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The effect of ion-resonance and ion-streaming instabilities on the performance of a modified betatron is
evaluated. It is shown that diffuse electron and ion profiles greatly reduce the growth rate of these
instabilities. Ways of optimizing the performance of the accelerator in the presence of these instabilities are
discussed.

I. INTRODUCTION

A new concept in high current particle accelerators is the modified betatron. 1
-

4 The
idea here is to use a toroidal magnetic field to stabilize the particle orbits while the beam
energy is relatively low and the self-fields are important. Once the particle has
accelerated to high energy, the toroidal field is no longer necessary for orbit stability
and can be removed. A high-current modified betatron is currently being planned at
the Naval Research Laboratory. It is hoped to accelerate a 10 kA beam from y = 7 to
Y = 100 in a toroidal field of several kG in a betatron with a I-m major radius.

One possible problem with this device is that a small ion contaminant could excite an
ion-resonance5

,6 or two-stream instability.7 Both of these instabilities have their origin
in a slow mode (phase velocity less than azimuthal or axial streaming velocity)
interacting with a lossy species (the ions). In the ion-resonance instability, there is no
axial structure, but the mode rotates slower than the azimuthal velocity of the
electrons. In the ion-streaming instability, there is no azimuthal structure, but the mode
has an axial velocity slower than the electron streaming velocity. The ion contaminant
could arise from either ionization of background gas, or else from ions pulled off the
wall on beam injection. The ion-resonance instability is particularly worrisome,
because it is now reasonably well established that this instability was responsible for
the disruptions observed in both HIPAC,8,9 a toroidal electron-cloud experiment and
SPAC II, a slightly relativistic electron ring. 10 The two-stream instability was not
observed in HIPAC, but one would not expect it because there is no axial streaming. In
SPAC II, it was not observed despite the axial streaming. However, this might be due to
the fact that the ion-resonance instability is seen, and it might be the stronger of the
two. If the ion-resonance instability is stabilized some way, the ion two-stream
instability could also pose a serious problem to the operation of the modified betatron.

Simple theories of both instabilities are usually done for cold homogeneous fluids.
As such, these theories are extremely pessimistic as regards the operation of the high­
current modified betatron. For instance, for the ion-resonance instabil~ty of a
cylindrical nonrelativistic beam, an electrostatic perturbation having no axial
structure, but having azimuthal structure exp(il8) and having beam radius rb much less
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than the wall radius a, the dispersion relation, as derived in Refs. 5 and 6 is

(1)

Here oope(i) is the electron (ion) plasma frequency, Q c is the electron cyclotron frequency,
OOe is the diocotron frequency co~e/2Qce and OOi is the ion rotation frequency, OOi =
(m/2M)1/2 00pe for unmagnetized ions. Equation (1) shows that if 00 ~ (1- 1) OOe ~
lWi' the plasma is unstable with growth rate oopi(ooe/200J1/2. Modes between 2 ~
1~ 00 are unstable for densities or y's in the range

1 n (m )1/2
"2 ~ (J);e 2M < 1. (2)

and the growth time is of order 3 nanoseconds.
Now let us consider the ion-streaming instability. For an infinite homogeneous

plasma, the dispersion relation for an electrostatic mode having wave number k parallel
to the streaming velocity and k.L perpendicular, as derived in Ref. 7 is

(3)

Let us first consider an interaction with the parallel motion [the second term on the
right ofEq. (3)J. Since the beam has radius rb' kl.rb ~ 1. Then assuming k « k.L' Eq. (3)
easily shows there is no parallel instability unless rb > y3/2c/wpe . Since the NRL
modified betatron will be concerned with much smaller radius beams, there should be
no two-stream instability driven by the purely parallel motion.

Now consider the perpendicular motion, the first term on the right of Eq. (3). It is not
difficult to show that this predicts instability for

n, (0 2 00
2

)1/2~ < kv < _c_ +---.l!!...
Y Z y2 Y , (4)

with growth rate ~ (00~iOO~e/ync)1/3.For parameters of the NRL modified betatron,
this growth time is still of order 3 nanoseconds, and the beam is now unstable at all
densities and energies.

These conclusions are clearly very pessimistic. The predicted growth times are much
too fast to control in any way, and the ion-streaming instability is predicted to be
unstable at some k no matter what the density or energy. However, the assumed cold­
fluid, sharp-boundary, rigid-rotor model is tremendously destabilizing in that all ions
are simultaneously resonant with the electron oscillation.

The purpose of this paper is to examine the effect of a diffuse profile on these
instabilities. It seems extremely unlikely that the electron beam will have a sharp
profile. When the ions are produced by ionization of the background gas, they will
almost surely have nearly zero velocity, and therefore nearly zero angular momentum.
Since the ion oscillation frequency is much larger than the ion cyclotron frequency,
they are effectively unmagnetized. Therefore the ions simply oscillate through the
center of the beam. They have zero axial velocity and zero angular momentum, but a
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large spread in energy, since they are produced at many different potential energies.
Since for a diffuse profile, ions of different energies have different frequencies of
oscillation, only a small fraction of ions can resonate with the slow electron wave. This
can greatly reduce the growth rate.

