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RESEARCH OBJECTIVES

In physical acoustics the problems involved concern the emission, propagation, and
absorption of sound and vibrations in matter. Specific problems include relaxation
phenomena in gases and solids, problems in nonlinear acoustics, and the interaction
of sound and turbulence.

In plasma physics our present main interest is in the area of instabilities in plasmas
and liquid conductors, and of wave propagation in plasmas.

K. U. Ingard

A. INSTABILITY OF LIQUID CONDUCTORS IN A MAGNETIC FIELD

The study of instability of liquid conductors in a magnetic field has been conducted

with an analysis of the experimental results obtained earlier. Some of these results

have been mentioned briefly in a previous progress report.1 The rate of change of the

extreme diameter in a pinch instability has been evaluated as a function of the wave-

length of the perturbation on the stream for several different values of the current

through the stream.

Similarly, the rate of growth of the spiral diameter in an m = 1 type of instability

in a longitudinal magnetic field has been determined. This last rate is found empiri-

cally to be well described by the expression

31/2 -1
P C (IB/pd ) sec ,

where I is the current through the stream, B the longitudinal magnetic field, p the den-

sity, and d the diameter of the liquid conductor. The dimensionless constant C is 4. 5.

A more detailed account of this investigation will appear in the December issue of

The Physics of Fluids.
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B. SOUND PROPAGATION OVER A PLANE BOUNDARY

The analysis of the influence of turbulence on sound propagated over a plane boundary

has been completed. The new analysis of the problem differs from that presented in

Quarterly Progress Report No. 55 (pages 141-149) in two respects. First, both ampli-

tude and phase fluctuations have been included in the calculations; and, second, the

amplitude and phase fluctuations are assumed to be normally distributed. The experi-

mental results discussed in Quarterly Progress Report No. 66 (pages 69-70) have been
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Mean-square sound-pressure level in a turbulent atmosphere
over a plane reflecting boundary as a function of distance from
the source (frequency, 500 cps). Dashed curve refers to the
calculated distribution in a homogeneous atmosphere; solid
curve, the calculated distribution for a turbulent atmosphere.

analyzed in detail, and the fractional standard deviation of the mean-square pressure
2

fluctuations (Std. Dev./p ) has been calculated as a function of distance from therms
source, and compared with the analysis that follows.

If it is assumed that both the amplitude fluctuations (a) and phase fluctuations (6)

are normally distributed, with variance given by

2 2 NJr (2<5 ) = Po(k x)(koL) + xJ

2 2ln 2k
<'(ln ( 1+a)) Z > jo(kox)(k L),
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Fig. XI-2. Mean-square sound-pressure level in a turbulent atmosphere over a plane
reflecting boundary as a function of distance from the source (frequency, 1000
cps). Dashed curve refers to the calculated distribution in a homogeneous at-
mosphere; solid curve, the calculated distribution for a turbulent atmosphere.
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Fig. XI-3. Mean-square sound-pressure level in a turbulent atmosphere over a plane
reflecting boundary as a function of distance from the source (frequency, 2000
cps). Dashed curve refers to the calculated distribution in a homogeneous at-
mosphere;solid curve, the calculated distribution for a turbulent atmosphere.
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Measured and calculated fluctuations of the sound-pressure
amplitude as a function of distance from the source.

then it can be shown that the mean-square sound-pressure level as a function of distance

from the source is given approximately by

2< . I 2 r x2 - /2m =(p> a > +- (1 ) +(+cos e ,/2

and the variance of the fluctuations in mean-square pressure, V = < (p2) > _ <(2)>2

may be approximated as

2 >-2/2)
cos 2 o ) + 2<(a >(1 + cos e ).

