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I. INTRODUCTION 

The study of stability of particle trajectories in A.G. 

Synchrotrons may be aery much simplified if one has phase 

plane transformations available. These transformations are 

in general approximate solutions to the betatron oscillation 

equations, relating the final. displacements and velocities 

to their values at a similar point in a previous sector. 

The transformations are used on high speed computers and 

iterated, typically, many hundreds of times. This places 

certain restrictions on the approximate nature of the trans- 

formations. In particular, if one desires the phase plane 

plots to remain stable then the transformations must be 

area preserving. Also, to have the transformations prove 

more convenient than the integration of the differential 

equation, they must be elther of algebraic, or of simple 

functional form. 

The requirement of exact area preservation precludes 

the possiblity of using most simple perturbation theories to -------- 
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generate transformations . Powell and Wright (MURA-R. W./J.L,P. 

-5 ) investigated the most general transformation of simple 
algebraic form, which was exactly area preserving. The arbi- 

trary constants in this transformation were obtained by compar- 

ison with the numerical solution to the differential equation. 

This only proved feasible for sipple equations,and their work 

was restricted to a few cases only. As pointed out in (MURA 

-A.M.S. -2, called I hereafter) the work of Birkhoff may be 

used to somewhat simplify this procedure . However, it still 

remained true that the arbitrary constants must be determined 

by comparison with solutions to the differential equation. 

In this report a method is described which allows one 

to obtain approximate transformations, in the neighborhood 

of an equilibrium orbit, directly from the differential 

equation. These transformations are exactly area preserving, 

and may be obtained analytically from the differential equation. 

The method is based on the work of Birkhoff (Vol. I1 of Collec- 

ted Mathematical Papers, Am. Math Soc., 19501, as reformulated 

by Jauch ( M U  - J.M.J. -1) , and outlined in detail in I. 
The method p8oceeds by first obtaining an approximate 

solution to the differential equation by means of pertur- 

bation theory. This solution is an expansion of the exact 

solution in powers of the amplitude of the oscillation. It 

is terminated after a few terms, and consequently describes 

the solution arbitrarily accurately for small enough amplitude. 



It i s  not, however, exac t ly  a r ea  preserving. It i s  then 

shown t h a t  such a transformation may be approximately t rans-  

formed i n t o  Birkhoff 's  normal form, the  p rocedue  being such 

t h a t  one can continue t h i s  process thus obtaining a t ransfor-  

mation which formally approximates t h e  exact  transformation 

t o  a r b i t r a r i l y  high accuracy, f o r  s u f f i c i e n t l y  small ampli- 

tude of osc i l l a t ion .  As  described i n  I a transformation i n  

Birkhoff var iables  i s  exac t ly  a rea  preserving, if terminated 

a f t e r  any degree of approximation. The r e su l t i ng  t rans for -  

mation i s  simple i n  form, and convenient f o r  computer calcu- 

l a t i on .  

I n  Sect ion I1 we descr ibe  t h e  method by applying it 

t o  t h e  case of the  one dimensional non-linear C.L.S. machine. 

We include formulas which make i t  r e l a t i v e l y  easy t o  construct  

transformations f o r  any values of the  f i e l d  gradients ,  and 

non-l ineari t ies .  

I n  Sect ion I11 these  formulas a r e  evaluated numerically 

f o r  a working point  which has been studied by numerical in te-  

gra t ion,  a s  wel l  a s  t h e  Powell Transformation. 

I n  Sect ion I V  t h e  theory i s  extended t o  the  case d non- 

l i n e a r  two dimensional motion, which i s  uncoupled i n  l i n e a r  

approximation. 

These methods may r e a d i l y  be used on complicated equations, 

and i n  pa r t i cu l a r  w i l l  be f irst  used i n  connection wi th  t h e  

Mark V. It i s  hoped t o  descr ibe  t h i s  i n  a fu tu re  repopt. 



II.One Dimensional Non-Linear C. L. S. E a u a t i ~ p  

We s h a l l  describe the  method by studying the  equation 

with coe f f i c i en t s  of period 2 r, defined by: 

where : w 2 = r w 2 +  0 6 t L T f  

7 d i - L  42 7T' 
We first  ob ta in  the  so lu t i on  t o  the  equation i n  pos i t ive  

and negative sec to rs ,  va l i d  t o  terms l i n e a r  i n  e. This 

i s  obtained by l e t t i n g  

x = x $ exl 
0 

(2) 

where : . . 2 
X 0 ) W X  - 0  

0 

e. 3 x + w2x1 =-e/3 xo 
1 

One obtains t h e  solut ions  r 
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x = C s inh  w-t + D cosh w-t + e ~3 - C - D  s inh w- t  t f k -  c '-7 
t L 

+ T E  $ + (f DY cosh *t t ~ p  + ~ ~ y s i n h  3w-t  
9 6 4  

+ 2 + 3" cosh 3w- t 3 (4) 
96wZ 

where A,B,C,D, a re  a r b i t r a r y  constants.  