The main purpose of this paper is calculate the effect of the diffuse ion and electron
profiles on the growth rate of the modes. [In fact, the same technique as used here
would give Eq. (1) and Eq. (3) in the appropriate limits.] We do find that the effects of a
diffuse ion profile, as well as electromagnetic effects on the electrons can reduce the
growth rates by several orders of magnitude. It turns out that it may be possible to
completely stabilize the ion-resonance instability. It is not possible to stabilize the ion­
streaming instability, but it is possible to slow it down so much as to make it feasible to
accelerate the beam through the unstable region before the mode grows appreciably.

Section II describes the assumed equilibrium for both electrons and ions, Section III
works out the theory of the ion-resonance instability. Section IV works out the theory
of the ion-streaming instability. Section V outlines the conclusions. The Appendix
gives some of the mathematical details not included in the text.

II. THE EQUILIBRIUM

We consider the equilibrium to consist of a cylinder of strongly magnetized B = Biz
electrons with diffuse radial profile. The ion density will be assumed to be smaller than
the electron density, so that the ions do not contribute to the equilibrium self-fields.
Since the ion oscillation frequency in the self-fields is much larger than the ion
cyclotron frequency for parameters of the NRL high-current modified betatron, the
ions will be considered unmagnetized.

To calculate the electron equilibrium, use the electron density and momentum
equations coupled to Poisson's and Ampere's equations

v x B
-V<p+--=O

c

(5a)

(5b)

(5c)

(5d)

where we have neglected electron inertia, which means that the electrons rotate in the
slow mode and are far below Brillouin flOW,6 and have also neglected the self Bz field
generated by the rotation of the beam. Equations (Sa-d) can be satisfied by specifying
ne(r) and the z component of velocity ~ (assumed constant). Then Eq. (5c) can be
integrated for <p. Since A z obeys the same boundary conditions as <t> for our assumed
cylindrical model Eq. (5) gives the result Az = (vz/c)<t>. This then can be used in Eq. (5b)
to solve for the rotation velocity of the electrons

(6)
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where as usual, Y = (1 - (vzlc)2)-1/2. We have further assumed that the relativistic y
is determined only Vz and not Vo; that is (volc)2 « 1 - (vzlc).

For a monotonically decreasing density profile, the electron rotation frequency voir
is a decreasing function of r. Assuming that near r = 0

ne(r) = ne(l - r2Irrx 2),

where rrx - 2 = -1/2 ne"(O)lne(O), we find that near the origin

(7)

(8a)

(8b)

(8c)

Notice that one important effect of the diffuse radial profile is to generate a spread in
the electron angular rotation frequency voir.

We now turn to a discussion of the ion equilibrium. Let us assume that once the
beam is in place, ions are created by ionization of gas, which might be either
background gas, or gas pulled off the wall upon beam injection. Since the ion
oscillation frequency in the electric field is large compared with the ion cyclotron
frequency, the ions will be considered unmagnetized. In addition the ion will be
assumed to be created with no kinetic energy, so that when it is created, all its energy is
potential energy, and also, it has zero angular momentum. Since a spread in parallel
velocity and a spread in angular momentum will almost certainly have a stabilizing
effect on any electron-ion streaming instability, the configuration we examine will give
the most pessimistic results concerning stability. The equation of motion for an ion of
mass M trapped near the origin and with zero angular momentum is

(9)

where 0)/
2 = 4nnee

2/2M. The total energy of the ion, denoted by H, is given by

(10)

It is not difficult to show that for an ion trapped near the origin, the turning point and
oscillation frequency as a function of H are given by

(lla)

(lIb)
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As the ions are produced, they oscillate at different frequencies through the center. We
assume that after many such oscillations (tens of nanoseconds in the NRL modified­
betatron experiment), the time-dependent phase mixes away and the ion distribution
function becomes constant in time. That is, the distribution becomes a function of the
constants of motion, H, L (angular momentum) any Vz . We assume that the Vz part
simply decouples, so f(H, L, vz ) == f(H, L) 8(vz ). Then the number of ions per unit
length with energy between Hand H + dH and Land L + dL is the number density of
ions produced at radius r(H) times the volume, so

( ) d d
_ 2nni(r(H) )8(L) dH dL

N H, L H L - e Id<l>l '
dr r=r(H)

(12)

where dH/eldq,/drlr=r(H) is the thickness of a cylindrical shell corresponding to ions
produced with energies between Hand H + dH. However, the quantity N is also given
by an integral over the 'distribution function over the allowed range of Land H,

N(H, L) = fd 2rfdv,' dvo' J;.

H < H' < H + dH

L < L' < L + dL.

Using the fact that

dL'dH'
dv,'dV(J' = ----(~--L-'....,...-2----,--)-1/-2'

(2M 3
)1

/
2r H' - 2Mr 2 - eq,

it is a simple matter to show that

1'.( H) = ni(r(H))r(H)8(L)(2M 3
)1

/
2

Ji L, Ia<I> I ( 2 )1/2 n '
e a;: r=r(H) M 2ro(H)

where we have used the fact that

(r(H) dr ( 2 ) 1/2 n
J0 (H - eq, )1 /2 = M 2ro(H) .

(13)

(14)

(15)

Using the expressions for <I>(r), r(H) and ro(H) from Eqs. (8 and 11), it is not difficult to
show that for ions trapped,near r = 0 (that is, small H),

2ni(r(H)) (1 + ~ M~ 2) M8(L)
f(L, H) == g(H)8(L) = ro1 ra

nroI
(16)

Notice that the quantity multiplying ni(r(H)) in Eq. (16) is an increasing function of H.
This has to do with the fact that the restoring force is weaker than that of a harmonic
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oscillator. Hence the constant-H surfaces continuously move apart in radius as H
increases. Whether Ii is an increasing or decreasing function of H will then depend
upon the functional form of ni(r(H)), and how rapidly it decreases as a function of H.
Since the instabilities we consider arise from ion dissipation exciting slow (i.e., negative­
energy) electron waves, a negative af/aH is destabilizing and a positive af/aH is
stabilizing. Therefore the [1 + H(4Mro]2 ra2)J term in Eq. (16) will be a stabilizing
effect.

