
Particle Accelerators
1984 Vol. 14 pp. 139-154
0031-2460/84/1403/0139$18.50/0

© Gordon and Breach. Science Publishers. Inc.
Printed in the United States of America

MODE COUPLING IN THE
MODIFIED BETATRONt

D. CHERNINt

Plasma Physics Division, Naval Research Laboratory,
Washington, D.C. 20375 U.S.A.

(Received February 17, 1983)

The effects of quadratic nonlinearities in the single-particle equations of motion on electron orbits in the
modified betatron are studied. Strong coupling of the two modes of betatron oscillation is found to occur for
a particular value of the ratio BolBz unless the gradient in the field index takes a certain value. In general, the
mode coupling appears to be quite harmless in the azimuthally symmetric case. When field or focusing errors
are present the mode coupling reduces the effect on the orbit of the I = 1 orbital resonance but does not do so
sufficiently so that the I = 1 resonance could be safely passed through in a practical device.

I. INTRODUCTION

For small displacements about a planar reference orbit, particle motion transverse to
the toroidal field in the modified betatron may be represented as a linear superposition
of two eigenmodes of motion: a "fast" mode, corresponding to gyration about the
toroidal field lines and a "slow" mode, corresponding to an F x B drift motion, where
here the force F is due to the weak-focusing betatron fields, space-charge forces, and
induced (wall-image) fields. The linear theory of orbits in the modified betatron has
been worked out in some detail 1

-
S and will only be reviewed as needed here. In the

present paper, we will mainly discuss the effect of quadratic nonlinearities on the
motion.

Nonlinear terms in the equations of motion become important to consider if
(1) displacements from the reference orbit become large, due, say, to the method of
injection used or to the operation of an instability of some kind; (2) strong
nonlinearities (e.g., large values of an/ar) are present in the magnet design; or (3) the
nonlinear term itself contains a resonant part. In the following we will illustrate two
effects of quadratic nonlinearities on single-particle motion, viz. the amplitude
dependence of the betatron frequencies and the exchange of energy between the
oscillation modes under certain conditions. These conditions turn out to be analogous
to the so-called Walkinshaw resonance6 in accelerators without a toroidal magnetic
field. 7

-
11 We will limit ourselves here to consideration of single-particle motion only,

neglecting the effects of self-fields; the treatment here then will only be valid for fairly
large values of r in high-current devices, such that v/r « 1, where v is Budker's
parameter.

t Work supported by the Office of Naval Research
t Permanent Address: Berkeley Research Associates; Springfield, Virginia 22150 U.S.A.
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Four sections follow. In the first, we introduce some notation and sketch the
derivation of the equations of motion to second order in displacements from and
transverse velocities about the reference orbit, taken to be a circle in the symmetry
plane. In the second section, the equations of motion are solved perturbatively and a
condition for the generalized Walkinshaw resonance is obtained. Under this condition,
we study the behavior of the betatron oscillations, giving a numerical example as
illustration. As an interesting result, we find a particular value of field-gradient index
for which the resonance ceases to have any effect on particle motion.

In these first two sections, the discussion will assume that all applied fields are
azimuthally symmetric. In the presence of field perturbations, other orbital resonances
may occur and it is interesting to ask whether the amplitude dependence of the
betatron frequencies induced by the nonlinearities is sufficient to keep the oscillation
amplitudes at finite, but tolerably small values. Although in general this is a difficult
question, in the third section of this paper we will discuss a special simple case in which
the Walkinshaw resonance coincides with both an integer and half-integer orbital
resonance.

A final section summarizes these results and states some conclusions and con
jectures.

II. THE EQUATIONS OF MOTION

The geometry of the modified betatron is shown in Fig. 1. We employ standard (r, 0, z)
cylindrical coordinates. The exact equations of motion, using 0 in favor of time for our
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FIGURE 1 Geometry of the modified betatron.



independent variable, are written
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where B is any suitable function of position (r, 8, z), A == - mc2~y/e, e and m are the
magnitudes of the electron charge (e > 0) and mass, ~ and yare the usual relativistic
factors, c is the speed of light and a prime (') denotes d/d8.

