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The effect of the distribution of charge in a beam of particles on the space-charge v-shift is considered. At high
energy, the major contribution to the space-charge v-shift comes from the image fields created by the presence of
metallic and ferromagnetic boundaries. For beams small with respect to chamber and magnet dimensions, a point
source treatment of the beam is adequate. However, when the beam width is comparable to or greater than the
chamber height, the distribution of charge cannot be neglected. To study this effect, a rectangular geometry is
used. A conducting vacuum chamber, a parallel plate ferromagnetic surface and a coasting ribbon beam are
assumed. It is found that for a large beam size, a, relative to chamber height, # (or magnet gap, g), the image-
tune-shift has a 1/ah asymptotic behavior, and not 1/a?, which might appear to be reasonable from image source
arguments. The nonuniformity of the v-shift along the beam is also considered in detail. It is interesting that the
unexpected appearance of the transverse resistive wall instability in the CERN ISR, the ‘brickwall’ effect, has
been attributed to such a condition in the stacked beam. Finally, numerical computations are performed in order
to demonstrate the influence on the image-tune-shift of (1) the chamber sidewalls, and (2) the rate of fall-off of
the horizontal charge density distribution. It is found that the main effect of bringing the sidewalls near the beam
and/or softening the fall-off of the charge density distribution is an increase in the spread of v-shifts across the

horizontal width of the beam.

1. INTRODUCTION

In the original calculations! of the space-charge
v-shift, it was pointed out by Laslett that at high
energy the major contribution came from image
fields, which are due to the presence of metallic
and ferromagnetic boundaries. It was recognized
that the relevant parameters were chamber and
magnet dimensions. Accordingly the beam was
treated as a point source. Thus, it is found that
the vertical v-shift is inversely proportional to the
square of the vertical chamber height (or magnet
gap).

However, it is apparent that as the beam spreads
out horizontally, the space-charge shift of the beta-
tron frequency due to images must diminish. This
follows if one considers the limit of an infinitely
wide beam in a parallel plate geometry. We will see
that in this limit the image v-shift does indeed fall to
zero. For the metallic boundary image field, since
the electric field produced by the beam is normal,
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the boundary condition is automatically satisfied
and thus the image field vanishes.

We are therefore led to consider the effect of the
beam width on the vertical incoherent v-shift. There
are two distinct effects which are taken into
account. First, the beam width reduces the effective
current at the beam center. This is essentially true
all along the beam. The consequence is an overall
reduction of the v-shift. We find that, in fact, if the
beam width, q, is sufficiently large compared to the
vertical chamber height, 4, then the vertical v-shift
due to electric images becomes essentially propor-
tional to 1/a? rather than 1/A?, while the v-shift due
to the magnetic image field has a slower drop-off,
being proportional to 1/ag rather than 1/g? (g is the
magnet gap). Secondly, since the image fields vary
along the beam, the v-shift is not uniform. The
importance of such a nonuniform incoherent v-shift
in determining the transverse stability of a beam has
been recognized. In fact, the ‘brickwall effect’,
which is just the transverse resistive wall instability
in the ISR, has been attributed®3 to such a condi-
tion in the stacked beam.

We will consider a geometry suitable for narrow
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gap magnets, such as used in the ISR or in the
design of a ‘warm’, i.e., nonsuperconducting,
magnet for the ISA project.* Specifically, we will
use an idealized situation consisting of a coasting
ribbon beam in a rectangular boundary. A sketch is
shown in Figure 1. We assume a conducting
vacuum chamber. The ferromagnetic boundary
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FIGURE 1 Beam and chamber cross section. The para-
meters are defined in Section 2 of the text.

exists only in the vertical dimension. The horizontal
charge density is arbitrary, while vertically, the
beam has zero size (i.e., a ribbon beam).
Gluckstern® has looked into these effects, and has
estimated the v-shift across the beam. However, he
only computed the electric image forces and used a
point source. Zotter? included a source of nonzero
size, but he did not show the detailed v-variation
along the beam width. We will extend Zotter’s
analysis, giving the v-variation due to both electric
and magnetic image forces. We will show how the
beam width becomes a significant parameter in
determining the v-shift, how the closeness of the
horizontal chamber walls enters, and how the
horizontal density function plays a significant role.