III. THE ION-RESONANCE INSTABILITY (k = 0)

This section discusses the instability of k = 0 modes due to the presence of a small,
diffuse profile of ions with a distribution like that calculated in Section II. The section is
divided into four subsections, (A) The Electron Mode, (B) Electron Landau Damping,
(C) Calculation of the Ion-Resonance Instability for a Diffuse Profile, and (D) Review
of Relevant Experimental Results on HIPAC and SPAC II.

A. Review of the Electron Oscillation

Here we assume an electron equilibrium like that calculated in the previous section,
and perturb it in rand 8, assuming all perturbed quantities vcgy as f(!J exp i(le - rot).
As shown in the Appendix, the perturbed components of Ao and Ar are negligible,
so that only perturbed components of ~ and Az (but not the inductive field propor­
tional to roA z ) need be considered. Henceforth, a perturbed quantity will be denoted by
a superscript ~. It is also shown in the Appendix that for the perturbed current in the z
direction, iiev z » nevz for Vz ~ c. Therefore Az = (v z / c)<P. Making the usual as­
sumption for the mode that electron inertia is negligible due to the strong magnetic field
in the z direction, we find that the perturbed fluid equations for the electrons are

(
. ilvo) _ if _ 1 a - 0

- 1ro + - .n + - nvo + - - rnVr =
r r r or

- -~:h
Vr - 2B 'Pry

(17a)

(17b)

(17c)

(17d)

Combining Eqs. (17a-c) to determine n in terms of <P, we find the standard equation for
the electron mode corrected for the relativistic motion of the beam

(18a)

For some purposes, it is convenient to express the equilibrium quantities nand Vo in
terms of the equilibrium electric field E by using the equilibrium relations in the last
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section. Then Eq. (18a) becomes

02~ 10~ [2- _~ ~ ~~~rE
or2 + -;:a;: - r 2 <P = y2rB leE or r or

-- - co
y2rB
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(J8b)

(19)

Equation (18a or b) are difficult to solve because of the singular nature of the right
hand side. However there is one simple analytic solution11

,12 and one simple theorem
worth writing here. For 1 = 1, it can be shown by direct substitution that

- cE<p = rco --
y2B

is a solution to Eq. (18b). Since ~ must be zero at the wall r = a, the frequency of the
mode is given by

cE(a)
co =--y2aB·

(20)

For a wall radius a much larger than the beam radius rb' as is expected in the N-RL
modified betatron, this frequency is very small, smaller than any rotation frequency in
the beam, so that the resonant denominator vanishes at the wall where n = O.

Secondly, it is a simple matter to show that for a monotonically decreasing electron
density profile, there are no normal modes with COi (the imaginary part of co) non-zero.
To show this, multiply Eq. (18a) by r<p*, integrate over radius and take the imaginary
part. The result is

an

fa 4nelc or 2

COi dr -2-11 12 1<p1 = O.o Y B Vo- - co
r

(21)

For an/or < 0 everywhere, the integral is negative, so the only way to solve Eq. (21)
is to set COi = 0. If however, n has a local maximum, at r =I=- 0, then the density profile
may be unstable to the standard diocotron instability. For a monotonic density profile,
it is clearly not possible to have a nonsingular eigenfunction for real co if an/or =I=- °at
the radial position co = Ivo/r. Thus any nonsingular initial perturbation must be
decomposed into a superposition of many singular eigenfunctions with different
frequencies. As these different frequency components phase-mix, the perturbation will
damp away, as the Van Kampen modes in a plasma phase-mix to give rise to Landau
damping. In the next subsection, we examine this process by looking at co as a Laplace
rather than a Fourier transform variable.

To conclude, we briefly review the electron mode for a uniform density profile out to
r = rb and zero density outside. In this case, the beam rotation frequency voir is
constant. It is a simple matter to integrate the equation across the delta function an/or
and arrive at the dispersion relation

Vo (vo)(rb)21co=(1-1)-;+ -; ~ (22a)
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(22b)

Notice that for 1 = 1, the wave frequency is very low, as we have discussed, while for
[ > 1, the frequency approaches the resonant frequency [voir, but always stays slightly
below it. Thus the diocotron wave is a slow wave and can be destabilized by positive
dissipation. This dissipation can arise from the ions or else other processes such as a
resistive wall. 13-

15

B.- Landau Dalnping of the Electron Waves

As was shown in the last subsection, as the mode number 1increases, the frequency
approaches the electron rotation frequency. For instance, while an 1 = 1 mode cannot
resonate with any electron, an 1 = 2 mode resonates with an electron having roughly
half the central rotation frequency, an 1 = 3 mode resonates with an electron at two
thirds the central rotation frequency, etc. Clearly, as 1 increases, electron Landau
damping then becomes more important. We will first consider the case 1 = 2 and show
that the amount of Landau damping depends sensitively on the density profile. For
instance, consider first a parabolic density profile

(23a)

(23b)

Notice that at r = rb , the rotation frequency, proportional to Elr, isjust half its value at
r = O. Therefore, while there will be many resonant electrons for an 1~ 3 mode, there
are no resonant electrons for 1 = 2 and the Landau damping should be very small. On
this basis, we do not consider modes with 1~ 3.

