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I, INTRODUCTION

The study of stability of particle trajectories in A.G,
Synchrotrohs may be very much simplified if one.has phase
plane transformations available. These transformations are
in general approximate solutions to the betatron oscillation
equations, relating the final dispiacements and velocitiles
to thelr values at a similar point in a previous sectbr.

The transformations are used on high speed computers and
iterétéd,ftypically, many hundreds of times. This places
certain restrictions on the approximate nature of the trans-
formations. In partieular, if one desires the phase plane
plots to remain stable then the transformations must be sxactly

area preserving. Also, to have the transformations prove |
more convenient than the integration of the differential
~equation, they must be either of algebraic, or of simple
functional form,

The requirement of exact area preservation precludes

the possiblity of using most simple perturbation theories to

* Supported by the National Science Foundation.
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generate transformations., Powell and Wright (MURA-R.W./J.L.P.
~5 ) investigated the most general transformation‘of simple
algebralc form, which was exactly area preserving. The arbi-
trary constants in this transformation were obtained by compar-
ison with the numerical solution %o the differential equation.
This only preoved feasible for simple equations,and their work
was restricted to a few cases only. As pointed out in (MURA
-A.M.S. -2, called I hereafter) the work of Birkhoff may be
used to somewhat simplify this procedurg R . However, it still
.remained true that the arbltrary constants must be determihed
by comparison with solutions to the differential equation,

In this report a method is described which allows one
to obtain approximate transformations, in the neighborhood
of an equilibrium orbit, directly from the differential
equation. These transformations are exactly area preserving,
and may be obtained analytically from the differential equation.
The method is based on the work of Birkhoff (Vol, II of Collec-
ted Mathematical Papers, Am, Math Soc., 1950), as reformulated
by Jauch (MURA - J.M.J. -1) , and outlined in detail in I,

The method ppoceeds by first obtaining an approximate
solution to the differential equation by means of pertur-
bation theory. This solution is an expansion of the exact
solution in powers of the amplitude of the oseillation. It
is terminated after a few fterms, and consequently describes

the solution arbitrarily accurately for small enough amplitude,
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It is not, however, exactly area preserving. It is then
shown that such a transformation may be approximately trans-
formed into Birkhoff's normal form, the procedure heing such
that one can continue this process thus dbtaining a transfor-
mation which formally approximates the exact transformation
to arbitrarily high accuracy, for sufficiently small ampli-
tude of oscillation, As described in I a transformation in
Birkhoff variables 1s exactly area preserving, if terminated
after any degree of approximation, The resulting transfor-
mation is simple in form, and convenient for computer calcu-
lation,

In Section II we describe the method by applying it
to the case of the one dimensional non-linear C,L.S. machine.
We include formulas which make it relatively easy to construct
transformations for any values of the fleld gradients, and
non-linearities.

In Section III these formulas are evaluated numerically
for a working point which has been studied by numerical inte-
gration, as well as the Powell Transformation,

In Section IV the theory 1s extended to the case of non-
linear two dimensional motion, which is uncoupled in linear
approximation.

These methods may readily be used on complicéted equations,
and in particular will be first used in connection with the
Mark V, It is hoped to describe this in a future report.
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II.0ne Dimensd Non-Line L, S, Equat

We shall describe the method by studying the egquation
with coefficients of period 2 T[", defined by:

X + wex + e/3 x3 =0

where: we =) wd 4 02T £
-we i\
W< (1)
e = e 0 =< t < ’Tr

-8 ’ﬂ’ziil<:é'ﬂ1
We first obtain the solution to the equation in positive
and negative sectors, valid to +terms linear in e, This
is obtained by letting
(2)

x = x0-+ ex,

wheres

%b ¥ w2x 20

0 (3)

2, = 3
X, T wexy =-e/3 x5

One obtains the solutions:

x = Asin wt +Bcos w,t ¢ e-{; = {?3+ A @] sinm+t +
8w E_B = ABJ cos Wt f—zlz—-[B - 3A2§]cos 3w t+
96; [A v 3ABjsin 3w, _}
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Cs.:inhwt.-|-Dcoshwti}-e%——‘[})3 C-D s:.nhwt-,‘-

f8m[c3{-GD cosh w_t s:.nh3wt

1
W<

where A,B,C,D, are arbltrary constants.