2. THE IMAGE TUNE SHIFT
We assume a ribbon beam centered® vertically and

we will compute the vertical v-shift of a particle
oscillating in this beam. There is, of course, the

tacit assumption that the charge distribution is fixed.
This will give us the incoherent vertical space-
charge v-shift.

We will write an expression for the force on a
particle in the beam at position x, horizontally, and
y, vertically. The coordinates with respect to beam
and chamber are defined in Figure 1. We assume
that the beam has a uniform charge density
vertically and a normalized horizontal density
distribution depicted in Figure 2 and given by

Id d —
(2a+d)~" sin? B(‘%‘) } ,

a=x=(a+d)

a(x)=J(2a+d)_1, —a<x=a 2.D

(2a+d)™ ' sin? [g(a_+j+ x) :I ;

L —(atd)Sx< —a,

where x is measured with respect to the beam
center, a is the half-width of the constant part of the
density function, d is the total width of each flank,
and the normalization condition is

J o(x)dx = 1. 2.2)

To find the force on a particle due to the beam we
will use a Fourier decomposition of the fields. We
thus require the Fourier coefficients for the beam
distribution. Using a chamber width, 2W, as in
Figures 1 and 2, we write

1 <9}
o(x) = W Y (gscosnx+ gisinyx), (2.3)
s=1
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FIGURE 2 Normalized charge density distribution, o(x),
in a chamber of width, 2. The flanks have sin? behavior.
The height, &, is 1/(2a +d). The function is expressed analyti-
cally in (2.1) of the text.
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where
S

=—— 2.4

=3 24

g, = G,sin*yV, (2.5)

g: = GgsinnV cosnV, (2.6)

i 14 1nd
__sinn(a+3%d) cosiny @7

* on(a+id) 1-(nd/n)*’

and V is the position of the beam center in the
chamber. For a horizontally centered beam, V' = W,
and thus

gs, =0,
gs =0, seven, (2.8)
gs =G, sodd.

In this case, the force, F,, is given by’

& F, 1 I _.
——2=—"7% Gq—5e7" 1—tanhnh
ely 2bW S S{?ze *[(1~tanhnh)

inh
+ B*(cothng—1)] sinh nb } ST cos nx,

ny
(2.9)

where £ is the half-height of the chamber,
g is the half-gap of the magnet,
y is the energy in units of proton mass,
B is the particle velocity in units of ¢,
A is the linear charge density of the beam,

and b is the beam half-height (we will set b5 — 0

later).

The force is made up of two components, due to
self-fields and due to image fields. The image force
arises because of the presence of the metallic and
ferromagnetic boundaries; while the self-force is
induced by the beam itself and is independent of the
boundaries. The self-force can be extracted by
allowing the boundaries to move to infinity. The
limit W — oo changes the sum to an integral. Thus,
setting

(n/2)2/W) - dg, (n]2)(s/ W) - 4,

we have for the self-force, with A — o0, g — c0 and
W— oo

(2.10)

& F, 1 ® _p,Sinh gy
——2=——| dqG B .1
A 2nby2L qG(q)e L e (2.11)

The image force can then be found by subtracting

the self-force from the total force; that is,

Fim= F,—F3", (2.12)

For beams of small vertical extent the dominant
fields are the gradient ones. Thus, by evaluating the
forces near y = 0, we can write a vertical v-shift due
to space charge,!

Nr_R| ¢ F
Av=——2 | 222y =0
v o [dy y )],

where N is the total number of particles in the
beam (N is related to 4 by A = eN/2nR),
R is the average radius of the ring,
v is the vertical tune,
and r, is the classical proton radius (r, = 1.54
x 1078 m).
In particular, we can express the image contri-
butions to the v-shift as

Nr,R
vy

(2.13)

(AV)in= [%fl(a, ,0,1)
+%_f2(o¢’,5’,w’,t’):l. (2.14)

Here, ¢, and ¢, are the image coefficients defined in
Ref. 1 for infinite W—i.e., ¢, = n%/48, ¢, = n?[24.
f1 and f, are dimensionless form factors. For the
electric form factor, f;, we define dimensionless
variables with respect to the chamber half-height, .
We have therefore,
o=alh, 6 =dlh,o=hlW,t=xlh. (2.15)
In the magnétic form factor, the variables are
o' =alg, 8’ =dlg, 0" =g/W,t' =x[g. (2.16)