We shall assume that Br vanishes on the plane z == 0 and take all fields to be
independent of 8. (The assumption of azimuthal symmetry will be relaxed in
Section IV below.) We take the equilibrium orbit of a particle of relativistic factor Yo to
beatr == ro,z == O,so

(3)

Let us now define the normalized coordinates x == (r - ro)/r0 and y == z/ro. The
vector potential is given correctly to third order by

[
1 - n 2 n 2 n2 2 1 3JAe ~ roBzo 1 + --x + -y - -xy + -(n + n2 - 3)x ,

2 2 2 6

where Bzo , n, and n2 are constants. The corresponding fields are

"'" [ n2 2 n - n2 2JBz == Bzo 1 - nx + 2 x + --2- Y ,

(4)

(5)

(6)

from which n2 is identified as the second radial logarithmic derivative of Bz • The
toroidal field is assumed to be given by

Be == Beo /(1 + x) ~ Beo (1 - x + ...), (7)

where Beo is the value of the toroidal field at the reference orbit, x == y == O.
Using the fields of Eqs. (5), (6), and (7) in the equations of motion (1) and (2) and

keeping terms only of quadratic order gives the coupled equations

" + (1 ) b' (2 1 n2
) 2 (n - n2

) 2 1 ('2 '2) (8)x - n x == y + n - - 2" x - --2- Y + 2 x - y

y" + ny == -bx' - (2n - n2 )xy + x'y', (9)

where b == Beo/Bzo . These equations (8) and (9), are our starting points. In the following
section we examine the behavior of an approximate solution to Eqs. (8) and (9) for
various values of n, n2' and b.
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III. PERTURBATIVE SOLUTION OF EQUATIONS OF MOTION

In general, the quadratic terms in Eqs. (8) and (9) will be small, so we attempt to treat the
equations perturbatively. Neglecting the nonlinear terms altogether one has the
solution to the linear equations

(10)

where AI and As are complex numbers depending on particle initial conditions and the
frequencies are given by

(11)

The subscripts f and s are used here and below to label the amplitudes and frequencies
of the fast and slow oscillation modes. We will assume that the linear motion is stable,
that is n(1 - n) > O.

We may calculate the correction to Eq. (10) due to the nonlinear terms by inserting
Eq. (10) in Eqs. (8) and (9) and resolving. The resulting equations will be inhomog
eneous with various "driving" terms at the frequencies 2vI , 2vs ' 0, and VI ± Vs '

Consequently, the nonlinear correction to Eq. (10) will remain small unless it happens
that

the condition for which, from Eq. (11), is

b2 = ~ [n(l - n)]1/2 - 1.

(12)

(13)

In the absence of a toroidal field, Eq. (13) is satisfied for n = 0.2 or 0.8, which we
identify as the Walkinshaw resonance,6 the consequences of which were first observed
in cyclotrons. 12 We proceed to examine particle behavior on this resonance in the
modified betatron.

On resonance, conventional perturbation theory fails and one must resort to some
other method. A multiple "time" scale analysis of the problem gives a solution of the
form (10) in which the complex amplitudes AI and As are no longer strictly constant but
vary slowly with 8; they are found to obey the equations

(14)

(15)

where r 1,2 are two real-valued functions of the field indices nand n2,
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and where, on resonance, we have
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(16)

(17)

[An asterisk denotes complex conjugate in Eq. (14).]
The question of orbital stability on resonance is thus reduced to the question of the

behavior of the mode amplitudes in Eqs. (14) and (15).
The equations (14) and (15) may be completely solved in a straightforward manner;

the solution is obtained and discussed in the Appendix. To settle the stability issue,
however, it is sufficient to note that there is a simple integral of motion

(18)

and consequently the motion is necessarily bounded if r == r 1 r 2 ~ 0 which, is in fact
true for all nand n2 , as follows from Eq. (16). On this resonance, energy is simply
exchanged back and forth between the fast and slow modes of motion.

Although we have argued that particle motion is bounded on this resonance, we have
not in fact specified a bound or showed that the bound is acceptable, in terms of some
machine aperture. One might conjecture, from Eq. (18), that if one of r 1,2 were
significantly larger than the other, then transfer of energy from the more "stiff" (larger
r coefficient) mode to the less "stiff" mode would result in increasing particle
oscillation amplitude. Hence one would be concerned if, from Eq. (16), either vs

2 = nor
Vf

2 = n. It follows from Eqs. (17) and (18), however, that this can occur only for b = 0,
n = 0.2 or 0.8. If n is chosen so that b is 0(1) when the resonance is crossed, then r 1 and
r 2 are of the same order of magnitude and one expects this resonance to be quite
harmless. For specific initial conditions, it is possible to find a bound by calculating the
turning point of a certain particle-in-a-well problem, as shown in the Appendix.

Curiously, one can render this resonance completely inoperative for any particular n
by choosing n2 so that r 1 and r 2 both vanish. From Eqs. (16) and (17) this value is
found to be

= __ = ~[7n - 3 + 4[(1 - n)n]1/2]
n2 n2 - 2 1 + [(1 _ n)/n]1/2 . (19)

Choosing this value ensures that the mode amplitudes remain constant when passing
through the "exchange" resonance.