If we express each of these solutions in terms of the

values of x(t) and x(t) for t = 0 , we obtain for positive

sectorss
_ x(0) 3
x(t) = e sin w.t 4 x (0) cos Wt r e a, x (0)
+a, % (0) } ax? (0) X (0) + a x(0) X2 (0)
2 3 : ()
(5)
x(t) = x(0) t - x(0)w sin w t b,x3(0) + b %3(0)
X x(0)cos W x(0)w sin w, -f-e{ 1 X _+\2x(
t Dyx"(0)% (0) 4 Bx(0)x?(0)
wheret a; = - W‘COSWt -——é; tsinwt + 922 cos 3wt
o 1
a2 = -3—2-3‘3 sin w,t -}--—g:’—l;cos w.t --;—6-;—5111 3wt
t+ + *
- 7 1 |
ay = —3~—-——'2W+3 sinw. t ¢+ 32wj’ sin _Bv;r’,t +—1——8‘!E teos w"rt
_ 1 t 1
B"ll- = «—Z*Ecos w_rt - -é';g‘ sin w+t - 32w1*' cos 3Vf'_t
= t 1 .
bl--- Y. sinwrt-—-é—cos W‘_t --,:;é-w 31n3w1_t

+ T
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b, = s b =Tt sin w € -~k t
2--3—2—"3cosw+ '—B-w?- sin w t ~=70 0053W+_

+-
(6)
. .3 - 3
b3 = “5’2}} cos w1_t - 8w+t sin w+t '\'32w_,§ cos 3wyt

5 1 3 .
bu = - ‘3_2;;3-8111 w+t - 8w_r}_2 t cosw+t + 32w_3 sin3. w+_’c

For convenience we also give the result for negative sectors

which is @

x(0)
W

f x50 + o x*(0) & (O) ¢ °u*‘°’i2‘°i}

x(t) = sinh w t + x(0) cosh w_ t ¢ e{cixg’(o) 3

(7)

3]

x(t) = x(0) cosh w_t # x(0)w_sinh w_t ¢ e{ilx:”(O) ¥

1d x3(0) £ d3x2(b):':(o) ¢ d,_l_x(o)z'cz(o)}

where? cosh w_t

96w
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t 1 cosh w_t
d = = —sinhwt cosh 3w t - =
2 8w ~" 1 3wt 32 w
(8)
a. = k sinh w t f'-—a—*— cosh 3w t - _§E£§E_g=3-
3 ew - 32w2 32 w2

5 A 3 .
dh- --5—2;5- sinh w t - 8w__2_ w5 —coshwt \-Wsmh 3w_t

One can readily check that these solutions which are wvalild

to terms linear in e, yileld a Jacobian which is unity plus

terms of order e2. Thus the Jacoblan is not exactly unity,

although it is correct through terms linear in e,

We now wish to obtain a transformation from the center
of a positive sector to the center of the next positive sec-
tor. This-involves folding together threg transformations
of the above form. For this purpose the following formula is
convenient, If one iterates two transformations of the forms

x(1) = C%-x(o) T/@ x(0) +e{; x3(0) . x3(0) + 2y x2(0)%(0)

¥ aux(O)&z(Oi}

(1) = ¥ x(0) +d; %(0) ¢ e{blg?»gm } bo%3(0) # byx?(0)x(0)
t b,x(0) X2(0) (9)

x(2) = x(l) + /é; x(1) + ele x3(1) +tc &3(1)+c x2(1)x(1)
foex1) %21

k(2) = 2(2x(2) + Szz'c(z) Ye gdlﬁ(l) 3 d25c3(1) $

+ 42D + a,x() % (1)}
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to obtailn a transformation, valid through terms linear in e,

of the formt

2(2) =X x(0) + £ %(0) t e4ax3(0) 4 BX3(0) # cx2(0) X(0)
+3x(0) ‘x2(0)} (10)

%(2) = ¥ x(0) +S %(0) e{a-'~x3(o) +b'%3(0) + ¢'x2(0)%(0)
+ 1%(0) 3:%)}

then the coefficients are given by ¢
L = oﬂc/a b 251 /€2 = cos 0+ Oéosinq‘o
ﬂ’ﬁl"(z +Sl ﬂz = Bostn T
¥=ot &, *‘5/15 "( .

