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Er rors  i n  the  machining and alignment of the focussing 

and defocussing 1/2-sectors i n  an a l t e r n a t i n g  gradient  synchro- 

t ron  w i l l  per turb  the motion of the accelera ted  p a r t i c l e s  and 

therefore place c e r t a i n  requirements on the s i z e  of the vacuum 

chamber. Sincej a l a rge  share of the  cos t  of these m chines 

depends on t h e  s i ze  of the  vacuum chamber, i t  i s  important t o  

determine the requirements placed on i t  by such e r r o r s o  ' h o  

common e r r o r s  of t h i s  tgpe a re  l i n e a r  t r ans l a t i ons  of the sec- 

t o r s  and t w i s t s  o r  r o t a t i o n s  of the aec to r s  6 The former 

type a re  ca l l ed  f-imperfections and it i s  t h i s  c l a s s  of imper- 

f ec t i ons  which fow  the subject  of the inves t igat ions  reported 

on here* 

The problem of f -imperfections i n  an a l t e r n a t i n g  gra- 

d ien t  machine with only l i n e a r  fo rces  present  has been inves- 

t i ga t ed  by Courant 
(2) 

'I9 and Liiders I n  these inves t igat ions  

it was assumed t h a t  the p a i r  csf equations governing the  beta- 

t ron  o s c i l l a t i o n s  were 
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where t h e  Q denotes d i f f e r e n t i a t i o n  w i t h  respect  t o  the  

akimuthal coordinate,  8 , and n i s  the f i e l d  g rad ien to  I f  

one includes the  non-linear cubic terms i n  these equations 

(3)  so  t h a t  they become 

then the d i f f i c u l t i e s  
encountered i n  t r e a t i n g  f-imperfections a r e  g r e a t l y  increased. 

Tb Unfversity of I l l i n o i s U i g h  Speed Automatic D i g i t a l  

Computei., I l l i a c ,  and ex i s t i ng  programs appeared t o  be a  na tu ra l  

t oo l  f o r  inves t igat ing this problem. Accordingly, t h e  neces- 

sary a l t e r a t i o n s  were made i n  these programs and a stuay of 

the  e f f e c t  of f-imperfections i n  the presence of cubic forces  

was commenced. 

A t  the time these inves t iga t ions  were begun two computer 

programs were ava i lab le ,  one involved d i r e c t  so lut ion of the  

d i f f e r e n t i a l  equations ( 2 )  by the Runge-Kutta m t h o d  and the  

other  i t e r a t e d  the transformations developed by J. Powell and 

R.   right'^). Since the l a t t e r  program was considerably f a s t e r*  

and therefore  more economical i t  was used i n  the  i n i t i a l  s tudies .  

*With t h e  program using the transformations the computing time 
i s  about 3 seconds f o r  50 transformations (i .e. ,  one c i r c u i t  
around a SO sector  machine) and w i t h  the  d i f f e r e n t i a l  equa- 
t i o n  t h i s  time becomes 100 seconds, 



The Powell transformations are 

where a,b,c, are constants satisfying the condition a' - bc = 1 
and k is an arbitrary constant; a,b, and c are chosen 

to give the desired motion at small displacements and k is 
" I 

chosen by making a compromise between approximation to the form 

of the "invaricnt curvesn of the correct solution and approxi- 

mation to the betatron wavelength in the non-linear region. 

To simulate the f-imperfections these equations were altered 

as follows: 
- T(x -Axi) - a(x-&xi) + bxg + kb l + x -  x i  t bxl] . 

(4) 
TX' = CLX -A xi) + axq + ~r(l + a) + a  x i  + x 3 

where i = 1 , N )  and A x is the magnitude of the i 
th 

f 
sector displacement. 

It was recognfzed at the outset that the simulation of 

f-imperfections by this wans was unrealistic. Since the trms- 

formation determines the coordinates of the particle at the 

center of the f 6 1st focussing sector in terms of the coor- 

dinates of the particle at the center of the ith focussing 

sector, Eqs. (4) describe the f-imperfections a s  if the 



"joints" occured only at the center of the focussing sectors, 

as illustrated in Fig. 1, rather than at every 1/2-sector as 

shown in Fig. 2. _ i m  I - + 1 14- 

I + l 

Fig. lflllustratfon of f-imperfections as simulated by use 

of Powell f s transformation 
m 

Fig. 2: Illustration of the usual picture of f-imperfections. 

