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A theoretical and experimental study of transverse beam motion in radial line accelerators due to image­
displacement effects has been made. Both theory and experiment show that the thin-lens-gap approximation
substantially overestimates the size of the displacement in the finite-length-gap parameter regime. An
analytical treatment of the beam-gap coupling coefficient which allows a more accurate computation of the
transverse impulse is described. A previously unrecognized drift motion in the gap is also discussed. Three­
dimensional particle-in-cell numerical simulations of the experiment are presented for a wide range of
magnetic guide field strengths. Finally, the possible impact of the image-displacement instability on
RADLAC accelerators is determined.

I. INTRODUCTION

The radial pulseline linear induction accelerator is a promising new approach to
producing high-current, high-energy, short-pulse electron beams. t

,2 It consists of a
beam injector and several identical acceleration modules. The injector is a standard
cold-cathode, pulsed-diode electron beam generator. 3 Leaving the injector, the beam is
transported along a strong solenoidal magnetic guide field in an evacuated metal drift
tube. The tube is interrupted at several axial locations by gaps across which additional
accelerating voltages are applied. As the beam passes, the gaps are energized by radial
transmission lines, which are in turn charged using pulsed-power technology., Very
high beam energy can be achieved in principle simply by stringing together enough
modules. No magnetic materials (e.g., ferrite) are used in the transmission lines. The
resulting low transmission-line impedance dictates that the beam current be several
tens of kiloamps. Space-charge constraints consequently require that the beam be
annular and near the drift tube wall, unless the injector provides very high initial beam
energy.

Illustrative of the radial pulseline accelerator concept is the RADLAC device,
developed by Air Force Weapons Laboratory and Sandia National Laboratories.4

Figure 1 is a schematic diagram. RADLAC accelerates a 25-kA., 15-nsecelectron beam

t Present address: U.S. Military Academy, West Point, New York.
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RADIAL PULSE LINE

FIGURE 1 Schematic design of the RADLAC device, indicating the key accelerator components.

to 9 MeV using four nominally 2-MeV modules and a 2-MeV injector. The LIU-IO
accelerator in the Soviet Union is larger, with fourteen modules and output parameters
of 13.5 MeV, 50 kA and 20 to 40 nsec. 5

Because the electron beam is the only system component linking the full accelerator
voltage, stable beam transport replaces high-voltage breakdown as the key issue in
demonstrating feasibility.6 Field nonuniformity in the gaps can disturb the beam
equilibrium, exciting a periodic, axisymmetric modulation of the beam envelope.7

,8

The gaps also can trigger beam breakup9 and image-displacement instabilities.10 Being
annular, the electron beam is subject to diocotron instability and other azimuthal
velocity shear phenomena, especially at low beam energy.11-13 Finally, finite electrical
conductivity of the metallic drift tube drives resistive-wall instabilities. 14 Preliminary
analyses indicate that the RADLAC accelerator and modest enhancements to it are
safe from these disruptive phenomena. More comprehensive investigations are in
progress. This paper treats various aspects of the image-displacement effect.

The physical explanation of the image-displacement instability is straightforward.
An uncentered beam in a uniform conducting pipe is attracted toward the nearest point
on the wall by its electrostatic image concentrated there. Similarly, it is mag­
netostatically repelled by interaction with its m = I image current. The two forces
cancel to order 'Y - 2, with the residual countered by the solenoidal guide field. At a
gap, however, the image current is interrupted, while the image charge is but slightly
displaced (for l/R not too large), giving rise to an abrupt transverse force on the beam in
the direction of its initial lateral offset. The beam subsequently undergoes zero­
frequency transverse oscillations as it travels to the next gap. Depending on the
oscillation phase at the next gap, the oscillation will grow or not. The conceptual
interaction of the beam with a single gap is illustrated in Fig. 2. It is also possible to
analyze the image-displacement instability as the low-frequency limit of the beam­
breakup mode,13 although we shall not purse this route here.