On the other hand, for a Gaussian density profile

(24a)

(24b)
r
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the electron rotation frequency is equal to half its value at r == 0 at approximately
r = 2rb , where there are many resonant electrons. Hence we expect electron Landau
damping to be very strong for an I == 2 mode having a Gaussian density profile.

Let us now calculate the expression for the Landfiu damping rate for the diocotron
wave. To do so, we assume, following Briggs, et al. 12 that the 0) in Eq. (18) is a Laplace
rather than a Fourier-transform variable. Hence, Eq. (18) as written is valid only for
[mO) greater than the 0) of all singular points of <p(r, 0)). The quantity <p(r, t) is obtained
by performing an inverse Laplace transform, so that if the contour is deformed into the
lower-half 0) plane, one must use the analytic continuation of <p(r, 0)) into the lower­
half 0) plane. If the imaginary part of 0) is small, this analytic continuation is obtained
from the residue. Then performing the same integral as in Eq. (21), we find that

(25)

Using Eq. (22b) for ~, Eq. (24a) for ~ in the numerator, but the sharp boundary model
for n in the denominator, assuming I == 2 and that the resonant position is at r == 2rb ,

then we find

(26)

If near r == rb , the eigenfunction is a smoother function of r than specified by Eq. (22b),
as seems likely, the damping will be stronger still. Thus, for a Gaussian density profile,
the Landau damping of an I = 2 diocotron mode is very strong, and it seems unlikely
that a small ion population could drive the system unstable.

To summarize, we find that for I ~ 3 the Landau damping is so strong that these
modes almost certainly will not be excited by a small ion population. For I == 2, the
damping might or might not be strong; whether it is or not is sensitively dependent on
the profile. For the case where the damping ,is weak, it is given approximately by
Eq. (25). If Eq. (25) predicts strong damping, the actual expression for the damping will
be inaccurate, but the damping will in fact be large. For I == 1, there is no Landau
damping. However, as we will see shortly, the frequency of an I == 1 mode is so low that
it is virtually impossible for an ion to resonate with this mode.

C. The Ion-Driven Instability

We now calculate the effect of a small ion population with an unperturbed distribution
like that given in Section II. The possibility for instability exists whenever the ion­
oscillation frequency O)(H), defined in Section II, is the same as the wave frequency 0).

However, for I 2 3, the electron Landau damping is almost certainly so strong that an
instability will not be possible to excite. For I == 1 on the other hand, the frequency of
the diocotron wave is very low. This frequency is roughly !(0)~e/y2Qee)(rb/a)2,where rope
is the nonrelativistic electron plasma frequency and Qee is the nonrelativistic electron
cyclotron frequency. Since the ion-oscillation frequency is roughly equal to
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(m/2M)1/2 mpe , there can only be an interaction with an 1 = 1 mode if

(27)

For large a/rb (i.e., ~ 10), the density predicted by Eq. (27) is much too high to be
relevant to the NRL modified betatron accelerator, so the 1 = 1 mode should not
be excited. This leaves only the 1 = 2 mode. As we will see, this mode is excited when
m = 2m(H), or at a density given roughly by

(28)

At low y, approximately on or below the injection y, this instability could be excited.
However, once the beam is accelerated to y's greater than about 5, there should be no
interaction of the ions with an I = 2 diocotron mode. Thus an ion-resonance
instability can only have an impact on the NRL modified-betatron program for
(a) 1 = 2, (b) for electron density profiles with sufficiently small Landau damping, and
(c) for electron density in the range given by Eq. (28), or y ~ 5.

We now proceed to derive an approximate relation for the ion-generated growth rate
where conditions for instability are met. The perturbed ion distribution function 1
obeys the linearized Vlasov equation. By integrating along the unperturbed ion orbits,
one finds the result

J= - ~fdt'V ~(r't')· 'iIlv!' (29)

where r' is an unperturbed ion orbit expressed as a function of t' having position rand
velocity v at time t' = t. Notice that since the ions have vic « 1, they respond only to
the electrostatic part of the force. Making use of the fact that d/dt = - im + v· V, and
by using H, L instead of v" Va as independent velocity-space variables, we can rewrite1
as

- -- ofo ft, -- , , (. ofo . ofO)
f = -e<p oR - e dt <p(r, t) 1m oR + II oL ' (30)

where we assume the edependence of all quantities is e iUJ
• As discussed in Section II, the

ions are assumed to have zero angular momentum. However, since afo/aL appears in
Eq. (30), it is necessary to consider also particle orbits for L just greater than zero. In the
Appendix, we show that these make no contributions to ~. Therefore we can drop
the afo/aL term in Eq. (30), and consider only ion orbits with L = O. To make fur­
ther analytic progress, we assume that first the ion motion r'(t') is simple harmonic, but
with an energy-dependent frequency m(R) as discussed in Section II. Then

where

r(t') = r(H) sin [m(H)(t' - t) + ~],

~ = arctan (rm(H)jv),

(31)