In spite of this difficulty it was felt that this procedure 

would be a useful starting point for the investigations and 

later, when transformations through focussing 1/2-sectors and 

defocussing 1/2-sectors beceme available they could replace 

Eqs. (4). 
The machines investigated were assumed to have 50 sectors, 

each sector containing a focussing P/i-sector and defocussing 

l/2--sector. The constants used in the transformations for the 
- 

investigations reported here correspond to n = 253.303, e - 
/ 

15,831.4 and 0- = 11/5,370; this value for q a$plies to 

the neighborhood of the origin of the phase plane. It follows 

from the scaling rules given by Po~ell'~) and the symmetry 

requirements imposed by 50 rsndomly displaced sectors that the 



f i e l d  gradient ,  n, cannot be a l t e r e d  by scal ing but the coef f i -  

c i e n t  of the cubic term, e ,  can be scaled according t o  the  

following rule: I f  x and y a r e  the var iab les  i n  the unscaled 

system and X and Y a r e  the  var iab les  i n  the scaled system, 

where 

s = scal ing constant 

then the  scal ing of e i s  given by the r e l a t f o n  

2 E = s e .  

The 50 random displacements f o r  a p a r t i c u l a r  machine were 

chosen from a Gaussian population. The abscissa  of the Gaus- 

s ian  p lo t  was quantized t o  allow f o r  eighteen possible d is -  

placembnts, ranging from (&)0.15 - t o  ( i )2 .55  i n  s teps  of  U , p :  

the displacements a r e  given i n  u n i t s  of tb standard deviation. 

Colored chips were then made so t h a t  the number of chips of 

a given color  was proport ional  t o  the p robab i l i t y  of occurrence 

of a displacement of the corresponding magnitude. The chips  

were then placed i n  a box and drawn out a t  random, replacing 

each one o f t e r  i t  was withdrawn, t o  obta in  a s e t  of f i f t y  
t 

displacements. The sign of each displacement was determined 

by the  f l i p  of a coin. (Since t h i s  por t ion  of the computation 

needs t o  be done only a small number of times, it was f e l t  t h a t  

i t  would be qufcker t o  do it  t h i s  way than t o  program t h e  I l l i a c  

t o  do it.) The resu l t ing  l i s t  of 50 displacements was then uead 



by the I l l i a c  i n  the  i t e r a t i o n  of Eqs. (4) ,  Ten auch l i s t s  

were made. With each s e t  of 50 displacements the t ransforna-  

t i on  program was run severa l  times a t  d i f f e r e n t  i n i t i a l  values 

of x, with the  i n i t i a l  value of x Q  always zero. The value of 

x and X P  a f t e r  every 50 transformations was recorded by the 

I l l i a c .  I n  addft ion,  the maximum value of x obtained during 

each s e t  of 50 transformations was a l so  recorded; note t h a t  

t h i s  app l ies  only t o  the values of x obtained a t  the center  

of the  focussing l/2-sectors since t h i s  transformation i s  

not  o a p ~ b l e  of giving ths value of x a t  any o ther  point  i n  the 

sector .  With each s e t  of i n i t i a l  va lues  a t o t a l  of 3,000 

transformationswus made. These computations give a family 

of apparently closed curves i n  the  phase plans.  I n  the 

neighborhood of the o r ig in ,  where the e f f e c t  of cubic terms Is 

small, these curves a re  e l l i p s e s .  Proceeding away from the  

o r ig in  the  e l l i p s e s  become d i s to r t ed  and f i n a l l y  a t  su f f ic ien txy  

lgrge d is tances  the bo in t s  begin t o  s c a t t e r  and do no t  appear 

t o  be on a smooth curve." The coordinates of the equil ibrium 

o r b i t  a t  the observed azimuth of the perturbed machine a re  

the coordfnates of the center  of the family of "closedn curves; 