2
If the value of the parameter L is chosen so that the calculated value of m is in good

agreement with experiment at 500 cps, and x = 28. 5 ft, the correlation at other fre-

quencies and at other distances is as illustrated in Figs. XI-1, XI-2, and XI-3. The

dashed curves are the calculated sound pressures for a quiescent atmosphere. Plots

of 4Jv7m vs distance are presented in Fig. XI-4. The sharply peaked curves were cal-

culated under the assumption that amplitude fluctuations could be neglected. It is seen

that somewhat better agreement with experiment can be obtained if the effect of ampli-

tude fluctuations is included.

U. Ingard, G. C. Maling, Jr.
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C. STABILITY OF PARALLEL FLOWS

1. Introduction

If (0, 0, W(x 1 )) is a parallel flow solution for the Navier-Stokes equations and

(ul(, 0), u2 (', 0), W(x 1 ) + u3 (', 0)) represents an infinitesimally disturbed flow condi-

tion at t = 0, then the disturbed system will evolve according to

u. - W8 ui 8 p dW u (a)
at 1 x3  ax1 'i3 dx 1 1

8 u.
I = 0 (Ib)

ax.

with nonlinear terms neglected.

Taking the divergence of (la), and using (ib), we find that

au
V2p -2 dW u (Ic)

dx 8 ax 3

so that, with proper boundary conditions, p can be expressed in terms of the ui and

eliminated from (la). In fact, taking V2 in the first of Eqs. la and substituting V2p

from (Ic), we have

1V2u = v 4 u - W V2 u + d 2 8 au (2at 1 1 8x3 1 dx 2  (2)x
1

We have used the fact that W is, at most, quadratic in xl.
Xt 1

The case u.i(,t) = e u.i(x) has been studied extensively, since for this case the sta-

bility analysis reduces to the (difficult) problem of discovering whether (2) has solutions

for ul with Re (k) > 0. For many cases of interest, however, there exist no solutions,

or only a restricted class of solutions of this simple type, so that the results under such

an assumption are not entirely conclusive. We shall discuss a weak instability, not of

exponential type, which is common to all inviscid parallel flows.

2. A Weak Instability

The equations of motion (1) and (2) are homogeneous in x3 , so that the u i will remain
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independent of x 3 if they are so at t = 0. We consider, first, the case v = 0, for which

(1) becomes

u u 8p
at 8ax

a u 2  ap

at a 8 x

a u 3  dW(x 1 , x2 )
at dx U1

a u 8 au 2
+ - = 0,ax1 ax2

dW(x 1 , x 2 )

dx2 u2

(3a)

(3b)

(3c)

(3d)

in which we now permit W to depend on x 2 , as well as on x 1 . We suppose that the flow
is contained by a boundary b(x 1 , x2) , so that the component of u normal to B must vanish

along B.

According to (3), a 2p/8 x 8 2p/a8 x = 0, and the normal derivative of p vanishes

at B. The only harmonic function satisfying the boundary conditions (and finite every-

where, if B is not closed) is p = constant. According to (3a) and (3b), then, u1 and u 2
are time-independent. Equation 3c can be immediately integrated to give

u3(,t) dW2 2 (u3 (Xt) = u3(x, 0) - td- u1( x)+ u2 (x).

This simple linear analysis thus yields a weak instability, linear in time, which is

common to all inhomogeneous inviscid parallel flows. The instability arises from a

mixing of parallel streamlines of varied flow strengths by a weak persistent convective

motion.

We should expect that in an exact analysis u 3 should grow at first according to (4),

and then flatten out or turn back when u 3 << W ceases to be valid. We can indeed con-

struct exact solutions of the Navier-Stokes equations which exhibit this behavior. In

an exact analysis (4) becomes

au. 8u. uu. 8p1 1 1
at 1 8x 2 8x -ax I '1 2 1ax ax

i= 1,2

u = onlB

(5a)

a u.
0

dx.
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S+u a u
t 1 dx 1 2 a x 3]

u3(2, t =O) = W(x , x)

(5b)

Equations 5a are the two-dimensional Navier-Stokes equations, which admit of time-

stationary vortical motions (u 1 (~), u 2 (x)). Equation 5b simply expresses the continuity

of u 3 (x 1, x 2 ) in the two-dimensional convective field (ul, u 2 ). For small t, u 3 clearly

evolves according to (4).