We have suppressed the dependence on the beam
height, b, since we will take the limit b — 0.
With (2.9) and (2.11) we can thus write

Nr_ Rmn
AV);= — W[ﬁ(a, J,w,1)
2 2h2
+ -Bngz(cx', &, t’)], 2.17)
where

24
fi==—w Y 1G,costt(l—tanht)+Af(x, 6, w,1),

T odds
(2.18)
12
fo=—0w") vG cost't'(cotht’ —1)
T odd s
- %Af(d’: 51, wly t/)’ (2-19)
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and

T=nh, v =1ng. (2.20)

The quantity Af is given by

Af (o, 0, 0,1) = lim 24{

e—0 e

1
Y Gycostte " —=
7

odd s
xj dpG(p)cospte"“}, (2.21)
0

where

. sin p(«+36) cosipd
G(p) = .
D= ar10) 1-ofmy

Although the form of Af given in (2.21) is well
defined, both the sum and integral converge very
slowly in the limit of small e. However in this limit,
we can obtain a much simpler expression.

Since G, and G(p) can be written as

(2.22)

a+d
G, = f dq o(q) cos 7q, (2.23)
—(a+9)
and
a+é
G(p) = f dgo(g)cospg,  (2.24)
—(a+8)

where a(q) is the same as the function defined in
(2.1) except that the lengths are in units normalized
to h, then (2.21) can be reduced to

Af(a’ 53 @, t)
6 ,[**° 1 n?cosmd
= —n—Z(D J‘_a_édq G(q)[zz— m N (225)

where
A =1w(g—1). (2.26)

This integral is easily performed numerically.

3. ANALYTICAL RESULTS IN THE CASE
OF NO SIDEWALLS

The case of no sidewalls, i.e., parallel plate geo-
metry, corresponds to the limit W — oco. In this
limit, the form factors, defined in (2.18) and (2.19)
become

4 on
fi(a,6,t) = %f qdq G(g, @, 0)[1—tanh g] costq,
0
(3.1)

12
fola, 6,1) = PJ qdq G(q, o, 6)[cothg—1]cos tq.
0
(3.2)

We have ignored the formal distinction between
primed and unprimed variables. Note that Af— 0
as W - .

These integrals can be evaluated analytically for
the case of a hard-edged beam. We therefore neglect
the finite drop-off range, letting 6 — 0. f; and £, can
then be written as

48 [(* . e~
f1(o, B =3, . dgsinagcostq Tro 3.3)
and

24 [*® . e 2
fz(a,t)=;t—i& . dq51nozqcostq1_e_2q. 3.4

These integrals can be done analytically, using the
expansions

1
1+e 24

(F1)re > (3.5)

=
ng

Interchanging the sum over n and the integration
over g, we can carry out both operations analyti-
cally. We thus obtain

X t)—24 1 T 1
150 ="31 2782 2o\ sinh dn(a+ 1)
TR (3.6)
sinhin(a—1)) | ’
o[ 1 = 1
fale ) ”7[*a2—z2+@<tanh%n(a+t)

1
+tanh Ln(a— t)>]' (3D

These functions are defined to have the values

£1(0,0) =/5(0,0) = 1. (3.8)

Furthermore their asymptotic behavior (¢ — c0) at
t = 0 can readily be obtained:

24
fi(a,0) = T (3.9
0 6 3.10
S, )-*a- (3.10)

Thus, for large a, f; and f, both tend to zero, but f,
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slower than f;. In fact, the image-tune-shifts due to
electric and magnetic boundaries will, for large
beam widths, a, go like

1
(Av)e; — prE (3.11)

(AV)mag = (3.12)

To study the v-variation across the beam, we
consider wide beams, o large, and let ¢ approach a.
Then near the positive edge (¢ near o), we can write

2 1
file 1) = noc[n(oc—t) smh%n(a—t)]’

3 1 2
DA E[l t anhin(e—1)  mo— t)]‘ (3.14)

Consider first £, : for ¢ near o and « sufficiently large,
(3.14) gives

(3.13)

fola, t) ~ —3— (3.15)
Tl

Also £, is monotonic as a function of ¢ in the region

near «. Thus, from (3.10) and (3.15) we have that

(Av);, (magnetic) decreases from the center to the

edge by the ratio

(Av);r, (magnetic,edge)  fo(o, o) ~ 1 (3.16)