they w i l l  be denoted by x(eq, orb.) and xg(eq, orb*)for  x- 

motion and y (qqo orb-) and yP (eg orb.) f o r  y-motion; these 

q u a n t i t i e s  a r e  tabulated i n  Tables 1, 2 and 3 on t h e  following 

pages 

" It has of t en  been suggested t h a t  s c a t t e r i n g  of the points, 
might ind ica te  i n s t a b i l i t y .  However, N. Vogt-Nilsen has  
found i n  some cases  t h a t  on ca re fu l  examination "scatteped" 
po in t s  do show r e g u l a r i t i e s ,  ind ica t ing  s t a b i l i t y .  



Computations were made f o r  standard devia t ions  of the  

displacement e r r o r s  of lo'(', 10-3, 3 x 10-3 and 5 x 10'3; 

these f i gu re s  are  given i n  u n i t s  of the nmchine radius.  I f  f t  

i s  debired t o  sca le  the coe f f i c i en t ,  e ,  of the  cubic terms, then 

these numbers must be scaled according t o  the r u l e s  s t a t e d  e a r l i e r .  

6 The two smaller values f o r  the standard devia t ion 10's and 10" , 
are  i n  the range of r e a l i s t i c  Values, thought t o  be achievable d t h  

ca re fu l  engineering. The three  l a rge  values must be scaled t o  bring 

them i n  the range of expected standard deviat ions.  

In  Table 1 are  presented the coordinates of the  equilibrium 

o r b i t  i n  u n i t s  of the standard deviat ion,  , of the  s e q t o ~  d i s -  

placements f o r  ten d i f f e r e n t  s e t s  of f i f t y  sec to r  displacements; 

a l l  s e t s  had the  same standard deviat ion,  equal t o  lom6,  

Table 1 d o o r d i n a t e s  of tho Equilibrium O r  it  f o r  10 S e t s  of 
Sector Displacements d t h  6 = n = 2530303, e = 
159831.4. 



The coordinates of the epuil ibrium o r b i t  turned out  t o  be 

so nearly zero t h a t  they are  of the same order of magnitude as  

the  round-off e r r o r  f o r  the computatfon. For t h i s  reason it 

i s  possible i n  some fnstances only t o  ind ica te  t ha t  the  coordi- 

na tes  a re  l e s s  than (< some number, otherwise the  f i gu re s  

i n  t h i s  t ab le  and i n  Tables 2 and 3 should be cor rec t  t o  about 

20%. 

In  Table 2 a re  presented the  r e s u l t s  of another s e t  of 

computatfons of the  equilibrium o rb f t  eoordfnates f o r  t e n  s e t s  

of displacements. These computations d i f f e r  from those making 

up Table 1 only i n  the f a c t  t h a t  here = lomS* 

I n  Table 3 a re  presented the coordinates of the  equilibrium 

o r b i t  obtained frcm three  s e t s  of sector  displacements, each a l t h  a 

d i f f e r en t  standard deviat ion,  (much g rea t e r  than the ones used 

Table 2 : Coordinates of the  Equi l ib  turn Orbit  f o r  10 S e t s  of Sectqr  
Displacements w i t h  E = 10P5E n : 253.303, e = 15,831.4. 

i n  Tables P and 2)- 

x v  (eq. o r b i  y[eq., orbed y Q  (eq. orb) 
Tdent i f ica t fon 
number of s e t  of 
50 displacements 6? I E 1 € + 

x (eqo orb.) 



Table 3: Coordinates of the Equilibrium Orbit  f o r  3 Se t s  of 
Sector Displa ements with Di f fe ren t  € and n -" 227, 9 e = llc.2 x 10 . 