Previous works by WOOdS16 and Neil17
,18 were performed in the regime where the

instability wavelength is much larger than the drift-tube radius, which in turn much
exceeds the gap width. Typical radial-pulseline accelerator parameters are such that we
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FIGURE 2 The offset image charge (+, -) and image current (arrows) in a gap in a drift tube. The beam is
unperturbed on the left and oscillates on the right.

must relax this constraint. In Section II we first review the usual thin-gap expression
and then generalize the results to gaps of finite width, analyzing the growth rate
expression in several limits. A detailed evaluation of the m = 1 image fields at the gaps
is presented in Section III. The experiments described in Section IV provide an upper
bound on instability growth in strong applied magnetic fields. Good agreement with
theory for both growth and precession rates is obtained. In Section V beam transverse­
displacement amplification factors calculated from the finite-width-gap model of
Section II and III are compared with experiments or three-dimensional simulations for
a wide range of magnetic-field strengths. The rough agreement between model
predictions and simulation output for weak guide fields suggests the need for additional
research. Nonetheless, we are able to conclude in Section VI that radial pulseline
accelerators of the RADLAC class are reasonably safe from severe image-displacement
instabilities, based on numerical evaluation of instability growth during acceleration.

II. FINITE WIDTH GAP INTERACTION MODEL

In the region between gaps in a highly conducting drift tube, transverse oscillations of a
disk of beam particles is described by

(1)

The first term on the right side of Eq. (1) is the restoring force of the applied axial
magnetic field (with Olc the corresponding cyclotron frequencY),and the seco~d is
the net force between the beam and its m = 1 image in the drift tube wall. We take ~

as the complex sum of transverse displacements, ~ = x + iy. Other quantities are
Olp, the beam plasma frequency; y, the particle relativistic energy; a, the mean radius



28 ADLER, GODFREY, CAMPBELL, SULLIVAN AND GENONI

of the annular beam; 0, the thickness of the annulus; and b, the drift tube radius. The
paraxial and low-frequency approximations are implicit in Eq. (1).

Typically, the second term in this equation is much smaller than the first for
RADLAC parameters. The spatial variation of ~ between gaps is then approximately

(2)

with ~1 and ~2 constants and ko = roc/y. (We choose units such that the speed of light is
unity.) In other words, as the beam moves from one gap to the next the (complex)
amplitude of the low-frequency space-charge mode is essentially constant, while the
amplitude of the high-frequency cyclotron mode is multiplied by exp(irocL/y), where L
is the gap-to-gap separation.

In crossing a thin gap, the beam experiences an impulsive force F~, which changes its
transverse velocity by iF~/roC' but leaves the displacement constant. Combining this
with Eq. (2) and taking y to be constant for the moment, we find that the mode
amplitudes evolve according to

(;2
1
)+" = eikoL/2

(
1 _ iF) eikoL/2 _ ~

koY koY

iF (1 iF) - ikoL/2- +- e
koY koY

(3)

(4)

(5)

in passing through an accelerator module, consisting of a gap and drift-tube section, as
in Fig. 2. The eigenvalues of Eq. (3) describe the growth of m = 1 gap-induced
instabilities.

A = *± iJl - *2
*= cos koL/2 + k

F
sin koL/2

oY

If IAI > 1, growth occurs.
For the image-displacement instability,16,18

F I rop
2ao

-~2--'

koY b roc

which is purely real. As a consequence, the requirement IAI < 1 for stability reduces to
Iwl ~ 1. Figure 3 illustrates the dependence of Won koL/2 for various values of F/koY.
Regions of stability and instability alternate as koL increases, although the stable bands
shrink with larger F. The maximun value of *is

(6)

It is evident from Fig. 3 that F/koY < 1/2 is needed to assure minimal growth over
several periodically spaced gaps with y constant. If 'Y or L varies from gap to gap, the
amplification after several gaps is determined by the eigenvalue of the matrix formed by
multiplying the matrices from each gap as given in Eq. (3). In general, the eigenvalue of
the product is much smaller than the product of the eigenvalues: Beam acceleration
and irregular gap spacing cut image-displacement instability growth.



IMAGE-DISPLACEMENT EFFECT 29

FIGURE 3 Image-displacement instability growth-parameter Wfrom Eq. (4) as a function of the phase
advance per gap.

Note that an alternative procedure for suppressing the image-displacement mode,
choosing koL/2 to lie in a stability band, is impractical for radial pulseline accelerators.
The wavenumber ko varies from shot to shot and even within shots; koL/2 is large.

