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Abstract

Being given the magnetic field strength on the median plane, it
is required to find the field on both sides of this plane in such
a form that:

a) when substituted in the equations of motion of a charged
particle, these equations will satisfy the theorem of
Liouville, exactly.

b} the field is both Maxwelian, and assumes its prescribed
values on the median plane to a certain degree of approxi-
mation.

c) its mathematical expression should be sufficiently simple,
so that too much time will not be required for the computation
of trajectories by a digital computer.

Thus the degree of approximation desired must be weighed against the
corresponding time of computation. A series of solutions correspond-

ing to ascending degrees of approximation has been found.

* Partially supported by the National Science Foundation
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Section 1. Two proposed expressions for the magnetic field strength
in the median plane and their relation to certain complex fields,
in which a certain approximation is involved.

The following expressions have been proposed for the magnetic

field strength in the median plane for the Mark V, FFAG accelerator,

namely K e ¥
= 4 — O
ol m(3) e Fonf52 - o]
g I o
Hrfa » H&JO * 0
a L [k r
Ao = He(i) {“fw[‘” ") M]j (1.2)
Ir L
//r,o % ’%,a =

where (r, ®) are polar coordinates in the median plane, and z is a
rectangular coordinate perpendicular to that plane. The equation of

g e =y
the median plane is 2z=0, Also Hy = H (r, ®,0).

The above fields are the pure imaginary parts of the following

complex fields:

e« A(E) [ of e iz -/ra]j
Lo

{1.3)
é c];c Tl =0
£ _(NG
pE oy ) i F )

(1.4)
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X)h :Z’ x* x3 x Y
-}--—-" i B ——— — e .ln5
NOW(A %) = & Z 24‘-’ +3na .;:;3 ________..:7 ( )
so that (,+ X N ¥ (1.6)

2
the error being less than X'e

. K(P—V‘ ) P
Therefore /L K o' I il )K_ !/,‘- - ]/v - (1.7)
(v."v.é) r—'ro)

the error being less than e

r-Yo
and (/ﬁ ‘>b” o W

th being less t ik
he error being lezss than g T e (

o K

(1.8)

It shall be assumed in this report that these errors are sufficiently
small to be neglected. However, there would be no difficulty in
using additional terms of the series (1.5) in order to achieve a
better approximation. The methods of this report could easily be

carried out in this case.

Substituting (1.7) and (1.8} into (1.3) and (1.4), one finds

r-r,
K._.....?— K‘r'- p e '
= #QEQ . + - ¥ o +6?"‘"N6—4‘:’—'J
(1.9)
Y‘-V‘o K r + l:l"

Y = (Ne - L
II e 17 Z(' ¢,k; 6 A o

(1:10)
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Both of these fieds can be written in the form:
(c) -K Ar
e ) ) r-ve-
A2, 0 = Hye ["- +{e¢,+‘@ X I; Tt

which 1s expressible as linear combinations of the fields

Py * (Br. 6 (1.12)
A.’Z.,O ke and #z,o‘cb( Z)
where #= #,-td and where d, 4, 7 and ¥ are real constants
For //2:&. N i N - Y
e K 1 A R e T (1.13)
_ b
/4
For &
/, f e K s * S -
1,0 ¥ g r,.o )ﬂl = ro\w )T-M 7” -L%J'

It is required to find the vector potential on either side of
the median plane in terms of the magnetic field strength on that
plane. It is sufficient to solve this problem for the two fields
‘(1,12). The fields (1.9) and (1.10) are linear combinations of
these. Finally, the desired vector potentials corresponding to the
real fields ﬁ;f o and:?if o can be found by taking the pure

imaginary parts of the ccmplex fields.

Statement of the Problem

Yo
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vector potential has been found to a certain degree of
approximation, this vector potential is substituted in the
differential equations of motion without any further change
or approximation. It is because of this condition, that

one must first find an approximate expression for the

vector potential, instead of the magnetic field strength.
The field should be Maxwelian to as high a degree of approxi-
mation as possible, consistent with conditions (3) and (4).
The magnetic field should assume its proposed values (Ll.1)
or (1.2) on the median plane to a certain degree of approxi-
mation.

The degree of approximation in (2) and (3) should be as

high as possible, consistent with keeping the differential
equations of motion sufficiently simple, so that the time

of computation of a point on the orbit by a digital computer
will not exceed some reasonable value.

In connection with (4), it might be noted that in the

differential equations of the orbit, that A. and A, are their deriva-

tions occur in many places, while A g occurs with a much smaller

frequency. The orbital equations can then be simplified if one

chooses

the gauge in such a way that AL and Az have as simple

expressions as possible, and allowing Ag to become more complicated

as a consequence. This is one of the considerations that will guide

us in the choice of the gauge.
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Section II. Fundamental equations for the case

f{rfu"—#ﬁjato

. The general method of procedure and the solu-
tions of certain differential equations.
We shall assume that the vector potential is represented by

the following expressions:

. oy N
foneiCoro-N)fiy ok s Bty Kn

L (Br-TE- g A =
Ay = = 7){@0*‘@%*@7—%'*—@»—3—_}

T et b
/?z:ct(ﬁr re /{,z”z, + 2L +_l_’_;_:_}

(2.1)

where Ry éblcﬂ and Z (k) are functions of z only.