—7Zrd~“- sin G:;
g;’ﬂl Xg -{-51 5_2 2 oS J‘é‘-o‘osinﬁ'

(11)

n

2

a =¢4 + /$2b1 + clo¢-13 t ey X;’_ + c3o<§ K}_‘tcua? (1
- 3 3 2 2
b-oézaz-}-,gzbz f-clﬁl +c2g1 +c3/51 gl +°1+/l 51-

- 2 2 2
croka v fp tep v i S te ol g +
: _
1.0329‘1/912(1-}%6’1/1 +cu2a(lslo(l
_ 2 2
az o, tfh re3 By 18 f";ﬂi(l

2
boeg2 7‘1’61 &1 % °1+81 <.t °u2‘)igl /gl
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and a} b', c', d' are given by similar formulas where

Ko —>(2
/ 2—>32 (12)

ci—? di

We may thus obtain thransformation'thfough one sector
of the form of eq. 10, which although not exactly area
preserving, 1s area preserving through terms linear in e,

We now follow the procedure outlined in I, reducing this to

normal form by means of the transformations:

(13)
1106,
e %0, +Lr
and '
T s dd sl P XQP\-XQP (1%)
_l; = P + ; ‘1Q3+/€‘ P3f- K'Q2P + S QP2
and — -
u=Q4+P
v=1 (7% -'13] (15)

where the result of transformation (13) may be wiitten as:

Q= o170 qo:rc——J&‘mc-) /521 B,
(16)

. -iGo 1+ 1% /!01
P e Pot ( > )(?03 t+ — (?)3
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where (%) = {ax3(0) b B33(0) + ex2(0)k(0) } ax(0)x3(0)
(17)
®, = ei; x3(0) § B3(0) t ¢'2%(0E(0) + d'x(O)k <c§
and x(0) = Q
. 1 (18)
x(0) = o Qo- K to%o] PO
| 20 j

If we call the result of this substitutions:
- 0o 3 3 2 2
Q =e QO t AQO + BP0 ¥ CQO P0 T DQOPo
(19)
- ~100 2 2
P=z=e P, f A'Qg + prg 3 c'Q_0 P, + D'Q.Py

/ t
_ el . - el .
ehent %E—F""’“ J Z“E-icra 130
! eB'
/ iC_ 9_13 G‘—J _130——]

7: . —— / I (20)
> 1r'__-m" 4&‘1

-/ -

S & Y are arbitrary

Finally one obtains in the variables u and v an expression

of the form:
U= 1u_cos v sin
o° T+ o a+ Qﬁ'n

_ (21)
vE-u sinQ ¢ focos Q"Tfn
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—

where §P and :ﬁ’n are of 4th order and
n

cos( = oos([‘ 1—«—— [l - e 12(]— P Q (22)

The invariant curves ‘are given by'FBQO = constant,
and one may readily express this in terms of Xy and xo. The
above is only possible if D' = - Ce =2100  which is quaranteed
by the fact that Eq. 10 1s érea preserving through terms
linear in e.

The comments made in I concerning convergence, are still

applicable.
The expression for € is 3 (23)
2 3 3
¢ = .3329.1"—132 b '3‘&"2 o
2 255 24 2 °
& A3
3 Kob 3L > %0 3 3 3
T‘E"DE_+3§<6Q—_°-2/.{2 4 -2 na'*'a{%o bl +
0 _ ° | °
305 3K, At 33 T
t2 7, L P ¢ " By ail Bl
/50 2/‘0 3 2
3 A0 e d + 6*;2 o

e S - ar
25 T e ~o J

Of course, for the example considered 6‘% =0 , but we have
given all expressions for the general case of chb # O,
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The advantage of the variables u and v is that the
transformation in these variables may be approximated toO any
order by an area preserving transformation. In the variables
x and x one would have to add an infinite number of terms
(in general) to Eq. 10 in order to keep the correct linear
terms in e and yet make 1% exactly area preserving. This
leads to a transformation which is not convenient for computer
use. The alternative of modifying the linear terms makes it
difficult to relate the transformation to the differential
equation, By transforming from an algebraié to a trigonvmetric
form, one can keep the ﬁerms linear in e unmodified and yet
obtain exact area preservation with e finite number of terms,
A transformation of the form of Bg. 21 is still amenable to
rapid calculation, although of course, not as rapid ags a
transformation of Powell's form. It should be noted that
the tedious transformation from x,i to u,v variables is
only made twice in any calculation., The main body of the

calculation proceeding in u, v variables,

III Numerical Exgmple

We carried through the above analysis numerically for
the case specified by
n= - n2= 163 LAIE A L
e, = -92 =7 1000

(]"6 . 5847
/!0-- 1.11998
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This yieldeds:

a, = - .0023973 - by = - 03524
a, = - .00001866 by = - .0005663
ay = -.0002945 b3 = - .006595
8 = - . 00000048 by = - ,00001866
c. = 01473 dl - ,16015
¢, = .00002113 | dp = 0004668
cy = 00388 | d3 = 059132
¢ = .0004668 | o dy = ,008792
o= L8338 Y= %929

= L6184 | Yo=K
a = ~,0l122 - a' = -,02386
b = .0000113 bt = -,004975
c = .002649 _ c' = -,020979
d = .0009706 dat = -.018784

Yieldings
C

- .03288 + 04966 1
da=- Ce(1-e~32€0 )
= 8 sin q;‘

AT = 1%,9x2(0)

52(0) (if %(0) = 0)
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This should be compared to the'bést fit to the integra-
tion of the differential eduation; which 1s 40 = 14%.2 x°(0).
The difference is believed due to small numerical errors in
the calculation reported here.  The calculation is  very
long and it was not felt to be of sufficlent interest to
repeat it and so attempt to obtain better agreement.