As noted in the Introduction, the thin-gap approximation is not always well satisfied
in radial pulseline accelerators. We can take account or'finite gap width to lowest order
by applying the gap force uniformly across the gap rather than as a delta-function at the
gap center. 'Additionally, we replace the gap width I appearing in Eq. (5) with an
effective width Ieff determined numerically by the procedure of Section III. Within the
gap, the beam then supports normal modes of wavelength

k = (ko ± rx)/2,

tt2 = k0
2

- 4F/y/. (7)

The gap modes are matched in the usual manner to the drift-tube modes of Eq. (2) to
derive an amplification matrix analogous to that of Eq. (3);

eikO(L-l)/2[COS (\l.l/2) _ i sin (\l.l/2) (~ _ ko/): -i~ sin (ttlj2)
ttl/2 koY 2 ko'Y ttl/2

.~ sin (ttl/2). ikO(L-l)/2[ (//2) . sin (ttl/2) ( F kol)J
l • e cos tt + l - - -

koY ttl/2 ttl/2 ko'Y 2

The eigenvalues of Eq. (8) are given by Eq. (4) with'" redefined as

(8)

,I, _ (ko(L - I)) (ttl) ( F kol). (ko(L - I)) . (ttl)/(ttI)'f' - cos cos - + - - - sIn sIn - -
2 2 koy 2 2 2 2'

(9)

Let us compare instability behavior as predicted by the thin and thick gap models.
For tt2 > 0, the primary difference between Eqs. (4) and (9) is reduction in the latter
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of the effective force per gap; i.e.,

~ -+ (~ _ kol) sin (a.l/2)
koY koY 2 a.1/2 ·

(10)

To the extent that F/koY is less than kol/2, finite gap width weakens the image­
displacement instability. Note that '" reduces the cos (koL/2) irrespective of the
magnitude of kol/2 in the limit of vanishing F. For a.2 < 0, on the other hand,
exponential growth of the beam transverse displacement can occur in a single gap, as is
evident from Eq. (7). This occurs for F/koY greater than kol/4. Figure 4 plots k/koversus
F/ko2yl. The exponential growth is, of course, unimportant for a.l/2 small. Indeed, for
small gap widths, Eq. (9) reduces to Eq. (4) irrespective of the sign of a. 2

•
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FIGURE 4 Spatial frequency and growth rate of beam oscillations in a single gap.

Growth per gap as determined by the two models is contrasted in Fig. 5 for
parameters taken from Sections IV and V of this paper. [F is evaluated using leff ~ I in
both sets of curves to focus attention on the explicit differences between Eqs. (4) and (9)
only.] Sharp resonances occur in both cases for 21t/koL - l/n, with n a positive integer.
However, growth is much reduced when finite gap width is considered. F/koY - kol/2
is negative to the left of the small arrow at 21t/koL = 1.31. To the right of the other
arrow, at 0.92, ('J.2 < O. For ('J.2 only slightly negative, no linear growth occurs
(asymptotically) due to cancellations from gap to gap; the phase advance ko(L - t)
is of order 1t. Substantial growth is predicted for ('J.2 strongly negative, beginning at
21t/koL ~ 1.4.

Next we compute leff.
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FIGURE 5 Comparison of instability growth for thick gap (solid curves) and thin gap (dashed curves)
models.

III. IMAGE FORCES OF FINITE-WIDTH GAPS

As mentioned earlier, Eq. (5) is an accurate expression for the transverse force exerted
on an off-center beam by a gap in the drift tube wall only for l/b « 1, the thin-lens limit.
Provided kol is not too large, an improved expression based on the superposition
principle can be obtained. The particle beam in a straight drift tube induces an m = 1
image charge on the tube wall of magnitude

(11)

(The electron charge to mass ratio is taken as unity, and a factor of 41t is absorbed into
cr.) The change in electric field due to a gap can therefore be associated with a canceling
image charge - cr in the gap opening at r = b.