(32)
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and r(H) is the maximum radius of an ion with total energy H. Secondly we assume the
ion is trapped near the center of the column so that the eigenfunction ~(r) = ~0(r2/rb 2).
Then the time integral in Eq. (30) is straightforward to do and the result is

f
- - _ l() ofo l r2(H) exp 2i~ ofo

- e'P r oH + e'PO 4r
b

2 2oo(H) _ 00 00 oH . (33)

(34)

If there is a small perturbed ion density, then the expression for the potential is
(assuming I = 2)

02~ + ~ o~ _ 12~ = 41te~ on/or ~ _ 41t fl.
or2

r or r2 rBy 2 (2~o _(i)) I

where iii is the perturbed ion density

(35)

and the summation over ± indicates a summation over particles with inward and
outward radial velocity. To obtain an approximate expression for the growth rate,
multiply Eq. (34) by r~* and integrate over radius. In the last term of Eq. (34), the iii
term, it is easiest to change independent variables from r to ~, r = r(H) sin ~, so
dr = r(H) cos ~ d~. Then do the ~ integral first at constant H. Using the definition
fO(H, L) == g(H) 8(L), the imaginary part of the frequency is obtained from

dn 2

oo.p fifJ 41te(2c) d; 1<1>(r) 1

, 0 By
2 C~o _(i)Y

where Ho is determined by 00 = 2oo(Ho). In calculating the right-hand side of Eq. (36),
we have assumed OOi « 00 so that a residue approximation is valid. If the left-hand side
can be evaluated as in Eq. (25), (the sharp boundary model), the result is

(37)

Using the results of Section II, and further assuming r(H) 1'.1 rb and og/oH 1'.1

-ni /r0
2 ooJ3, we find

(38)

However, Eq. (38) is not valid for arbitrarily high y, because as y increases, the electron­
ion interaction disappears according to Eq. (28). The maximum y for interaction is
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given by Eq. (28). Thus the maximum growth rate is given by

.(MAX) 1'.1 _1_ ni (m)1/2
(Ol h (Ope'

2y 2 ne M

For a hydrogen-ion contaminant with a number density of 1%of the beam density, this
growth rate is about 1 ~sec. This is a fast enough growth rate to be dangerous to the
operation of the device, but is still much slower than that which would be calculated by
a sharp-profile model. As the growth rate is so large, this instability is best dealt with by
avoiding it altogether. As we have seen, this can be done in several ways including the
use of a sufficiently diffuse profile, or insuring that the y stays sufficiently high.

D. Review of HIPAC and SPAC II Results

In this section we review briefly the results of the HIPAC8
,9 and SPAC 11 10

experiments as they impact our studies of the ion-resonance instability. The former
experiments attempted to produce an electron cloud with y = 1 in a toroidal chamber
of major radius 46 cm and minor radius 10 cm. The electron cloud is surrounded by a
conducting liner with a toroidal slit through which the toroidal flux enters. Near this
slit is an electron-emitting wire. As the toroidal flux enters, the wire is pulsed. The
emitted electrons are swept into the toroidal chamber with the toroidal flux. This
method of injection is called inductive charging. The maximum density produced was
about 4 x 109 cm - 3 and the magnetic field was several kG. Thus the (Ope/Qee ratio
(about 1/10) is much lower than what the NRL modified betatron hopes to achieve. The
densities were such that either the 1 = 1 or 1 = 2 diocotron mode could be excited. The
electron-cloud radius was generally equal to the wall radius, except when compression
was done. Then rb/a could be reduced to about 1/2. These electron clouds were always
well confined in that their lifetime could be just under 10 msec. They were finally
disrupted by the ion-resonance instability. This was concluded by the comparison of
disruption time with background-gas pressure. From both the frequency of the
oscillation and the late-time azimuthal structure, it was ascertained that the mode was
an I = 1 mode. At early times, the second harmonic was also observed. However, for
most of the duration of the discharge, this second harmonic was not present. At no time
was a third harmonic I = 3 structure ever observed. This lends credence to our
conclusion that 1~ 3 should not be a problem. For 1 = 1, where 1 < a/rb < 2, and
y = 1, the density in HIPAC is such that an 1 = 1 or 1 = 2 mode could resonate with
the ions.

SPAC II is a toroidal-containment device similar to the NRL modified betatron. A
diode is placedjust inside the toroidal shell at the meridian plane and a 450-keV, 16-kA,
25-nsec beam is fired in. Of the 16-kA injection current, a current of 300 A is trapped in
the torus for about 20 ~sec, or about 3000 beam transits. This beam current completely
fills the toroidal shell. Once the ring is set up, its density begins to decay. Part way into
this decay, there is a much more rapid disruption. This disruption is brought on by
enhanced fluctuations. Both the frequency and wave number were measured, and it was
concluded that the fluctuation is an 1 = 1, k = 0 electron mode, and that the frequency
is nearly resonant with the (magnetized) ion-oscillation frequency. However, in the
modified betatron, the parameters are such that an 1 = 1 mode should not be excited.
Since this was the dominant mode in HIPAC and SPAC II, and apparently was always
the one that triggered the final disruption when the ion density became sufficiently
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large, it is encouraging that this mode probably will not cause concern in the NRL
modified betatron. The key to the difference is that in both HIPAC and SPAC II,
rb/a ~ 1, while the modified betatron is designed to have rb/a « 1.