If we express each of these  solut ions  i n  terms of the  

values of x ( t )  and $(t) f o r  t = 0 , we obta in  f o r  pos i t i ve  

sectors:  

- iA0) 
x ( t )  - - s i n  w+t + x (0) cos w+t  j- e  

w4- 

J 

1 1 1 where r al = - COST t - - t s i n  w t - cos 3w t 
8w+ ' 96wE t 

1 - 2 s i n  w+t + cos w + t  - - s i n  3w+t a - -  
2 32w5 

I- 8w+ 9 6 ~  

- - - 7 1 

a3 3q sin w+t tx s i n  3% t + A t c o s  w?t 8$ 

- 1 1 
a4 - +j=--+c~s w T t  - s i n  w+t - - cos j w  t 

32w4 
-t 

t 



1 1 = - 7 c o s  w t -g  + t s i n  w t -4 cos 3w t 
t t 32% t 

( 6 )  
- 1 

b3 - - cos w t 3q t 
- t  s i n  w+t  + " cos 3 w f t  

8w+ 32.J 
5 1 

b4 = - - s i n  w+t -- 
3 2 ~ 3  8w2 t 

s t n 3  w t t cosw t t - 
+ 32w2 -+ + t 

For convenience we a l s o  give t h e  r e s u l t  f o r  negative sec to rs  

which i s  r 

x(t) = '(o) s inh  * t + X(O) cosh t + e clx (01 + 
w- r 

where r - 4  1 cosh w-t 
1 

- - 8 s  s inh w-t + - 
9 6w2 c o s h 3 5 t  - - 96w5 

t 1 = - T c o s h  w t + -5 s inh  3w t + 1 
2 - 8w- 9 6 9  - -q Sinh w-t 

- sinh 
3-5 

- t  s i n h w t t  cosh3w-t coshw-t 
C4  = 7 3 3  - C 32 we4 - 

11 t 1 
d = --sir& w t t -co& w-t f - 
1 - 8 3 2 ~  sm 3w- t 

96w- 



t 
d = - d s i n h w t  

1 cosh 3w-t - cosh w,t 
2 8wz 3 2w- 32 w? - 

(8)  
t 3cosh- 

d = 
3 
- s inh  w t t - - cosh 3w - t - 2 

3 2w= 8w! 32 w, 

5 t d = - - s inh  w t - 7 cosh w t t 
4 - s inh  3w t 

3 2 ~ 2  8w- - 3 - 
One can r ead i ly  check t h a t  these  so lu t ions  which a r e  val id  

t o  terms l i n e a r  i n  e ,  y ie ld  a Jacobian which i s  u n i t y  plus 

terms of order e2. Thus t h e  Jacobian i s  not exact ly  uni ty ,  

although it i s  co r r ec t  through terms l i n e a r  i n  e. 

We now wish t o  obtain a transformation from the  center  

of a pos i t ive  sec to r  t o  the  center  of t h e  next pos i t ive  sec- 

t o r .  This  involves fo ld ing together  th ree  transformations 

of t h e  above form. For t h i s  purpose the  followtng formula i s  

convenient. If one i t e r a t e s  two transformations cf the  form: 

x3(0) t a3x2(0)i(0) t a; 

1 = C x c o )  + b;x3(0) t b3x2(o)k0) 

( 9 )  

x(2) = + + c2%3(l)tc x2(1)&(1) 
3 

+ d2;3(1) ( 





and a; bl, el, d t  are given by similar formulas where 

Re may thus obtain a transformation through one sector 

of the form of eq. 10, which although not exactly area 

preserving, is area preserving through terms linear in e. 

We now follow the procedure outlined in I, reducing this to 

normal form by means of the transformations: 

and 

and 

where the result of transformation (13) may_ be written as: 



where (2)  = e t bg3(0) t cx2(0);(0) + dx(0)k2(0) 
3 3 

(17) 

+ bt%3(0) + c1x2(0)g(0) t dtx(0)k 

and x(0) = Qo - PO 

If we call the result of this substitution: 

then: = 

r.- 

(20) 

-I - 6 & f are arbitrary 

Finally one obtains in the variables u and v an expression 

of the form: 

u = uOcos(r+ v sinf + 
o n 

v = - u sin 6+ vocor 6 
0 - n 



where and are of 4th order and 
n 

Ce 
cos CI-= C O S ~ ~ - ~  - - e -iT] jT (22) 

2. -- 0 0 
The invariant curves are given by POQO = constant, . 

and one may readily express this in terms of xo and xo. The 

above is only possible if D1 = - Ce -2i which is quaranteed 

by the fact that Eq. 10 is area preserving through terms 

linear in e. 

The comments made in I concerning convergence, are still 

applicable. 

The expression for (: is 8 
(23) 

Of course, for the example considered Q$ = 0 , but we have 
given all expressions for the general case of 6 # 0. 



The advantage of the variables u and v is that the 

transformation in these variables may be approximated toany 

order by an area preserving transformation. In the variables 
* 

x and x one would have to add an infinite number of terms 

(in general) to Eq. 10 in order to keep the correct linear 

terms in e and yet make it exactly area preserving. This 

leads to a transformation whlch is not convenient for computer 

use. The alternative of modifying the linear terms makes it 

difficult to relate the transformation to the differential 

equation. By transforming from an algebraic to a trigonometric 

fo~m, one can keep the terms linear in e unmodified and yet 

obtain exact area preservation with a finite number of terms. 