Defining the gap electric field in terms of a potential Jt; we seek a solution to V2 V = 0
in the interiors of the drift tube and gap, with V = 0 on the conducting boundaries,
oV/oz = 0 at z ± L/2, and V satisfying appropriate matching conditions at r =
b,lzl < 1/2. Suppressing the azimuthal dependence, we write the potential in regions I
and II as (regions I and II are delineated in Fig. 2),

(12)
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(mnr) (mnd) (mnd) (m1tr)Gm(r) = K 1 -Z- 11 -Z- - K 1 -Z- 11 -Z- . (13)

(The exponential fall-off of the field in region II is evident from the asymptotic forms of
the modified Bessel functions.) The coefficients in the series expansions for the
potentials Vi and ViI may be found by applying the appropriate matching conditions at
r = b. They are

and

Vi(b, z) = 0, otherwise; (14a)

aViI aVi Z- a;: + a;: = cr, Izl ~ 2' r = b.

Integrating Eq. (14a) from - L/2 to L/2 gives

LAo = L BmJm°Gm(b),
m,odd

where

f'
1
2 (2nnz) (mnz)Jmn = -1/2 COS L cos -/- dz.

Multiplying Eq. (14a) by cos (2n'nz/L) and integrating from -L/2 to L/2 gives

(14b)

(15)

(16)

(17)

(18)

Finally, multiplying Eq. (14b) by cos (m'nz/I) and integrating from -1/2 to Z/2 gives

m1t, Ao 0 " 2nn , (2nnb) n _ 0
-BmTGm(b) + TJm + ,;;-An!:/! -----r:- Jm - aJm .

[The primes in Eq. (18) denote differentiation of the Bessel functions with respect to the
arguments.] Equations (15) through (18) represent an infinite system of linear
equations for the coefficients An and Bm. The system may be truncated and the
remaining equations solved using standard matrix-inversion routines. For the present
problem, only Ao gives rise to a net force on the beam as it traverses a section of the
accelerator (other terms give zero when integrated from - L/2 to L/2). A modest
number of elements in the expansions for Vi and ViI are sufficient to determine A o to a
few-percent accuracy. Some numerical results are presented at the end of this section.
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We solve for the gap-induced magnetic field by defining a scalar magnetic potential <t>
and employing a method analogous to that used for the scalar electrostatic potential.
(The vector potential A may also be used, but the formulation is somewhat more
complicated.) We seek a solution to V2 <t> = 0 such that the normal component of B is
zero on the conducting boundaries, o<t>/oz = 0 at z = ±L/2, and the tangential
components satisfy appropriate matching conditions at r = b, Izi < 1/2. We write the
potential in region I and II as

where

r (2n1t) (2n1tz)
<\>, = Co b + ~ CnIl L cos L '

(r d) (2m1tz)
<\>11 = Do d + -;: + ~ DmHm(r) cos -1- ,

(2m1tr) (2m1td) (2m1td) (2m1tr)Hm{r) = 11 -1- K1' -1- - 11' -1- K1 -1- .

(19)

(20)

(For large d, the p- 2 fall-off of B is evident from the first term in the expansion for
4> Ii·) In this case, we apply the continuity of Br and the jump in Bo at the surface
r = b,lzl < 1/2 to determine the expansion for <PI and <PII. Specifically,

a<PI
or

I
Izi < 2' p = b;

and

O<PI L I
a;:- = 0, "2 > Izi > 2' p = b; (21a)

1 a<PII 1 a<PI--- + -- = crv
r as r as . ,

I
Izi ~2' p = b. (21b)

(22)

Cn and Dm may be determined by a procedure analogous to that employed in the
electric-field case, and the details are omitted. Again, only Co contributes to a net
transverse force and a few terms in each series yields reasonable accuracy.

Combining these results, we find that the integrated transverse force experienced by
the beam crossing a gap is given by Eq. (5) with

1 - -
Ieff = 2(Co - Ao),

where Co and Ao and Co and Ao rescaled by L/bcr to have units of length.
In order to check the computational method, calculations were carried out for the

geometric parameters treated in Ref. 17; i.e., L = 30 cm, b = 7.5 cm, I = 3 cm and d
variable. The results, in Table I, agree well with latest numerical calculations by Neil. 19

Table I also shows that for the magnetostatic force, values of d ~ 4b are required
before the large-d asymptotic limit is approached. The results displayed in Table I (and
Table II) were generated using approximately 200 terms in the series expansions in
regions I and II, requiring the inversion of a correspondingly large linear system.
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TABLE I

Gap-field coefficients for the parameters L = 30 cm, b = 7.5 cm, 1= 3 cm and various values of d

d 15.0 30.0 45.0 60.0 00

.40 0.745 0.745 0.745 0.745 0.745

Co 5.91 8.03 8.47 8.62 8.80

TABLE II

Results for RADLAC parameters,

d 5.0 10.0 15.0 20.0 00

.4 0 3.24 3.30 3.30 3.30 3.30

Co 6.77 8.74 9.12 9.26 9.40

Subsequent calculations revealed that many fewer terms could be used to achieve
reasonably accurate results. Typically, use of about 20 terms was found to yield results
within about 5% of those obtained with 200 terms.