It might be noted that if certain expansions* were used, the
vector potential would be expressed in a descending power series in
T, the first few terms of which would be represented by (2.1). In
fact, these expansions suggested the relations (2.1). The expressions
(2.1) are, however, not infinite series, as they actually terminate.
They will represent exactly a certain field, which approximates the
actual field of the accelerator. The functions Ry, 691<, and
Z (k) are to be so determined that the four conditions of section
I are satisfied. This can be done in many ways, as there are
different choices for the gauge, as well as for the degree of

approximation.

* Expansions which express the magnetic field on either side of a
plane surface in terms of the magnetic field on the surface, and
thelr application to the Mark V, FFAG accelerator.

Edward S. Akeley, Purdue University, January 26, 1955
ESA{MURA)~1
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.
The expressions in cylindrical coordinates for ¥ x A and V X

( X/ x A) are
(ViA), -+ 1Lz . e

Y6 p!
(fo)@ - 3/4r \_éé z (2.2)

V,t‘/f)z * [ (V‘Aﬁ)" Jﬁr

LVX(VA'/'?)] -—--"[ AAG J— 9) J% Jﬂz
3_;;'-' 2% Qﬁ)r

Jie®
@(in]--—"— = leAo) L 54 “ho 2
[ ‘ &-]+ és*] g jz ZL (2.3)

L V.(vx ﬂ]f' 3 [é A]"——'—[ _].. PJ—,, ;9-,41 L 3%

30‘1 J&Jz,

Substituting (2.1) into (2.2) and (2.3), we find

= (Vxﬂ)-e‘(” —T&‘),){[Yzf@] r[‘l’z’“ —'7

e
Ha__(v(/yﬁa-cﬂ i (be-T0-7) ZT? uezj,,- R 2,- cﬁ2]+

! im ]+ % [RIAL zﬁz]+__ - } =
Hy = (v*f% z il -vo- W{,{@,. L1 R +}L/-@+¢',3@, MT&J

. / ; . -
ol M L T o
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[szj—e‘(ﬂr“?’ ?-’){ [R,+¢kz [ﬁ,+z ~i62)]
E [ R 822 4 8v0,T
i [ @iz R B8 v Ry L [ pr®s v 222 02 50)
[}, ) By @ +7 ¢ 2 52”‘@}
[Px(vm)] Brro-i) iz @)+ 8%, + A, Ryt
[-c 6@ -ivis -, 14 @, +érh, | .f__.[‘,_z @_2,*,@*3&“7@,.,@,@]
[,,z @ +3:48 440, r2ip b +8r Rk ]+;5"-a@?‘+s,-,,@_a*3¢r f";]‘ @gj

(2.5
ﬁfo'(le e X)[ ofist, o83, T+ [R] +iBR-3i82, 4. zJ

,w-ﬁfo LA R -Z)-i82 +87, iy @t vz,]
+-—[ﬁﬁ2+oﬁ2 +4 %z +Yz-¢y‘@,

¥ ¢
— ! # _i‘r'@] —!—[yz +}P.2Z _(:7"@_(3]
¥

(2.5¢)

Since we wantﬂk(bﬁ§7= O to a certain degree of approximation,
we shall require that the coefficients of the highest power of r be
zero ‘in each of the equations (2.5} or

- R/ visz] =0 (2.6)
- -irz] ’@; *'d@'/"gr&go

2
LBR, +48 2, =
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Now we might sethL = 0, We would find only two independent equations,
and we could solve for R, and Z, . Such a choice would partially
determine the gauge. In this choice, the A, and A, would be more
important than Ag o As has been previously mentioned, we are

looking for solutions where the expressions for R and Zk are as

_ k
simple as possible. Therefore, we set Bl = 2y = 0, (2:7)
so that @ 'f_ﬂ:‘)@: 0 (2.8)

of which the general solution is

@eﬁ‘:@o,c A *'@,5 ok A2 (2.5)

where @o cand @‘,’5 are constants.
‘

- ez AW"Tie"zj

Now #}\’b - ”4',0 =0, /{z'a (2.10)

are required to be satisfied to a certain degree of approximation.

Accordingly, in equations (2.4), we shall require that

[ivZ)+ @;jz:o =0
: (2.11)
[k : 9 ﬁzl].zto . 0

[i4€,] ., =°

The first of these equations and (2.7) give

g ) ) (2.12)
[@o] = ond ] &, =0
Z=0

The third equation gives

Do, = "%
¢,
% s {2.13)
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Theretore
RO
@o‘ z- Mlﬁz
(2.14)
Returning to equations (2.5) we shall equate to zero the coefficient
of the second highest power in each, or

0 f . 4
~Ro +2, +iBZX "= 0

{2.15)
' = O
—ia@ _ivZ, -®' +2®,+Pr ke
2, .
2R +iBR! - 3iFz,+F 2,0
We shall set R, =<, =0 (2.16)
50 that GI;"Biflﬁ = éﬁcg = coskpBz
(2.17)
® 2-si
so that = (D cosnpz+ smhfz- g snhfz
®,_j “hi “'JS‘
(2.18)