A transformation of the form of Bq. 21 is still amenable to 

rapid calculation, although of course, not as rapid as a 

transformation of Powell's form. It should be noted that 

the tedious transformation from x,; to u,v variables is 

only made twice in any calculation. The main body of the 

calculation proceeding in u, v variables. 

I11 Numerical Exa- 

We carried through the above analysis numerically for 

the case specified by 



This yielded: 

Yielding: 

C = - .03288 + .04966 i 
~e(l-e -12 LG ) 

46'- 8 s i n q  x2(0) (if a01 = 0) 



This should be compared t o  the  bes t  f i t  t o  the  in tegra-  

t i o n  of the  d i f f e r e n t i a l  equation, which i S  d r =  14.2 x2(0),  

The di f ference  i s  believed due t o  small numerical e r r o r s  i n  

the  ca lcu la t ion  reported here.  The ca lcu la t ion  i s  very 

long and it was not f e l t  t o  be of s u f f i c i e n t  i n t e r e s t  t o  

repeat  i t  and so  attempt t o  obta in  b e t t e r  agreement. 

A study of the  numerical so lu t ion  t o  the  d i f f e r e n t i a l  

equation ind ica tes  t h a t  the  parabolic  dependence of r o n  

x(0)  i s  good even f o r  amplitudes where the  amount of cubic 

term i s  20$, ie11/3 en x2(0) z.2. However, the  motion becomes 

unstable f o r  amplitudes x(Olx.17, whereas the  above work indi -  

ca tes  no such i n s t a b i l i t y ,  i n s t a b i l i t y  only occuring a t  ampli- 

tudes where )cos ) >/ 1 ,  which occurs f o r  much l a r g e r  

values of ~ ( 0 ) .  The i n s t a b i l i t y  observed i n  the  numerical 

in tegra t ion  i s  presumably due t o  a  l ack  of convergence of 

the  Birkhoff form. 

I V  Two Dimensional Theorg: 

I n  t h i s  sec t ion  we show t h a t  a  per turbat ion theory solut ion 

t o  two coupled equations may be reduced i n  a  systematic way 

t o  Birkhoff forn .  The theory of t h i s  sec t ion  follows t r i v i a l l y  

from t h e  work of Jauch (MURA-J.M.J.41, and consequently we 

s h a l l  only ou t l ine  the  method, and s t a t e  the  r e su l t s .  

We wish t o  consider two non-linear equations which a re  

uncoupled i n  l i n e a r  approximation. An example (our work is  



not of course l imi ted  t o  t h i s  case)  a r i s e s  i n  the  study of 

the  s implif ied non-linear C.L.S. machinet 

where : U(t) i s  periodic of period 2 

and : 1 0 -  

We s h a l l  assume t h a t  the  coupled equations can be solved 

by per turbat ion theory and t h a t  the  transformation t h u s  

generated may be reduced t o  normal form a s  f a r  a s  the l i n e a r  

terms a re  concerned. This l a s t  follows from the  assumption 

of uncoupled l i n e a r  motion. The generating funct ion (F) 

describing t h i s  t ransformation (TI f r o m  x0,G0, yo, #o 3 
d 

x,  x, y, y may be assumed t o  have the  following form, i f  

the  transformation T i s  the  exact  transformation expressed 

a s  a  power s e r i e s  i n  the amplitudes of the  motion: 

where : 3 F 
g = -  

O a x o  
aF 

x z  - - 
2 

where Gn i s  homogeneous of degree n. 



e 
We now wish t o  change var iab les  from x,K, y,y t o  new 

var iables  Q P By, 
PY' 

i n  such a way a s  t o  reduce F t o  
x9 X 

normal form. This we attempt by a s e r i e s  of transformations 

generated by K(Px,x, P ,y) ,  where: 
Y 

( 2 8 )  

K(P x ,x, Py,y) = P x x f P Y t K3(Px,x,Py,y) t K4(Px,x,Py,y~. .  
Y 

where Kn i s  homogeneous of degree n. 

and 8 . d K x = -  
a x  

By reasoning exac t ly  analogous t o  t h a t  of Jauch (and 

subject  t o  the  same r e s t r i c t i o n s )  one can show t h a t  K may 

be chosen so  t h a t  t h i s  can be accomplished. Onef inal ly  

obtains : 

where (&2)X, (f2ly , ( $ 1  a r e c o n s t a n t s .  
2 XY 

The reduction t o  Birkhoff Variables now proceeds a s  before,  

y ie ld ing 



ux = cos t -a- x XO 

v = - s i n r  u + c o s r  v 
X x = o  x =0 

u = cos u + sin 0 v 
Y y yo yo 

v = - s i n h  u t C O S T  r 
Y Y yo y yo 

where l 

C O S 6  X ' "2 [px * ~2 
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