In Table II, results for parameters typical of the RADLAC accelerator4 (L = 40 cm,
b = 2.5 cm, 1 = 4 cm) are presented. Figure 6 show typical profiles of the electric and
magnetic gap fields for the RADLAC parameters. The force is localized roughly to the
gap location, decreasing exponentially in the smooth-walled drift tube.

(/)

"'0

OJ

u..

-10 Z (em) 10

FIGURE 6 Profiles of the m = 1 electric (E) and magnetic (M) gap fields for RADLAC parameters.
Location of 4 cm gap indicated at top of figure.
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IV. EXPERIMENT

The image-displacement effect was investigated experimentally using non-accelerating
gaps in a periodic structure, as in Fig. 7. The instability results from the drift-tube gap
rather than the accelerating voltage, so the experiment was designed to allow
observation of the instability without complications due to acceleration.

Competing gap-induced effects were considered in the design of the experiment.
These included the beam-breakup instability9 and zero-frequency radial oscilla­
tions.4t7t8 Preliminary observations demonstrated that zero-frequency azimuthally
symmetric oscillations of the beam (radial oscillations) resulted in beam-current losses
in the structure. This is shown in Fig. 8, 'where up to 30% of the beam current was lost.

The radial oscillations result from the image charge that builds up at the "corner" of
each gap. Theory indicates that this effect will fall off rapidly8 as the gap length is
decreased. The radial oscillations were suppressed using thin resistive conductors to
cover most of the gap, as depicted in Fig. 9. The two resistive materials used were nylon
inserts coated with aerodag and 25 Jlrn stainless-steel foils. Both allowed magnetic
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FIGURE 7 Schematic design of image displacement instability experimental apparatus.
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FIGURE 8 Current-transport efficiency with and without foils for experimental series 2.
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FIGURE 9 Placement of resistive foil to reduce m = 0 oscillation amplitude and decouple rf from cavity.
Dimensions shown are for experimental series 1.

fields to penetrate in less than a nanosecond while minimizing the displacement of the
electric image charge. The result is to minimize radial oscillations by decreasing the
electrostatic gap length. (Additionally, the foils increase leff to approximately I by
drastically reducing Ao, strengthening the image-displacement effect). The dashed line
in Fig. 8 indicates that the foils were successful in suppressing the radial oscillations.
This, incidentally, supports the view that these radial oscillations are purely
electrostatic in origin.

The lower limit in achievable magnetic field was dictated by foilless-diode effects.
Radial oscillations due to the diode indicated that the minimum operating magnetic
field was 8 to 12 kG.

Three sets of experiments were performed to demonstrate both amplitude and phase
response of the beam centroid to the drift-tube gaps. Parameters are given in Table III.
In each case, the beam was launched straight along the tube axis but slightly off center.
Location of the beam at the end of the tube was then measured as a function of axial
magnetic field.

Whether the amplitude or phase of the beam displacement is more easily observed is
dictated by the diagnostic method used. A witness plate is a target that measures beam-

TABLE III

Experimental Data

Series 1 Series 2 Series 3

Beam Energy (MeV)
Current (kA)
Radius (cm)

Gap Spacing (cm)
Length (cm)
Number

Magnetic Field (kG)

Tube Radius (cm)

Diagnostic method

2.9-3.3
16-20
0.75

4.9
1.2

8

12-22

1.4
Probe Array

2.5-3.0
24-38

0.6

5.5
2.5
4

6.5-20

1.4
Witness Plate

2.6-3.0
18-24

0.8

6.6
3.2
4

11-22

1.4

Probe Array
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induced damage. The time-averaged position of the beam relative to the centroid was
measured on these targets. On the other hand, for cyclotron wavelengths comparable
to the drift-tube diameter, magnetic probes measure a time-resolved, axially averaged
displacement. As a result, the probes are more sensitive to azimuthal drift motion. In
terms of the theory developed in a previous section, witness plates are mainly sensitive
to k ~ ko motion, while the probes detect k ~ 0 motion.