The second case, v 0, is less transparent, and we consider only plane parallel flow

between parallel plates at x = ( Tr). Equation 2 in this case reduces to

d -V2u =vV4u
dt 1 1

(6)
du

dx1 (+Tr)= u 1 (+±T) = 0.
dx 1

Equation 6 can also be written

d 2
-w = vV wdt

w(± T) = f(±r) (7)

dw df
dx and f , so that u w - clearly satisies (1).

where f = f(xIxzt ) , and V 2f = 0, so that ul = w - f clearly satisfies (1).

ul (xl, k (o)) exp(k(o)t) exp(ik 2 x 2 ) dX(o)dk 2, etc.,

We expand

so that (2) becomes

k(o) = v - k2
(d 2)

df
dx d(±  r x T)

w(± Tr) = (± 1T).

(8a)

Here, 2 k2 - 0, so that f = a cosh kz x + b sinh kzx1, k2 * 0.

X(o) 2
With X - + k., we have

v 2'
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2

dx 1

Note that if Wk(x) is a solution of (8a) for some (X, a, b), then wk(-x) will be a solution

for (X, a, -b). It follows that the even

for (X, a, 0) and (X, 0, b), respectively.

w(e)( t) = a cosh kTr

(e)

dw (r) co7T) _
dx - ±k2a sinh k2 rr

w(o)( w) = ±b sinh k2w

dw (+ w)dxw = k 2 b cosh k2rr

d 2

dxkw = 2 w

dx 1

or, more concisely,

and odd parts of w

Thus we seek w(e)

separately will be solutions

even, and (O)odd, satisfying

(9a)

dw(e)
dx ( )Tr

dw(o)
dx (± r)

= ±k tanh kZ r

= ±k2 coth k2 r.

With the given boundary conditions, we have

1dxl dji
1

Tr

+
-rr

T

-Tr

Tr

-T

_ T du

*.J dx-w 1
dF dx

: d2V

2
-w dx 1

The conditions (9b) ensure the vanishing of the iterated term in (10).

The system is thus a regular self-adjoint one, so that the eigenfunctions of (9a) will
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du
dx 1  -

u I du
udx

(8b)

1

w (e )

and

1

W(O)

/ 2
xu
2

\dx 1

(9b)

dV-u
1

v dx
1

(10)
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be complete for the purposes of expansion. Even solutions of (9a) have the form

w(e) = A cosh - x 1

for which X must be chosen so that

1

W(e)

(11)

dw(e)
dw () = li- tanh Tr = k tanh k 1.dx 2 2

( e )  2The only solution with X > 0 is w(e) = A cosh k2 x 1 , for X = k2 .2 2'
In case K < 0, we write

N tanh r-=T -p tan p = k 2 tanh k2 r, so that p is real, (-p2 =X). We get eigenvalues
1 2 2

p with n -- < p < n, n 1, 2. so that X = -pn and (o) = -v P2 + k 2 ). The only
n 2 n n n n 2

odd solution of (9a) with k > 0 is w(o) = A sinh kx1,

For X < 0, we set X = -q2 and write

w(o) = B sin qx 1 ,

where

for K = 2
k2

(12)

1

(O)

dx (r) = q cot
dx q1T = k 2 coth k 2 T,

q
tan qw = -k2 tanh k 2 .

1
We get eigenvalues qn with n < qn < n + 2'

have solutions

(e) cos PnX1
u (x1kZP cos pn 1

(o) sin qnxu1 (Xlk2q n
)C sin q 1

T

cosh k 2 x 1
cosh k2 T

sinh kz2 x 1
sinh k27T

n= 1, 2 ... , (q = 0 is spurious).