We proceed to illustrate some of these results using a simple single-particle
numerical orbit integration. The algorithm includes the fields of Eqs. (5) to (7) but does
not use an expansion of the force or acceleration. Figures 2 and 3 show the solutions to
Eqs. (14-15) and (1-2) respectively for the case n = 0.5, n2 = n2 = 0.625, b = 0.5. The
mode amplitudes are strictly constant, no exchange occurs, and the particle-orbit
projection retraces itself in a stable manner over and over again. We contrast this case
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FIGURE 2 IAfl, IAsl vs. major periods (A major period is a change of 8 by 21t) n = 1; nz = i. Initial
(8 = 0) values of Af = 5.7735 X 10- 3 (1 - i) and As = 2Af * correspond to those of a particle initially at
x = y = 0.02 with zero transverse velocity. The same initial values are used in all subsequent figures.
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FIGURE 3 z vs. r - r o; n = 1; nz = i. For this and subsequent figures, r o = 100 cm, Bzo =

118.092 gauss, Beo = 1Bzo , and initial values are r - r o = z = 2 cm, r' = z' = 0, Yo = 7.
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with that illustrated in Figs. 4 and 5 for which the parameters are again n = 0.5 and
b= 0.5 but now with n2 = O. Now the mode amplitudes oscillate; one rises while the
other falls in order to conserve D [Eq. (18)]. The oscillation period, from Eq. (A6) in the
Appendix, is 46.6 major periods for the particular initial conditions chosen. The
particle-orbit projection now simply (and harmlessly) rotates slowly counter
clockwise.

Our conclusion is that in the case of azimuthally symmetric fields the generalized
Walkinshaw resonance is quite harmless in the modified betatron. The exchange of
energy between fast and slow modes is expected to cause no major changes in the beam
dimensions. When azimuthal field variations are present, however, the situation
changes dramatically, due to a coincidence described in the next section.

IV. A TRIPLE COINCIDENCE RESONANCE

When n = !(the case illustrated in Figs. 2 through 5) the values of the tunes vf and Vs at
the exchange resonance ofEq. (13) are VI = 1, Vs = !; therefore in the presence offield
and focusing errors the generalized Walkinshaw resonance coincides with an integer
and a half-integer orbital resonance. This triple coincidence allows us to study in detail
in this special case the effect of mode coupling (and the amplitude dependence of the
betatron frequencies) on the orbit at an integer and half-integer resonance. Though the
restriction to n = ! is necessary for there to be a true coincidence, if n is near but not
exactly!, the three resonances will be "nearby" and will occur nearly simultaneously
and the analysis below should still hold in an approximate way.

At the triple coincidence resonance, the mode-evolution equations become

(20)

(21)

The £'s in Eqs. (20) and (21) are complex constants proportional to certain Fourier
coefficients in the expansions of the fields and their gradients; specifically, £1 is due to
an 1 = 1 term in the field gradient, leading to a half-integer resonance, £2 is due to an
1= 1 term in the field, leading to an integer resonance, and £3 is due to an 1= 2 term in
the field gradient, leading to a "2-halves" integer resonance. Were they present alone
(i.e. with no nonlinearity) in Eqs. (20) and (21), the field-imperfection terms would lead
to the usual linear or exponential growth characteristic of integer or half-integer
resonances. In the presence of mode coupling, the situation is much less clear. Since, as
they stand, Eqs. (20) and (21) cannot be solved analytically, we must in general resort to
numerical integration. First let us comment on what we might expect to see in the
solution.

The field imperfection terms in Eqs. (20) and (21) act, roughly speaking, as source
terms, pumping energy from longitudinal to transverse motion. If this energy flow
continues, and if there is no mechanism to return this energy to longitudinal motion,
the result is disastrous-a linear orbital resonance. Non-linearities, however, can shift
the betatron frequency of the resonant particle off resonance for some finite amplitude
of betatron oscillation. (The quantity (n2 - n2) is presumably a measure of the
frequency shift induced by a given amplitude oscillation.) In practice, though, one
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after""' 9 major periods.
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cannot say a priori how much frequency shift will be sufficient to terminate the growth
of the resonant mode. A numerical study seems to be essential.

For a numerical example, we will examine the effect of the nonlinear terms in
Eqs. (20) and (21) on an integer resonance; that is, in the following we shall take
£1 = £3 = o. Cases have been examined numerically for various other combinations
of values for the £'s with no major differences appearing in the results.

In Figs. 6 and 7, we illustrate the mode amplitudes and orbit projection for a pure
integer resonance with no mode coupling (n2 = n2 = 0.625, £2 = 0.005). The (reso
nant) fast mode amplitude grows linearly without limit; the (decoupled) slow mode
stays at a fixed, small value. The particle-orbit size (Fig. 7) consequently grows
continuously.