Series 1 was performed in a parameter regime where linear theory predicts minimal
growth. The initial offset of the beam was 0.1 cm at an angle ~ 1t/4 from the # 1 probe
of the position monitor. The initial angle was measured by dividing the slope of the
position monitor signal by the slope of the beam current trace. This ratio is
proportional to the position (x, y) in each probe monitor plane. Figure 10 displays the
dependence of position in the plane on the theoretical drift due to the gaps. The solid
line in Fig. 10 corresponds to the theory for leff/l ~ 0.85, if we include a contribution of
about 12% due to drift in the tube between gaps. The observed drift is in reasonable
agreement with theory.

Series 2 was diagnosed using witness plates to measure the time-averaged offset
approximately one structure period beyond the center of the last gap. The measured
displacement is shown as a function of 21t/koL in Fig. 11. The vertical lines indicate two
shots where only a lower bound on displacement could be determined. The two peaks

0.6 •
•

0.4 •
•

0.2

Re ( ~)
0

I~I

-0.2

-0.4 sin(0.959 -1T14)

-0.6

o 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIGURE 10 Displacement of beam centroid in one transverse direction due to enhanced precession in
drift-tube gaps.
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FIGURE 11 Measured growth of beam transverse displacement for experimental series 2. The dashed line
is added as an aid to the eye and is not a theoretical curve.

in displacement occur at the expected values of cyclotron wavelength, i.e., where an
integral number of cyclotron wavelengths corresponds to the structure period.

We emphasize that the resonant behavior in Fig. 11 is a function of both the in­
stability growth and the phase of the cyclotron oscillation. In other words, the re­
sonance could be due to a resonance in the total instability growth (caused by the
structure periodicity) or to the exact phase at which an unstable wave is measured.

The simulations discussed in Section V, though run for experimental Series 3,
support the latter interpretation. Figure 12 shows computational results equivalent to
witness-plate data and displayed in a similar format. In the simulations, the resonant
structure is a phase effect. This in turn indicates that the peak displacement of the
cyclotron wave occurs approximately at the centre of the last gap.

The third experimental series, which was simulated by the three-dimensional code,
was diagnosed using magnetic probes. Drift motion similar to Series 1 was also
detected in this run. Simulation results indicated that the maximum growth of the
beam displacement was less than a factor of two in the experimental parameter range.

V. COMPUTER SIMULATIONS

Two- and three-dimensional particle-in-cell numerical simulations were performed to
assist in interpreting the experimental data of the preceding section and to extend the
findings to weaker axial magnetic fields, which were inaccessible experimentally. The
simulations were run in cylindrical geometry and emulated conditions of the third
experimental series as closely as possible. Figure 13 illustrates boundary conditions.
Four non-accelerating gaps, each partially covered by a metallic foil, were located in
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FIGURE 13 Drift-tube geometry and particle locations in z and r for computer simulation of
experimental series 3. (Bz = 10 kG.)

the central position of the drift tube. Rogowski-coil sites were located to either side.
Wave-transmitting boundary conditions were employed at both ends of the simulation
mesh. Nonuniform radial zoning provided enhanced spatial resolution in the beam
annulus. Particles were injected at the left with a space-charge-depressed energy of
y = 5.1 and were absorbed at the right. A 23-kA current was assumed. Examples
of position and velocity plots are shown in Figs. 14 and 15.

The two-dimensional simulations were carried out to check the influences of the
metal foils. With a guide field of 10 kG but no foils, radial oscillations were so violent
that beam current was lost to the walls near the end of the drift tube. Additionally, there
was some evidence of bunching instabilities. Foils over the four gaps cut these sausage
oscillations to an acceptable level, as shown in Fig. 13. The remaining radial
perturbations, due primarily to the shallow Rogowski coil openings, decreased roughly
linearly with Bz -1. Although the metal foils shielded the gaps well from electric fields,
the beam magnetic fields penetrated easily. The simulations were performed with
CCUBE.20- 22
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FIGURE 14 Transverse position of beam centroid versus axial location from simulation (Bz = 10 kG.)
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FIGURE 15 Transverse velocity of beam centroid versus axial location from simulation. (Bz = 10 kG.)