For the runs made a t  standard devia t ions  of and 

the character  of the phase p l o t s  shored no q u a l i t a t i d e  

d i f ferences  f o r  d i f f e r e n t  s e t s  of displacements f o r  i n i t i a l  
1 

values of x i n  the  range -.I2 t o  - .12 with i n i t i a l  xn  -" 0 

and f o r  values of y i n  the r m g e  -,I6 t o  m.16 with i n t i a l  y8=0 

Wen the phase po in t s  were p lo t t ed  t o  an accuracy of 

5 x 10-4 ( i n  u n i t s  of the machfne r ad ius )  the po in t s  obtained 

from runs w i t h  d i f f e r e n t  s e t s  of  bumps w i t h  the same and 

the same s t a r t i n g  values f o r  x and xP, a l l  appeared t o  l i e  

on the  same smooth curve. The onset of s ca t t e r i ng  of the 

po in t s  occured a t  about the same point  a s  found by Powell i n  

runs made wi th  no dfsplacement e r r o r s ,  I n  the neighborhood 



of the  equilibrium o r b i t  the mount  of cubic force  was negl i -  

g ib ly  small, so i n  this  region only l i n e a r  e f f e c t s  were observed. 

The maximum value of the  pos i t i on  coordinate,  which was deter-  

mined f o r  each s e t  of SO transformations was always very 

near ly  equal i n  magnitude to the i n i t i a l  pos i t i on  coordinate 

f o r  the  computation ( i n i t i a l l y *  x '  = 0, always); t h i s  was 

tu re  f o r  a l l  the cornpatations discugsed i n  t h i s  repor t ,  

For the runs made a t  = 0.001, 0.003, and 0.005, the 

phase p l o t s  were qu i te  not iceably  af fec ted .  Sca t te r ing  of the 

po in t s  on the  phase p l o t  occured i n  regions much c lose r  t o  the 

o r ig in  than i n  the former runs with smaller displacements. Occa- 

s iona l ly  the  presence of small nis lands",  where the  po in t s  appeared 

t o  f a l l  on a smooth, closed curve, could be detec ted* Theseislands 

l i e  outside the  main family of closed curves, whose center  defines 

the e q u i l i b r i ~  o r b i t ,  andappesr t o  la surrounded by a region i n  

which the po in t s  s c a t t e r ;  the #geometry i s  indicated  i n  Fig. 3 .  

The dimensions of the region occupied by the main family 

Y 
of closed curves i s  of obvious i n t e r e s t .  Let  u s  c a l l  the  

extent  of t h i s  region i n  the  x-dimension A x  s tab ,  and i t s  

extent  i n  the xf-dimension Ax!  stab., and s imi la r ly  f o r  the 

y-motion, A y  stab.,dyOstab, It i s  t o  be noted t ha t  t h i s  

measurement i s  somewhat subject ive since s c a t t e r i n g  of the  

po in t s  on the phase p l o t  i s  not  a  c l e a r l y  defined thing. 

*We sometimes r e f e r  t o  t h i s  a s  the  s t a b l e  region. 



\ Fig. 3: A drawing t o  i l l u s t r a t e  the appearance of is lands.  
Scat ter ing of the po in t s  appears i n  the region 
indfcated by cyoss-hatching. 

I n  Table 4 i s  l i s t e d  our est imate of A x s tab ,  A X I  stab,  

A y s tab  and A yg s t a b  f o r  the  d i f f e r e n t  E . These 

est imates have been made from the phase p l o t s  f o r  the corn- 

puta t ions  vdth d i f f e r e n t  It 5s  c l e a r  from t h i s  t ab l e  

t h a t  the dimensions of the  "s table  region f o r  the l a s t  three  

Table 4 : Dimensions of the  region i n  phase space occupied 
by the main family of closed zurves, with n = 253,303, 
e = 15,831.4. 



s e t s  of displacements a r e  considerably reduced. An in t e r e s t i ng  

r e s u l t  i s  obtained by a computation of t h e  r a t i o  of the cubic 

force  t o  the l i n e a ~  force,  e"2 a t  the  boundary of the s t ab l e  
- 6 

9 

region; f o r  =0, 10 t h i s  r a t i o  is about 0.3 f o r  x- 

motion and about 0.55 f o r  y-motion; f o r  f: " 3 x 10-3 and 

5 x 10-3 it i s  0.08, 0.03, and O,OP, respect ively ,  f o r  k- motion, 

and 0.21, 0.02, and 0.02, respect ively ,  f o r  y-motion. Thus 

f o r  the l a rge  bumps sca t t e r i ng  appears when the amount of 

cubic i s  qu i te  small. It should be noted here t h a t  sca l ing 
2 

does not e f f e c t  the r a t i o  2 so the r e s u l t  holds when the 
3n 

displacements a re  scaled down and e i s  correspondingly scaled 

up. This r e s u l t  was unexpected and a t  the  present time i s  

not  c l e a r l y  understood. 