Turning on the mode coupling changes the behavior of the mode amplitudes
dramatically but has little apparent effect on the particle orbit, which still appears to
grow to intolerable size. This is illustrated in Figs. 8 and 9 where we see that the mode
amplitudes grow to a certain size and then turn over-presumably a reflection of the
detuning of the resonance due to the frequency shift. The "turnover", however, is at
extremely large amplitudes (recall that the mode amplitudes are normalized to the
radius of the device, r0). Therefore the particle motion appears to be relatively
unaffected, practically speaking, by changing n2 from i to O. This result does suggest,
though, that by increasing In 2 - n21 we might reduce the resonant response to a
tolerable value.

Figures 10-11, 12-13, and 14-15 show our results for n2 = -1, -4, and -10
respectively. We see that as In2 - n21 is increased, the mode-turnover amplitude is
reduced and the particle orbit becomes somewhat more compact, staying within the
plot boundaries for significantly longer times. (Even so, the transverse orbit size is
rather large, even for the largest values of In2 - n21 we have tried.)
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FIGURE 11 z vs. r - ro; n = 1; n2 = -1; 8B = 0.5 gauss. Particle leaves plot area after "'-' 8 major
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FIGURE 13 Z VS. r - r o; n = t; n2 = -4; 8B = 0.5 gauss. Particle remains in plot area for 50 major
periods.
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FIGURE 15 Z VS. f - f o; n = -!-; nz = -10; DB = 0.5 gauss. Particle remains in plot area for 50 major
periods.

These results suggest that to stabilize the I = 1 resonance, a significant nonlinearity
(large value of n2 ) could be intentionally introduced in the betatron field. One must be
careful in drawing this conclusion, however, because such a nonlinearity has well
known adverse effects, among them a sensitivity of the behavior of the orbit to initial
conditions; that is, only some special class of particles may be confined, while others are
lost. In addition, if n2 , which is effectively the radial derivative of n, is very large, it then
becomes difficult to keep n itself within the stable range 0 ~ n ~ 1 everywhere within
the aperture. Consequently we conclude that, as a practical matter, it is best not to rely
on nonlinearities to stabilize the I = 1 resonance in the modified betatron and to design
the machine with a flat radial-index profile. Avoidance of this resonance as well as
other low-order resonances, which then becomes the only reasonable experimental
alternative, is possible in principle by accelerating with constant b (i.e., Boo oc Bzo ),
thereby keeping the tunes fixed 5-except for the tune shift due to space charge, which
affects the fast-mode tune only very slightly for large Be; the slow-mode tune can
generally be chosen to be very small (~ 0.2 to 0.3) for all time.

V. SUMMARY AND CONCLUSIONS

We have examined the effects of mode coupling on single-particle orbits in the modified
betatron. We find that a generalization of the Walkinshaw (exchange) resonance can
occur for any value of field index in the range 0.2 ~ n ~ 0.8, but that its effect on
particle orbits in general is quite modest (Figs. 2-5) and may be rendered completely
ineffective by a special choice of the field-gradient index, Eq. (19).
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When n is near !, the exchange resonance coincides with both integer and half
integer resonances. An examination of orbit behavior at this triple coincidence shows
that, as a practical matter, the amplitude-dependent frequency shift in the betatron
oscillation due to mode coupling is not sufficient to stabilize the 1 = 1integer resonance
(though presumably, as in the case of accelerators not employing toroidal fields,
higher-order resonances will be subject to nonlinear stabilization8

). This fact makes it
advisable to allow, in the design of an experiment, for acceleration with constant or
nearly constant ratio Boo /Bzo , thereby holding the tunes approximately fixed in time.
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APPENDIX

In this Appendix, we discuss the solution to Eqs. (14) and (15) in the text. Writing

(Al)

where af,s and <Pf,s are real we find in a straightforward wayan equation for p == !as
2

where

1
- p'2 + V(p) = 0,
2

V(p) = 4rp3 - 4D p2 + ~ e2
,

r = r 1r 2 ,

c = r 1af as
2 cos(<Pf - 2<ps) = constant,

(A2)
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and the constant D is defined in the text in Eq. (18). The other quantities are given in
terms of P by

<Ps' = C/(2p)

1
AI = 2pr1 (C - ip') exp(2i<ps)'

(A3)

(A4)

(A5)

These expressions hold for P > O. If P = 0 at 8 = 0, say, then, from Eqs. (14) and (15)
As == 0 and AI remains fixed for all e> o. The modal frequency shifts are given directly
by Eq. (A4) for the slow mode and may be obtained from Eq. (A5) for the fast mode.

It may be shown that V(p) has one negative and two positive roots. Denoting these
by Pi ,2,3' with P1 > P2 > 0 > P3' we find that the exchange period [period of p(8)] is
given by

(
2 )1/2

r(Pl - P3) K(m), (A6)

where m = (P1 - P2)/(P1 - P3) and where K is the usual complete elliptic integral. 13

The special cases C = 0 and r = 0 lead to motion of infinite period and P =
constant, respectively.