The newly developed code IVORY was used to model the image-displacement
instability. Conceptually, IVORY is a straightforward extension of CCUBE. Variation
of the electromagnetic fields in the third (periodic) spatial coordinate is represented by
a sum of Fourier modes. This is not a linearization, although the more nonlinear the
physics to be modeled, the more modes are required for an accurate treatment. [For the
present study only the m = 0 and two m = 1 components (sine and cosine) were
followed, since nonlinear behavior was not at issue.] Like CCUBE, IVORY has a
Galerkin field-particle interface 20 ,23 and a backward-biased field solver. 24 The code
can operate in any orthogonal coordinate system in which at least one coordinate is
cyclic. Although IVORY is not yet fully debugged and optimized, its performance was
satisfactory for the computations described below.

Seven complete simulations were made, each at a different magnetic-field strength.
The annular beam was injected with a rigid displacement of 0.05 cm from the drift tube
axis. Figures 14 and 15 depict the typical evolution of the transverse position I~I and the
transverse velocity I~I of the beam centroid as a function of axial position. Strong
modulation of I~I is due both to kicks the beam receives in passing the gap edges
and to beating between space-charge and cyclotron components of the transverse
oscillations. On the other hand, modulation of I~I presumably is due only to the gap
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forces, since I~I is dominated by the cyclotron component. It is important to note that
the envelopes of I~I and I~I do not grow together, indicating that the mix of space­
charge and cyclotron waves is not constant. Moreover, amplification of I~I from gap
to gap is not uniform. Both observations suggest that large transients are present.

Measured but not displayed here is the oscillation wave number of ~. Its value for a
smoothed-walled tube would be ko, or 1.15 cm -1 for a 10 kg guide field. For the
geometry of Fig. 13, the wave number drops to 1.00 cm- 1

, based on the weighted
average of ko and (ko + (1.)/2 from Eq. (7). The simulation gave 0.95 cm -1, accurate to
about 2%.

Peak amplification on I~I in traversing the first Rogowski-coil opening and the four
gaps is plotted in Fig. 16. Typical uncertainty in measuring the amplification is about
10%. Also shown is the theoretical curve obtained by raising the matrix of Eq. (8) to the
fourth power, applying the resulting matrix to the initial-condition vector (a pure
space-charge oscillation), and then constructing the absolute length of the out-put
vector. This procedure takes account of transients but removes modulation effects
associated with the choice of measurement location. (The corresponding asymptotic
growth rate appears as the solid curve in Fig. 5.) The effective gap width is set equal to
Co/2 in this calculation, because the foils lead to Ao/2 ~ O. It turns out that 1and leff

are comparable. We see from Fig. 16 that the amplification factors as determined from
the finite-width gap model and from the simulation are of the same order, but the
simulation results exhibit less fine structure as a function of Bz - 1. Perhaps the
analytical model is failing at low Bz because 1/L is not small. In any event, additional
research seems desirable.

The range of magnetic fields accessible experimentally also is indicated in Fig. 16.
Amplifications from the third set of experiments were less than a factor of two,
consistent with theory and simulation.

12.0
L=6.60 em •a: 1=3.15 em

0 F/Y=0.83/em
~ -SIMULATIONSU
c 8.0 •IL -Z
0
~

c
U

4.0 EXPERIMENTAL -
IL RANGE.... ,. .
a.
~
c

.50 1.00 1.50

FIGURE 16 Amplification of transverse displacement of beam centroid for experimental series 3 as
determined by computer simulation (points) and analytical model (curve).
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VI. BEAM-ACCELERATION EFFECTS

Thus far, we have ignored the change in beam energy at each gap in a radial-pulseline
accelerator. Within the confines of the models presented in Section II, y enters only
through the phase advance koL between gaps. A systematically changing phase
advance can reduce image-displacement instability growth significantly. To examine
the influence of y variation, we have written the simple computer code BALTIC, which
integrates Eq. (1) along the accelerator for many beam segments. An impulsive force F~
of Eq. (5) is applied at gap locations, and y is changed there as well. Thus, the thin-lens
approximation is used, although lerr is sometimes used instead of I in defining F. This
approach is conservative in that the thin-lens model overestimates instability growth
except at rather weak guide-field strengths. BALTIC is also able to treat beam breakup
and m = 1 resistive-wall instabilities, either siQ.gly or in combination, but such studies
are beyond the scope of this paper.