IV. THE ION-STREAMING INSTABILITY (l = 0)

In this section we discuss the other instability, the ion-streaming instability. As pointed
out in the Introduction, the simple electrostatic instability in an infinite medium has
two possible modes, the parallel two- stream interaction and the perpendicular (upper­
hybrid) interaction with k.l » k.l. However, very simple geometric considerations
show that the parallel instability cannot occur in the NRL high-current modified
betatron. Therefore, in this section, we turn our attention to the upper-hybrid
interaction, which the simple theory indicates is an area of great concern. We find that
there are two very important stabilizing effects. First, there is the inclusion of the full
electromagnetic effects on the electrons. These make it much more difficult for an
upper-hybrid wave to have slow-enough phase velocity to resonate with the ions.
Specifically, we find that there can be no ion interaction unless kr > 2Qce/rb' Secondly,
the diffuse profile and the spread in ion energies is a very strong stabilizing effect,just as
for the k = 0 ion-resonance instability. However, while we show that this instability is
not nearly as pernicious as simple theory indicates, it is by no means benign either. In
fact it appears to be of potentially great importance for the NRL modified-betatron
program, and its presence dictates a minimum time for accelerating the beam. This
section is divided up into three subsections, (A), the electron oscillation, (B) the ion
driven instability, and (C), the impact on the NRL modified betatron.

A. The Electron Oscillation

To examine the electron oscillation in the absence of an ion contaminant, we will
anticipate our principal results, namely, that the oscillation has a great deal of radial
structure, so that we assume that all perturbed quantities have spatial and temporal
dependence f(r) exp i (krr + kz - rot) where krrb » 1, kr » kz and f(r) varies more
slowly, on a space scale of order rb • To get the properties of the electron oscillations, we
can neglect the spatial dependence of f(r). However, when considering the effect of the
ion contaminant on this mode, it will be necessary to reintroduce it. To simplify the
calculation, we will use the fact (proved in the Appendix) that Ar can be neglected. The
condition for the neglect of Ar is marginally satisfied for the most unstable mode, but is
much better satisfied for more slowly growing modes.

Using the fact that P.l = ymv, and pz = y3mvz , the equations of motion for the
perturbed velocities are

eB (- v -)ym( - iro + ikvz)vr + ~ V(J = eikr <P - ; Az

eB e-
- - Vr + my( - iro + ikvz)v(J = - - i(kvz - ro)A(J

c c

(40a)

(40b)

(40c)
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These equations give for vn v(J and Vz

(41a)

(41 b)

_ ei (k~ - ~ Az )

v = (40c)
z y3m( - ioo + ikvz)'

The perturbed electron density, obtained from the mass-conservation eq:uation, is

(42)x

n= k e (k~ - ~ Az) 'kn C l rn
-(oo---kV-z)-2 y3m + (00 - kvz)

e
2

B - (- v -)7 (kv - (0) A(J - my(oo - kvz)eikr <P - -:- Az

(e:y _y2m2(ro _ kVz )2

Note that because k2 « kr
2

, the first term in fi arising from the parallel motion is
negligible compared to that arising from the perpendicular motion. Similarly, in
calculating the axial current, fiv z » nvz . Then from Eqs. (41) and (42), it is a simple
matter to calculate perturbed charge and current densities for use in Maxwell's
equation. For Maxwell's equations, we assume the Lorentz gauge so that only cur­
rents in the eand z direction need be considered. The quantity Ar comes from the
Lorentz condition

(43)

(44a)

However, as shown in the Appendix, the Ar arising from Eq. (43) does not strongly
couple back to the electron motion, so Ar and Eq. (43) can be neglected. As in the case
of the ion-resonance instability, we have shown that Jz = -nevz, so Az = (vz/c)~.
Thus Maxwell's equations reduce to two equations for 10 and ~:

'k !(kVz - OO)OO;e nc - ( k) OO;e 'k <P- }2- l r - A - CD - V -l- kr <P = yc y (J z y3 r
(00 - kv )

z (nc/y)2 - (CD - kVz )2

(44b)
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In Maxwell's equations, we have assumed that the mode has low frequency so that it
can resonate with the ions. We have therefore neglected terms of order (rolke)2, but have
retained terms of order (rolke). On the left hand sides of Eq. (44), we have also assumed
also that kr

2 » k2and have neglected terms oforder (klkr)2. The first thing is to find the
wave numbers of modes which can resonate with the ions. To do this, set ro = O. This
gives the relation between kr and k for the electron oscillation to resonate with the ions.
The result is

It is not difficult to show a posteriori that the first term in the second bracket is a small
correction, so neglecting it we find

(46)

There is therefore no root unless

(47)

For parameters relevant to the NRL modified betatron, this means krb > -1. Thus
electromagnetic effects (from the Ao) speed up the phase velocity of the wave and make
it impossible to resonate with the ion unless there is a great deal of radial structure. For
the most unstable wave, i.e., that with the least radial structure [but also where neglect
of Ar and the first term in the second bracket of Eq. (45) is least justified], we have that
for a mode to resonate with the ions,

k = 20c
r e

As kr varies between its minimum value and infinity, k

B. The Ion-Driven Instability

(48a)

(48b)

(49)

To calculate the effect of a small population of ions on the electron mode, we assume
that the ion density is so small that the fluctuating quantities are as given in the absence
of the ions. Since tI:!.e ionJ are non-relativistic, they respond only to the electrostatic
part of the field <p = <po(r) exp(ikrr + ikz - irot) where kr -1 is assumed small
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compared to radial scale size of the beam. The values of kr and k are given by Eq. (48).
Using H, Land Vz as independent velocity-space variables, (H being the energy in the
transverse place) and assuming fO = fO(H, L, vz ) = gO(H)8(L)8{vz ), we find the
perturbed ion density is

- - afO It -f = - e<p aH - edt' <p{r') exp i(kz' + ikr' - rot')

(
afo ik af O)

x i(ro - kv ) - + --
z oH M oV z •

(50)

We proceed by neglecting the r dependence of ~, and for the unperturbed orbit, we use
Eqs. (31 and 32). Then, making use of the fact that exp(iCl sin 8) = Ln In(rx) exp(in 8), the
integral over t' in Eq. (50) can be done, giving the result (recall ~ is defined in Eq. (32)).