(Av);,, (magnetic, center)  f,(«,0) 2

Note that the 1/a drop-off for f, is valid both at the
center and the edge of the beam. For f}, the situ-
ation is quite different. From (3.6) we can deduce
that at the beam edge,  — a, and for sufficiently
large a, the drop-off is like 1/a?:

6 -
fl(a,d)’!—z‘i (31/)
o
Comparing this with (3.9), we have
(Av);m (electric,edge)  fi(a, o) N 1 . (3.18)

(Av);,, (electric, center)  f,(a,0) 4

That is, the v-shift at the beam edge is only one-
fourth of its value at the center. But note that the
drop-off is still like 1/a*. However, from (3.13) we
can see that if o is large enough, f; will start to
increase as t approaches «, reach a peak and then
decline to its value at ¢ = a.

It is easy to show that the peak of (3.13) occurs at

tpzoc——%up ~o—1.6, (3.19)
7
and has the value
1 1 3
t )~ —[—— ~—, 3.2
Sl ty) = oL (u sinh u,,) 2na (3.20)

Thus, although the drop-off in f; is like 1/a? at the
center and edge of the beam, the behavior at 7,y is
slower, like 1/a. In other words, at the peak,

(Av)e — (3.21)

1
ah’

In general, if « is not too large, f;, as well as f5,
will be monotonically decreasing as ¢ varies from
zero (beam center) to o (beam edge). The ratios of
the electric and magnetic v-shifts at the edge to
those at the center can be written

filw,®) 1 (1—ma/sinh no)

fi(@,0) ~ 4(1—nra/2sinh 3na)’ (3.22)
and

fa(2,0) 1 (1—mnajtanh nor)

f2(0,0)  4(1—no/2 tanh 3na)” (3.23)

These expressions are obtained from (3.6) and (3.7),
respectively, and are consistent with the asymptotic
expressions (3.18) and (3.16). These functions are
plotted in Figure 3, where the f; ratio is compared
with the expressions given in Refs. 2 and 5, which
are

f (o, @)

o) e A= e @29
and

fl(a’ OC) [Ref 5] =1— %0(2. (325)

fl (0(, 0)

We have considered effects arising from a wide
beam with uniform charge density. The notion
behind such a configuration is an attempt to reduce
the vertical space-charge v-shift due to images by
spreading out the charge horizontally. This is most
efficiently accomplished by keeping the horizontal
density uniform. However, the uniformity of the
distribution, coupled naturally with the °‘rapid’
fall-off of the density at the beam edge, leads to a
peaking of the v-shift near the edge. This effect is
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FIGURE 3 y-shift ratios. The curves are contributions to
the ratio of the v-shift at the center of a beam to the v-shift at
the beam edge. A hard-edged beam is assumed and the
chamber width is taken to be infinite. The variable « is the
ratio of beam width to chamber height (or magnet gap). See
Section 3, Egs. (3.22), (3.23), (3.24), and (3.25).

intrinsic in the sense that it can be removed only by
making the effective beam width smaller. It should
be recognized that softening the edge of the
distribution, i.e., producing a slow fall-off is, in
essence, decreasing the effective beam width. That
is, for a given physical extent of the beam, a slower
drop-off of charge density means a larger density at
the center. We will consider these points further in
the next section.

4. NUMERICAL RESULTS FOR FINITE
SIDEWALLS AND SOFT DENSITY
DISTRIBUTION FALL-OFF

We have previously considered the case of a hard-
edged density distribution function (6 = 0) with the
chamber sidewalls at infinity (W — o0). These
conditions allowed us to obtain the form factors f;
and f, in closed form, i.e., (3.6) and (3.7). When W
is finite and § # 0, we must use numerical methods.
In our computations, we will use (2.18), (2.19), and
(2.25). No distinction will be made between primed
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FIGURE 4 Electric form factor (f;) as a function of
position along the beam (z). All parameters are taken with
respect to the chamber height, #. The chamber sidewall
position is given by w=0.2.
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FIGURE 5 Magnetic form factor (f2) as a function of
position along the beam (z). All parameters are taken with
respect to the gap height, g. The chamber sidewall position is
given by w=0.2.
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and unprimed variables. Some care must therefore
be exercised in translating the results to actual
v-shifts.