Finnally,  some remarks should be made concerhing the  

apparently small displacements of the  equil ibrium o r b i t s  pre- 

sented i n  Tables 1, 2 and 3. Since we a re  deal ing with a 

nearly l l n e a r  system i n  the  neighborhood of the equilibrium 

o r b i t  we can compare these r e s u l t s  d t h  the t heo re t i ca l  r e s u l t s  

using the  l i n e a r  theory. Courant's equation gives a value f o r  

x eq orb./& of the order of 100 f o r  the parameters w e  have 

used i n  the computation. LvdersP more accurate equation y i e ld s  

a value of approximately 25. Both of these f i g u r e s  a re  consid- 

erably  g rea t e r  than the ones we compute. 

The source of t h i s  d i f f i c u l t y  i s  c l ea r .  I n  the  work 

of Courant and ~ G d e r s  the physical  p ic tu re  of the imperfec- 



t i o w  i s  l i k e  t h a t  shown i n  Fig.2 while we have r e a l l y  considered 

the s i t u a t i o n  shown i n  Fig. 1. If one t r i e s  t o  cor rec t  f o r  - 
t h i s  d i f ference  by dividing the r e s u l t s  of Lbders by 2, 

( s ince  we r e a l l y  consider 1/2 a s  many "bumps") the disagreement 

pe r s i s t s .  Now i n  Fig. 1 it i s  noted t ha t  successive foeudsing 

and defocussing 1/2-sectors are ,  i n  e f f e c t ,  " t i ed  together",.. 

the displacement e r r o r  between them being zero. It does not  

seem unreasonable t o  suspect t ha t  t h i s  s i t u a t i o n  can r e s u l t  

fn a smoothing of the p r t u r b a t i o n s  caused by the  bumps a t  

the center  of each focussing sector .  T h i s  suspicion was con- 

firmed when Ohe fallowing problem was invest igated.  Assume 

a purely l i n e a r  machine and la t  successive p a i r s  of focussing 

and defocussing 1/2 sec to rs  be t i e d  together ,  a s  shown i n  Fig. 4. 

Fig. 4 : I l l u s t r a t i o n  of the spec ia l  case of f-imperfections 

t r ea t ed  i n  Appenaix 1. 

The assumption of l i n e a r i t y  permits a r e l a t i v e l y  simple 

t heo re t i ca l  ca lcu la t ion  of the  displacement of the  equil ibrium 

orb i t .  This ca lcu la t ion  Is made i n  Appendix I* I n  Appendix 

2 we cons idern the  physical  s i t u a t i o n  i l l u s t r a t e d  by Fig. 2 i n  

a l i n e a r  rnadhiie and compute I& displacement of the  equilibrium 

orb i t .  The r e s u l t s  of these two computations f o r  a 50 sec tor  



machine with n+  " - n-, and equal length  focussing and defocussing 

PB-sectors ,  a re  presented i n  Table 5 .  

Table 5 s RMS displacement of the equilfbrium o r b i t  
a t  the center  of a focu'ssing 112 sector  In 
a 50 sector  l i n e a r  machine dhen 9,- 1/2- 
sec to rs  a re  " t i ed  together" (cold) and 
when they a re  not (cox 2). 