Applying BALTIC to the RADLAC accelerator was gratifyingly uninteresting.
Consistent with experimental observations, instability growth was negligible. 25

Consequently, to illustrate the effect of acceleration on image-displacement growth, we
chose the parameters of Table IV for study with BALTIC. Ten cases are summarized in
Table V.

Case 1 represents the parameters with no acceleration. Overall amplification of
transverse oscillations from begining to end of the drift-tube is 7.5, superficially an
encouraging result. However, decreasing the guide-field strength by less than a percent
in case 2 causes the amplification factor to jump to 1600. Increasing the beam injection
energy by the same percentage yields a like result. We are observing here the effect of

TABLE IV

Parameters for Baltic Computations

Injection Current
Injection Enengy
Beam Radius
Beam Thickness
Drift Tube Radius
Gap Width
Gap Voltage
Gap Separation
Guide Field

50kA
2 MeV

2.0cm
0.2cm
2.5 cm
5.0cm
1.0 MV

l00cm
10 kG

Case

TABLE V

Calculated Image-displacement Instability Growth for Parameters of Table IV

lerr(cm) r

1
2
3
4
5
6
7
8
9

10

10.0
9.94
9.87
9.51
9.74

10.0
10.23
10.0
9.92

10.23

5.0
5.0
5.0
5.0
5.0
5.0
5.0
1.8
1.8
1.8

o
o
o
o
o
2.0
2.0
2.0
2.0
2.0

7.5
1600
340

2.4
2.2

470
48

4.5
7.3
1.6
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sweeping koL/2 in Fig. 3. Cases 3 to 5 confirm this interpretation. Since shot-to-shot
reproducibility of the guide-field strength and beam injection voltage in a real
accelerator is uncertain to several percent, the worst-case amplification of initial
transverse oscillations by a factor of 1600 or more would occur from time to time.

The effects of acceleration are illustrated by cases 6 and 7. Changing ko through 'Y
causes many values of \II to be sampled by each beam pulse, decreasing the maximum
and increasing the minimum possible image displacement instability growth. Addition­
ally, energy transfer between the growing and damped modes at each gap reduces net
growth overall. Still, the largest amplification factor of nearly 500 is quite large. Recall,
however, that I = lerr only in the thin-gap limit. A 5-cm wide gap in a 2.5-cm radius
drift-tube is not thin. Inserting the value lerr = 1.8 cm into BALTIC drops the peak
amplification to 7.3, as indicated in cases 8-10. (Without acceleration, amplification by
a factor of 20 or so could occur.) Such low amplification would be acceptable in an
operating device, provided good alignment was maintained throughout.

VII. CONCLUSIONS

We have investigated the image-displacement effect analytically, experimentally, and
computationally. This work was carried out in the context of radial pulseline
accelerators, for which the ratio of gap width to drift-tube radius is not small.
Analytically, we extended the usual long-wave length, paraxial-beam model in the
simplest possible way to take account of finite-extent gaps by assuming the force
exerted on the beam by the gap fields to be applied uniformly over the length of the gap
and by more accurately evaluating the average field strengths. The resulting decrease in
predicted growth per gap can be substantial.

Four- and eight-gap experiments at high axial magnetic field demonstrated that the
analytical formulas are qualitatively correct for both growth rates and precession
frequencies. The latter is a useful indicator of the image-displacement effect when
amplification is small. Simulations extended the experimental data to weaker guide
fields, where some departures from the analytical models became evident. Finally,
beam-energy change from gap to gap during acceleration was found to reduce overall
instability growth. On the basis of this work, it appears that RADLAC-class
accelerators will not be seriously impacted by the image-displacement instability.

The research described here deliberately separated the image-displacement insta­
bility from the beam-breakup instability, even though they are, in fact, merely different
limits of the same basic phenomenon and tend to occur together. This separation
probably is undesirable for more refined studies. We plan to investigate the two more
thoroughly in the near future, considering the gaps as lossy cavities appropriate to
radial-pulseline accelerators.
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