(51 )

Since the ion velocity is assumed to be very small, the ions will be assumed not to
contribute to the perturbed current, but only to the perturbed density. The perturbed
density is obtained by integrating over Hand L as specified in Eq. (35) (and of course
also integrating over vz ). In doing this integral, the perturbed density will have a
complicated structure in r. The only Fourier component which can feed power into the
electron oscillation is that part proportional to exp(ikrr). Therefore, we will operate on
Maxwell's equations with S:r dr exp( -ikrr - ikz + irot). The result is

f: r dr exp( - ikrr - ikz + irot)V2~ = 4nefr dr (ne - nJ exp( - ikrr - ikz + irot).

(52a)

f: r dr exp( - ikrr - ikz + irot)V21e = 4nefr dr neVe exp( - ikrr - ikz + irot).

(52b)

Within the be~m, all qpantities are assumed to vary as exp(ikrr). Outside the beam,
ne = iie = V2 <p = V2Ae = O. Therefore Eqs. (52) reduce to

r 2 _ 41ter 2 fOO
--b-kr

2 <p = __b_ iie - 4ne rdriiiexp(-ikrr - ikz + irot)
2 2 °
2 ( 2)rb 2 - rb _- 2 kr Ae = 41te 2 neVe,

(53a)

(53b)

Thus we need to calculate the last term on the right-hand side of Eq. (53a). To do so,
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change the independent variable from r to ~ as in Section Illc. The result is

-41tefr dr exp[ -(ikrr + ikz - irot)] ni =

-41te2 f dH4> IJ/ (krr(H)) [ro(OgOjOH) + (k
2
jM)gO J. (54)

M 2roO(H) n nro(H) - ro (nro(H) - ro)2

Since we want to consider only the imaginary part of Eq. (54), namely that part from
the resonant denominators, we did not write out the contribution from the first term in
Eq. (50), which is pure real. It is not difficult to show that the second term in the square
brackets in Eq. (54) is smaller by a factor k2 rb2. Then, taking only the residue
contribution, we find

-41tefr dr exp[ -i(krr + kz - rot)] ni =

-41te2 (1ti)fM~:o7H)~j/ (krr(H)) ro(ogOjoH)8(nro(H) - oJ) == 84> (54)

Using this extra contribution to the perturbed charge density in Eq. (53a), we can
calculate the imaginary part of the frequency assuming kr and k are given by Eqs.
(48a & b). The imaginary part of the frequency comes from setting

(56)= o.

D=

2((Oc)2 2)kr y - (0) - kvz )

ro;e(ro - kVz )2+ --=-------.,.--
y4c yc 2

A straightforward calculation then gives the result

assuming that ro is small. One can then calculate that

oD
oro (58)

In the limit of small beam density (ro;ely3) « (Qc
2/ y2), we find

(59)
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Using the estimates in Section II for equilibrium quantities and assuming first that the
resonant energy corresponds to a particle near r(H) = rb, we find 8 ~ ni/(nekrrb), so

(60)

C. The Impact of the Ionic-Streaming Instability on the NRL
High-Current Modified Betatron

Let us consider the effect of this instability on the performance of the NRL high­
current modified betatron. Unlike the ion-re.sonance instability, the ion-streaming
instability has a phase velocity very far from the electron axial velocity, so there is
virtually no chance that this instability can be stabilized by electron Landau damping.
The question then is whether the beam can be so rapidly accelerated that the insta­
bility never gets a chance to grow. To be specific, let us consider a 10-kA beam having a
radius of 2 cm in a magnetic field of 3 kG. This gives'the value (Ope = 2.4 X 1010 sec- 1

and Q = 5 X 1010 sec- 1
. In this case, the unstable parallel wave numbers lie within

the range

5 1 5 ( 1 )- < k(cm- ) < - 1 + -
3y 3y 8y

and the growth rate according to Eq. (60) is given roughly by

(61)

(62)

To continue, let us assume the density ratio of the contaminant is 10- 2. Then for y ~ 4,
corresponding to injection, the growth time is about 25 Jlsec. While this is not
negligible, it is long enough to give at least hope of accelerating through the unstable
region in k before the mode can grow appreciably. For instance, at y = 7, the unstable
k's are in a range having a width of about 2%.Thus if initially y can be increased by 2%
in 100 Jlsec, the instability should not have a chance to grow once y = 7. Once, the
beam is accelerated to still higher y's, the conditions on the speed of acceleration are
relaxed further.