It i s  c l ea r  from t h i s  t ab l e  th& the RMS displacement 

of the equilibrfum m b i t  i s  considerably smaller f o r  the s i t -  

uat ion displayed i n  Fig.  3 than f o r  t h a t  displayed i n  Fig, 2 

when 0- i s  i n  the range TT/3 t o  TT/20. This r e s u l t  supports 

the  e a r l i e r  conjecture t ha t  the  small values obtained from the 

I l l i a c  computation were due t o  successive focussing, defocussing 

1/2-sectors having zero displacement with respect  t o  each other.  



t i ons  i s  l i k e  t h a t  shown i n  Fig.2 while we have r e a l l y  considered 

the s i t u a t i o n  shown i n  Fig. 1. I f  one t r i e s  t o  cor rec t  f o r  - 
t h i s  difference by dividing the r e s u l t s  of Lbders by 4 2$ 

( s ince  we r e a l l y  consider 1/2 a$ many "bumps") the disagreement 

p e r s i s t s .  Now i n  Fig. 1 it i s  noted t ha t  successive focuis ing 

and defocussing 1/2-sectors are ,  i n  e f f e c t ,  " t i ed  together"... 

the  displacement e r r o r  between them being zero. It does not  

seem unreasonable t o  suspect t ha t  t h i s  s i t u a t i o n  can r e s u l t  

f n  a smoothing of the p r tu rba t ions  caused by the  bumps a t  

the center  of each focussing sector .  This sudpjcion was con- 

firmed when Dhe fallowing problem was invest igated,  Assume 

a purely l i n e a r  machine and l e t  successive p s i r s  of focussing 

and defocussing 1/2 sec to rs  be t i e d  together ,  a s  shown i n  Fig. 4. 

Fig. 4 2 Illustration of the spec ia l  case of f-imperfections 

t r ea t ed  i n  Appendix 1. 

The assumption of l i n e a r i t y  permits a r e l a t i v e l y  simple 

t heo re t i ca l  ca lcu la t ion  of the  displacement of the equil ibrium 

o rb i t .  T h i s  oa lcu la t ion  i s  made i n  Appentlix l b  I n  Appendix 

2 we consider . the  physical  s i t u a t i o n  i l l u s t r a t e d  by Fig,  2 i n  

a l i n e a r  machiik and compute Pk$ dlspladement of the  equil ibrium 

o rb i t .  The r e s u l t s  of these two computations f o r  a 50 sector  



machine with n+  = - n,, and equal length  focussing and defocussing 

l k - s e c t o r s ,  a re  presented In  Table 5. 

Table 5 : RMS displacement of the  equil ibrium o r b i t  
a t  the center  of a focu'ssing 1/2 sector  i n  
a 50 sector  l i n e a r  machine *hen 9,- 1/2- 
sec tors  a re  " t i ed  togetherw (cold) and 
when they a re  not ( co l  2 ) .  

It 1 s  c l ea r  from t h i s  t ab l e  t h &  the  RMS displacement 

of the equilibrium m b i t  i s  considerably smaller f o r  the s i t -  

uat ion displayed i n  Fig. 3 than f o r  t h a t  displayed i n  Fig. 2 

when 6 i s  i n  the range TT/3 t o  TT/20. This r e s u l t  supports 

the  e a r l i e r  conjecture t ha t  the  small values obtained from the 

I l l i a c  computation were due t o  successive focussing, defocussing 

1/2-sectors having zero displacement with respect  t o  each other.  



The RMS displacement of the equildb~ium orbit at 6 = v/6 

accoTding to the computation of Appendix 1, is 5.8. 

This result is in agreement with those found from the Illiac 

computation. It is not surprising that such agreement is 

found since for the constants we have used the linear part of 

the Powell transformation (~q. 4) corrsponds to a C a v/5,370. 

This agreement of the results also indicates that the pertur- 

bations on the equilibrium orbit resulting from the imperfections 

illustrated in Fig. 4 do not differ significantly from those 
caused by the imperfections illustrated in Fig. 1. 

Finally it should be remarked that one Illiac computa- 

tion was made in which the Runge-Kutta method of solution of 

the differential equation was used rather than the Powell 

transformations. !he imperfections were identical to those 

used with the Powell transformation equations (Fig. 1). The 

results of this computation were in good agreement with those 

obtained from the use of the transformations. 

These results suggest an interesting idea. If, in the 

construction of an AG machine, it would be possible to construct 

each unit of the machine as a focussdngdefocussing pair in 

such a way that the alignment error of the focussing 1/2-sector 

relative to the defocussing 1/2-sector within a unit was very 

small, then errors resulting from misalignment of the units 

themselves would cause much smaller perturbations of the equf- 

liblrium orbit than if the 1/2-sectors themselves were the units 

and laid down with the same misalignment errors. (We here ignore 

the obvious improvement of a factor of fi). 