In Figure 4 we plot the electric form factor, f;, as
a function of horizontal position along the beam,
i.e., as a function of ¢, for half beam sizes of 4, 2,
and 1 times the half-chamber-height, and for a
chamber width five times the height (@ =0.2).
Equivalent plots for f, are shown in Figure 5.

Focusing on the 6 =0 curves, we notice the
decline in f'at the beam center (¢ = 0) as « increases.
This corresponds simply to the fact that spreading
out the charge, i.e., reducing the density, decreases
the v-shift at the beam center. The effect is ade-
quately described by (3.6) and (3.7) with ¢ = 0. For
large o, the asymptotic expressions (3.9) and (3.10)
can be used. In the « = 4 curve (Figure 4), we see
the peaking effect (a very mild one for this a) at
about 1.9 units from the beam edge. The theoretical
value is 1.6 units. The shift is due to the nearby
presence of the chamber wall.

Another effect of the chamber wall is to cause a
more rapid fall-off in f;. [There is no effect on f,
even with the wall this close. This is, in a sense, a
vindication of our simplifying assumption in
deriving the force, Eq. (2.9), that the normal
component of the magnetic field vanishes at the
sidewalls, which is, of course, approximately true
sufficiently far from the beam.] In fact, for the « = 4
case, f; becomes negative at the beam edge. Thus, if
the chamber walls are close to the edges of the beam,
the expressions (3.18) and (3.22) giving the ratio of
v-shift at the edge to that at the center are not valid.
The spread in v-shifts across the beam actually
becomes larger than the v-shift at the center. This
condition is more pronounced if one also considers
the peaking effect. For the other 6 =0 curves,
(3.22) and (3.23) apply and agree with the numerical
results.

In Figures 4 and 5, we can also see the influence
of softening the fall-off of the charge distribution.
We consider the extreme case of & = 0. As can be
seen, the three main effects are: (1) an increase in
the v-shift at the beam center; (2) a more rapid
fall-off, meaning an increase in the spread of v-shifts
across the beam; and (3) a disappearance in f; of
the peaking effect which is predominantly due to the
hard-edge of the 6 = 0 case.

To show the peaking effect more clearly, we plot

in Figure 6 the electric form factor, f;, for beam
sizes up to eight times the chamber height, taking a
chamber width ten times the chamber height
(w =0.1).
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FIGURE 6 Peaking effect in electric form factor (f;). The
chamber sidewall is at a position 10 times the height (w=0.1).

5. CONCLUSIONS

We have considered the effect of the distribution of
charge in a beam of particles on the space-charge
v-shift. At high energy, the major contribution to
the space-charge v-shift comes from the image fields
created by the presence of metallic and ferro-
magnetic boundaries. For beams small with respect
to chamber and magnet dimensions, a point source
treatment of the beam is adequate. However, when
the beam width is comparable to or greater than the
chamber height, the distribution of charge cannot
be neglected. To study this effect, we have used a
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rectangular geometry, assuming a conducting
vacuum chamber, a parallel plate ferromagnetic
surface and a ribbon beam.

Our conclusions are as follows:

1) The spreading of charge in a ribbon beam does
indeed substantially reduce the space-charge v-shift
due to images. We have shown, however, that for a
beam size, a, larger than the chamber height, 4, the
shift goes as 1/ah, and not 1/a*. That is, the
dependence on 4 persists.

2) For a wide, hard-edged beam, we have found
that the electric image contribution reduces the
tune shift at the beam edge to 25 per cent of its value
at the center. For the magnetic image contribution,
this reduction is 50 per cent. The two tune shift
ratios (center to edge) are not the same (see, in this
regard, Ref. 2). We have computed these ratios for
a hard-edged beam and compared the electric
contribution with the approximate expressions in
Refs. 2 and 5.

3) We have discussed the influence of nearby
chamber sidewalls and a slow drop-off of the charge
density distribution. We have found that the main
effect is an increase in the spread of v-shifts across
the width of the beam, even though a sufficiently

slow variation of the charge density distribution
removes the ‘peaking effect’ of the electric form
factor.
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