(0) -v 2 2)
Kn n+k2

(0) - 2
n n+k2

Finally, if ul(X1, x 2 , 0) is any perturbation that is continuous and piecewise smooth in

x 1 and x 2 , satisfies the boundary conditions on x 1 , and E L 1(X 2 ), we obtain

S00
Pn(k2 )

u(e)(nk 2 )
u1 (Pnk)

cos pnx

cos pn 1

coshk 2x 1

cosh k2 - exp(ik2 x 2 ) dk2

00

+ -00 exp -v(qn+k2 ) t]
q n(k2 )

sin q x 
1

sin q2

sinh k2 x 1

sinh k2rr Sexp(ik 2 x2 ) dk 2.

(14a)
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Here,

exp(-ik 2 x2)(e) 00
I u 2 27r _0

u )(q n , k2 ) = exp(-ik x2)
1 n 2 Tr-0022

U 1 (x1x 2 , o) cos Pnxi dx 1
r. sin 2p

cos pnir +si 2pn n
nP

S Tr
_1T

u(x 1 ,X 2 , O) sin qnx dx 1

dx
2

sin q sin 2q dx2

sin nxI1 2qn n

This expansion is of a type that is well known from the theory of heat conduction, and is

shown to converge uniformly for all xl and t >, to (t o > 0) and thus to satisfy the bound-

ary conditions for all t > 0, and to converge to the series expansion for u1 (x 1, x2 , 0) for

t - 0. This solution is unique under the given conditions.

If U1 (x 1 , x2 , 0) is taken to be periodic in x2 instead of being E L 1 (X 2 ), the solution

above remains valid if we replace the integrals in (14a) by summations on k2 , and the

symbols 1 in (14b) by 2L
o 2 -L

To complete the problem, we compute u3 . According to (la),

8 u S = vV2u3 - W'Ul
at3 u3

x=±r

= 0, (15)

where W' d dx (V +Vx+V 2x ).dx 1 - dx 1 0 1 2
1 1

Equation 15 is the inhomogeneous heat equation in two dimensions. If u3 and ul are

continuous, piecewise smooth and periodic in x2 of period 2L, we have the unique uni-

formly convergent series expansion

u3 (x1' x 2 , t) = exp(-v k2+ (n+) t) cos (n+) x 1

v 2wr
k = 1L, +2L..

n=l, 2...

f 2 n - exp(v2 +(n + g (s) d

+ exp(-v[k2+n 2 ]t) sin nx 1

k 2 , n

QPR No. 68
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k2 n exp(v k n2] s) g n (s) d eik2x

f 0 2n

f(e) 5I__ STr ( ikX x dx
k2n L 1 u3(xl' x 2 0 ) Cos 1

f = - u3 (x, x 2 , O) sin nx1 e dldx 2 d
k 2 n 21TrL u3x_

and gk2n(s ) corresponds to fkz n with W'u 1 (X 1 , x2 , s) replacing u 3 (x 1, x Z , 0) in (16b).

There are clearly no true instabilities for v * 0; however, certain of the inhomoge-

neous terms in (16a) attain large values for finite times before decaying exponentially

as t - cc. Substituting ul(X1 , x2 , s) from (14a) in (16a), we find terms of the typical

magnitude

exp(-v(kZ+nZ)t) exp(v(n 2 -p) s)

where c1 and c 2 are constants arising from

order of unity for m = n, except where they

ment n 2 -p) is always positive, so that

ds ul(Pm, kZ)(clV 1 +cZ2VZ) sin nx1 e

(17)

the integrations in (16a), which are of the

vanish by symmetry. For n = m, the argu-

s0 exp (v (n2 pm)) ds t

Choosing n = 1 and suppressing the spatial dependence in (17), we get the estimate

u3 zt exp (-v (k2+ )t) VUl(0 ) .

As v - 0, the estimate (18) approaches the form of (4), the solution for v = 0.
1

Equation 18 attains a maximum for t = so that

V R
u 2V U u (0),max v +k 1 I '

showing that

is amplified

after a finite time the initial perturbation in ul appears as a term in u 3 and
2

by a factor of the order of the Reynolds number R = -. V

H. L. Willke, Jr.
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