of a cyclic, high-current accelerator.

Confidence in the modified-betatron concept is further enhanced by the present
results, which show that spatial fluctuations of the magnetic-field index that are
inevitable in any practial device appear to be harmless to the high-current ring.
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