Appendfx B 

I n  the  following an equation. f o r  the  RMS displacement 

of the  equilfbrium o rb f t  a t  the c e n t e ~  of a focussing s e c t o r  

i n  a conventional a l t e rna t ing  - gradient  synchrotron w i t h  l i n e a r  

fo rces  and f-type imperfections l i k e  those shorn i n  Fig,  4 
of t h e  t e t t  i s  derived. 

Iq a per fec t  machine the  beta t ron o s c i l l a t i o n s  a r e  

described i n  phase space by the following matr ix equation: 

where 8 fk the azimuth of the  p a r t f c l e  i n  the machine and 

Y( 8 ) i s  the two component vectop degeribing the r a d i a l  or  

o m t i c a l  posf t ion  coordinate and i t s  def ivat ive ,  y v  = dy/dd a 

The coordinate y (@ ) def ines  the pos i t i on  r e l a t i v e  t o  the 

equilibrium o rb i t .  We a s s m e  t h a t  n, the  f i e l d  gradient ,  f e  

a constant  i n  focussillg 1/2-sectors and defocussing 1/2- 

sec tors .  The matrix M i n  Eq. (1) i s  then defined by the 
(4 

following equations: 

For n = n l >  0 

c o s x  nl-V2 s i n  

coe 

where y= n:" AQ, . 



For n = -n2(0 

M~$+A$ 19 1 = ( cosh %. s inh y2 ) 
2 

It i s  nm a ~ d . ~ ~ ~ - ~  -ation, corresponding 

t o  Eq. (11, f o r  the-impwderkarachine f s  

where the pos l t ion  coordinate y (9) is  s t i l l  measured r e l a t i v e  

t o  the equilibrium o r b i t  i n  the pe r f ec t  machine, la( J+A$ 18 1 

i s  a  transformation through a por t ion  of the  w c h i n e  i n  which 

the magnet alignment e r r o r  i s  constant ,  and El i s  a  random 

vector  describing the  constant alignment e r r o r  of the  f th  por- 

t i o n  of the machine. The random vector E i s wr i t t en  
f 

I 
Thus ei  descr ibes  the pos i t ion  e r r o r  ( a  t r ans l a t fon )  of 

the ith port ion of the  machine, and i s  defined t o  have 

the f ollowfng s t a t i s  t i c a l  property: 

(79 

where the bar  denotes an average over an ensemble of machines 

w i t h  misalignments. 



To t r e a t  the s i t u a t i o n  i l l u s t r a t e d  i n  Fig. 4 of the  

t e x t  we l e t  each period of the machine have a misalignment 

given by Ei a d  M = M ( '# 1 la 9 be the transformation through 
i+l i 

one period of the  machine, from the %ginning of one focussing 

sector  t o  t h e  beginning of  the  focussing sector .  Equation 

( 5 )  now takes the  form 

Y i + ~  - E% P M ( yi - E ~ )  , ( 8  1 

o r  

yi+l = M Y i +  (1 - M I  Ei • (9 ) 

Let there  be N periods i n  the machine. It follows from Eq. 

( 9 )  t h a t  (101 

Y = MN Y1 4 M 
N-P N-2 

1 + N  (l-M)E1 % M ( ~ - M P E ~ c o , . Q ( ~ ~ M ) E  N ., 

Now assume t h a t  the system is g o t  on a resonance and require  

t ha t  Y - 
l . pN  

- Y1 then 

gives the  conrdRates  of t h e  equilrcbrium mbtt a t  the  s t a r t  

of a focussing sector  i n  t h e  maehgne f in  p m t i c u l a r ,  the  

f i r s t  focussing s ec to r ) .  