A study of the numerical solution to the differential
equation indicates that the parabolic dependence of (¢ on
x(0) is good even for amplitudes where the amount of cubic
term is 20%, iey1/3 4 x2(0) =.2. However, the motion becomes
unstable for amplitudes x(0)x.17, whereas the above work indi-
cates no such instability, instability only occuring at ampli-
tudes where |cos G | 2 |, which occurs for much larger
values of x(0), The instability observed in the numerical
integration is presumably due to a iack of convergence of

the Birkhoff form,

IV Two Dimensional Theory
In this section we show that a perturbation theory solution

to two coupled equations may be reduced in a systematic way
to Birkhoff form. The theory of this section follows trivially
from the work of Jauch (MURA-J.M.J.-1), and consequently we
shall only outline the method, and state the results,

We wish to consider two non-linear equations which are

uncoupled in linear approximation. An example (our work is
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not of course limited to this case)_arises in the study of
the simplified non=linear C.L.S. machine:
X =~[ﬁi2 r e (xy2 - 1/3 x3)‘] U{t)

= w2 (x%y - 1/3 y3) ] U(t) (a4
y-[-wyre x“y - 1/3 J

where: U(t) is periodic of period 2T
and s Uit) =[ 1 0= t< 7T
Ll TEt L 27

We shall assume that the coupled equations can be solved
by perturbation theory and that the transformation thus
generated may be reduced to normal form as far as the linear
terms are concerned. This last follows_from the assumption
of hncoupled linear motion. The generating function (F)
describing this transformation (TJ from xé,ié, Yoo §0 —_—
X, i, Yy § may be assumed to ha#e the following form, if

the transformation T is the exact transformation expressed

as a power series in the amplitudes of the motions

Flk, ¥y Xgy ¥g) = (fb);‘: X = (£) Ty, +6 (25

y
where: 4 = OF ; S5 F
° axo ° 20 (26)
2 F F
X = 5{ ¥ - _Q-—'-.
Pz, ay

and G(i,&,xo,yo) = G3(§,§,xo,yo) ¥ Gh(i’§’xo’yo) t eeo (27)

where Gn is homogeneous of degree n.
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We now wish to change variables from x,%, y,§ to new
variables Q P 5 Q 4 P , in such a way as to reduce F to
S AR
normal form, This we attempt by a series of transformations
generated by K(Px,x, Py,y), wheres (28)
K(Px,x, Py,y)-= PX- x +.Py -y ¢ K3(Px,x,Py,y) + Ku(anXaPy,Y¥“°~

where K, is homogeneous of degree n.

ands
. _ 2K _ ok
* Y Qx- Jd Px (29)
. K K
y :.,_..__a QY: aP
QY 37y

By reasoning exactly analogous to that of Jauch (and
subject to the same restrictions) one can show that K may
be chosen so that this can be accomplished. One finally

obtains:

F(szpy?Qx ) = (SJO)X Py on '}"(SDO) P Q¢

&
y y ¥ Yo

0 Y0

| (30)
- 2 32
(5 B 902+ (5 g )2y

~(5xy POy, Py Qugtees
where (jfé)x, (f;)y s € §;)xy are constants.

The reduction to Birkhoff Variables now proceeds as before,

yielding
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- cos g—xuxbfsind'; vxo

u -
vx = - sinq: u‘o + °°30—x vxo .
31
u, = cos(r;uyo + sino'; vyo
v,y S - sing‘y’ uyo + cosq-y 'yo
where! 1
e [505]
- -1 (32)
cos(r; = 1/2 [Sey +§y J
- 7 -2
wts £ 2(S) [1r2cFp. € . Bx G )t
-1l
P ess,
+ ga)xy ( fcu: foy) (yo Qyo) i J (33)

L

-2
= (5o El t2 (¢ Fa)y $oy @y Qyo) $

1 _
S AT By 0 Vohenaes

The calculations were performed by Mr. K, Fowler. The author
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of the MURA Summer Study Group,