V. CONCLUSIONS

In this paper, we have examined the ion-resonance (k = 0) and ion-streaming (I = 0)
instability for a high-current modified betatron. Both instabilities are strongly
stabilized by a diffuse profile. The ion-streaming instability is further stabilized by
electromagnetic effects involving Ao• For a diffuse profile, the only mode of the ion
resonance instability which can grow appears to be the I = 2, as long as (rb/a) is
sufficiently small. The ion-resonance instability can be stabilized by a sufficiently
diffuse profile and can also be stabilized if the y of the electron beam is above some
critical value. The ion-streaming instability cannot be stabilized either way. However, it
is unstable only in a fairly small y-dependent range of wave numbers. If rope/Qee is
sufficiently small, the ion density sufficiently low, and y is sufficiently high, it appears
to be possible to accelerate the beam through these unstable regions before the instabil­
ity can grow. For either instability, the most dangerous time is at low y. It seems
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reasonable to conclude that if these instabilities do not disrupt the beam during
injection and self-field diffusion, they will not prevent acceleration either.
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APPENDIX

In the appendix, we begin by showing under what conditions electrom~gneti~terms
can be neglected. We will start with the ion-resonance instability, where Ar and Aewere
both neglected, but <p and Az were retained. Since variation is only in the rand e
direction, these quantities produce only a perturbed magnetic field in the Z direction
and induced electric fields in eand r directions. Since 0) « le/r, Maxwell's equation for
Ae gives roughly

(AI)

so

(A2)

[We have neglected the nee~o contribution on the right hand side of Eq. (AI). Since
~o is small for the modified betatron, a similar calculation to this shows that this
term is also negligible.] Since the Ao and Ar produce only an axial magnetic field, the
perturbed force must involve the unperturbed ~o. The radial force is then given
roughly by

(A3)

Comparing this to the e~eB/e radial force, we see that the former is negligible if

(A4)

a condition easily satisfied in the modified betatron, especially because ~o/e is so small.
Now consider th.E effe£t of the induced electric field. Using the fact that, according to
Eq. (17b and c), ~ ~ ~,and the fact that 0) ~ (I - 1) ~o/r for the electron mode, one
can easily show that the condition for the neglect of the induced field is also given by
Eq. (A4).

We continue by examing the neglect of the -nevz in the perturbed axial current.
Since there is no variation in the z direction, the axial current arises entirely from the
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induced electromagnetic field in the z direction, so

lOW e 00 - 3 ([vo )
Vz = - - - Az/Y - - ro .

mer

The perturbed current from the other component, - iievz is,

(A5)

(A6)

on

elcvz or ¢

y
2

Br C:o - (J))

as derived in Section IlIA. Assuming ~ = vz/e Az ~ Az,on/or "-I n/r, and making use
of the dispersion relation for the I = 2 electron oscillation, we find that the Vz
contribution to the perturbed ion current is smaller by

00
2 r 2 v
pe 1-42 3 "-I -43« .
e Y Y

(A7)

Thus the neglect of the Vz term in the perturbed current is justified.
Now let us turn to the electromagnetic effects on the ion-streaming instability.

There, <1>, Az and 1 0 were retained, but 1, was neglected. The perturbed 1, can be calcu­
lated from the Lorentz condition, Eq. (43). Using the fact that ~ "-I Az and ro/e « k,
since 00 ~ 0 for resonance with the ions we find

(A8)

This perturbed Ar gives rise to a perturbed 130 "-I kA" which in turn gives rise to a force
in the radial direction of order (evzkAr/e) "-I (evzkAz/ekr). This is to be compared with
the force in the radial direction which we included which is of order ekr Az /y 2

• Thus the
effect of Ar is negligible as long as

(A9)

For the minimum values of K r , given by (48a), and with k given by Eq. (48b), Eq. (A9)
reduces to 1/4 « 1, and is therefore marginally satisfied. For the larger, more stable
values of kr however, Eq. (A9) is well satisfied.

We next turn to the question of the neglect of the oj%L term in Eq. (30). To
examine this, it is necessary to examine the effects of particle orbits with L small. Such
an orbit is shown schematically, along with the dependence of angle as a function of
time in Fig. Al for a particle with Hamiltonian H and small angular momentum L.
Half way through each cycle of oscillation, the angle 8(t') changes by 1t over a time of
order "( "-I L/H. During this time, the particle is approximately a distance L/(mH)1/2
from the origin. If the orbital frequency is given by oo(H), then the assumption of small
L mean oo(H)t « 1.

The actual orbit is then given as the sum of two components, the oscillating orbit
considered in Sections II and IIIe,. and the jumps in 8(t') by 1t in the time of order
t "-I L/H. (Since I is even, I = 2), the jumps in 8(t') do not affect the orbit integral as
computed in Section Illc. Each jump in phase simply multiplies the integrand of
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/ 8U')

t'

FIGURE Al (A) The orbit of an ion with small, but non zero angular momentum, (B) the angle of the orbit
as a function of time.

Eq. (30) by exp 21ti = 1. To estimate the effect of the rapid phase variation, first assume
that the jump in phase occurs while r '" LI(mH)1/2. Then doing the same calculation as
in going from Eq. (30) to Eq. (33), we find that

where tn is the time of the nth jump and the t 1 integral is carried out only over the jump
time, of order LIH. Doing the integral over t 1 we find roughly

(All)

Because of the L 3 dependence in froE-t, this term integrates to zero if10 '" 8(L). Note
that that the origin of this is that <t> '" r 2 for small r. Had the eigenfunction been
uniform in r at smaller r, there would be a contribution from the l(o!oloL) term. Since
the other term calculated from the slow (t 1 '" co - 1 (H)) oscillation has no explicit L
dependence, [see Eq. (33)], the o!oloL term does not contribute to /;,.
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