Let yl and y2 be the eigenveators of M with correspon- 

ding eigenvalues r A, and 2e  Expanding Ei along aAd )O 
2 

we have 



Substitution of Eq, (12) into ~q.611) yields 

The displacement of the equilibrium orbit at the center 

of the 18t f o ~ u s ~ l n ~  sector i s  given by 

.OS ?l\t 
-1/2 .18,+ 2 "1 

'I2 sin Y ; / ~  '"1 

where ' 112 

nl, -r - 0 

NOW the e tpmmctura*  Yl qnd P2 ere given by 



and the eigenvalues are 

From Eq. (12) 

It Pollan a from the abo& that the mean-square 

displacement U the equilibrium orbit, &L. 
2N 

N 2 
y 2 t $ l * ~ ~  = 2  11-'1l2 1 ~ ~ 1  1; ai,A ;11 Icosly/l/2 3 

2N I 1  ")I!(2 9=1 

-'I2 sin )fl 4 (1 - cos y1,2~2 E 2 + O(nl 
1/2 
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and the RMS displacement i s  given by 

The l a s t  two terms on the r i g h t  a r e  small compared t o  the 

f i r s t  t m  and i f  we neglec+ them, i t  i s  found a f t e r  a l i t t l e  

manipulatioh t h a t  

t&2N(:-cosc) B m E 2  t a n e l 2  co t  N r / 2  B 
1 2 N  -cosl?b 

2 (221 + E t a n  0 / 2  cob N T/2 cos2Y1/29  

where 

and the M ' s  a re  the  elements of the hlatrix M - .I - M(491+A(1* 
Eq. (8Ie- The f i g a r e s  i n  t h e  f irst  column of Table 5 of the 

t e x t  were computed from Eq. (229, 



Appendix 2 MURA-LDF/I 

Now consider a machine i n  which each 112-sector may 

be displaced an amount i = 1 2 2 The equation 
i 

describing the transformation of the phase vector  i n  going 

through ane perfod of the machine, from the s t a r t  of one focus- 

sing sectipr t o  the g t a r t  of t h e  next focussing sector ,  i s  

where M i s  defined a s  before,  M i s  t h e  matr ix f o r  the  t rans-  
D 

formation-through a defocnssing l/2-sector,  Mf i s  the matr ix 

f o r  the Q-ansfomnation through a focnss$ng 112-sector and Ei 

i s  the e r r o r  oeq to r  w f t h  components f i  and 0 a s  before. 

Define 

El = %(l=-Mf)Ei 9 ( l - ~ ) E i + l ,  (2.5) 

then Eo.  (24) becomes 

and it i s  e a s i l y  seen tHat 

Following the same l i n e  a s  before i t  i s  assumed t h a t  the system 

i s  not  on a resonance and i t  i s  required t h a t  Y l42N = Y then 



gives the coordinates of the equdlibrium orbit at the start 

of a focussing sector In the machine. 

Expand E Q 
21-1 

along the eigenrisctara of I. @ and t2i 
1 

Equation ( 2 8 )  can now be written 

and the sqaat-fon-fur the displacement of the equilibrium orbit 

at the oenter of the 1st focussing sector is given by 



where the matr ix  Y [ #  +IL 14 i s  defined by Eqs. (15) and 
1 2N 

(16)  of Appendix 1. 

The. computation of t h e  constants  i n  the  Eq. (29) i s  

a l i t t l e  wore tedious here. One f i n d s  

- 1 -  
where (M ) i s  t he  i,J element of t h e  matr ix 

I) 1 9  
M ~ '  M i J  is the 

i, j element of  the matr ix  M end 0( and ,& a re  given by Eq. 

Takfng th* y component of Eq. (311, squaring, and averaging 

y i e l d s  - 
2dJ+x = 1 co.$anj1hs1n'Yl/2/Z\2 

' ( 1 2 N  2s ln  ~5 

l-o.r.C1/1 
t - A  -I' icos y fln-'//tin x/2$ 

s i n  NS 1/2 1 
2 

an,d the RMS displacement i s  given by 



The f i r s t  two terms on the right of t h i s  equation are the 

dominating terms, and s o  long as s i n b ~ / s i n c r  can be 

regarded a s  m a l l  compared t o  N only the P i r s t  term i s  impor- 

tant,  The f lgvres  i n  column 2 of Table 5 of the text  were 

computed from Ego (331 using only the f i r s t  term on the r ight ,  
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