We shall now require that the second terms of equation (2.5) be zero,

in order to satisfy (2.10). Then

["YZD R @-1']7.=o = O
[Q; -Z, + iﬁzojzw-— 0

[@o+ I?@_, + ;‘yr?oj =0

zZ=0

(2.19)



MURA-T0

ESA(MURA-3)
=12~
or [@_ .1-«: =0 and therefore @__, c =0 (2,20)
= )
and [C} fﬁ[j:] =( = —? P ;969 Fnd therefore -le =iz (2.21)
z:0 c

T MM =

herefore k_) L — coshBz - :é cinhBiz (i2,99)

We can continue in this manner as we go to higher and higher
approximations. Or, on the other hand, we can stop wherever we wish
and equate to zero, the functions Ry, C) K and Z, (k) which have not
been determined. The further we go, before setting the undetermined
functions equal to zero, the better the approximation.

If, now, we require that the third term of each of the equations

(2.5) be set equal to zero, we have

- \ e
LYZP"/' RY, +igz, +er@, -
-lrZ, -@.';-;-33@_‘+63@__b+irfea+eye_, =0 (2.23)

Ry + 1BRY -2,-i82, » %2, ~iY@®, 1 Y22 -0

Making use of (2.7) and (2.16) and setting

fE—, =0
(2.24)

these equations become
gz + 8y @, -
" i ¢ o)
“ivd -@_2+ BE_, +% @,&
ik , ]
7z, —ir@o -0

(2.25)
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The last one of these equations gives:
. oy ' , 2.2
2. -~ ‘1—2‘ ®a = T — sinh@2 (2.26)
@ g

If this is substituted in the first equation of (2.25), we find that

it is satisfied. The second equation of this set becomes

@:in..“ez@_ = I(B@ -J'YZ_' -‘-L'(.r 990,‘,5\197-—»9) sivhBz (2.27)

"__ = COSL‘?BZ"'@ sm\nezﬁ- - )5”-,}, %00 h _____ inh@z
0o @ayc $ 2 (1Y 2= eeoshpz - 5-ainh g (2.28)

Equating to zero at z = O, the third terms of equation (2.2}, one

finds:

y :
. e i
['TZ'] ©. ]Z:O—O and therefore @), =© (2.29)
v
[R, -®2-7] .0 is satisfied
z-0
[,"(;@_:b+ [TR"]z-oz o and therefore @—z,o =0 (2.30)

We find therefore, that

® Bl il Q 2 : | 2
L z -5 )=sivhfz — 2™ cosh@=
g FoeS ¢ £p (2.31)

Continuing in the same way, if one equates to zero the fourth term

of equations (2.5), one has:
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PR @ ™ '
—’ﬂ@o “’32-1. "F‘D—:)_ e B R 'Z-/ =0
2 ’ =
“'TZ—L'@—'% +2ie@,+6°0.5 + 2R, +t@VYR_; =0 (9.24)
‘ (] g .
iR, + 182 +pRz_, + leo_ (T@_: -0
Making use of previous results, and setting R_, = 0, one finds
®Z, *%YCZ,‘ZL *
. | . (2,33)
ivZ_, -@ ), + 37 @_:U-(a 6.; =0
. - [
gz_, +e%z , - vl -o
The third equation of this set gives:
/"‘.
A + Y o : )
2, P z—l —""‘"'2} @_] = _-ﬂ_. [ﬁinhﬁz g zcosh‘gz (2.34)
® 239- 8
From the

The first equation of (2.33) is now found to check.

second equation of this set,(jlg can be found if required.

We shall now tabulate the results, which have been obtained:

Ry =0 (k=1,0,-1,-2)

®O = — —é'—— 605\1@2.

i 2,35
®_; = :“i‘" [cosh@z ---(3 Srnh@-gj (. )
(3 = - 2 . 2

~2 i‘z“ [Cb -Hy ®)=z =sinh @z-827 cosch @:.]
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Zi-l B Zo . O
Z- =:£9:—- sih\a?z
e (2.36)
Z.a = B [5i~n‘n@z - @zcas\n@z]
28
By setting @ = —=1a,y= =0 with o real, we obtain the corresponding
equations for the case Hz o = €™ Hp o= Hoo =0 namely
Rk =2k =0 (k=1,0,-1,-2)
= s
@0 GOQ—O-'Z. (2037)
®_, = “::E E:,oSo_z + a.zsl':a..z

i L 2 D -
@—2, fa—?‘g‘ [a 2 COSGLZ — Sa,zsfna.zj

The above expressions represent successive solutions of certain
differential equations, which are obtained when certain texmg in
the expressions (2.5) and certain of the functions appearing are
both set equal to zero. Using these results, we shall obtain in
the next section, a series of solutions of our problem corresponding
to various degrees of approximation.

Section III: Solutions of the problem corresponding to various degrees
of approximation.,

The various solutions will be represented by the symbols (Ap ) 6qp%,
o o

qu} (¥¥péy etc,, arranged in the order of increasing degree
»
of approximation.,
r ;
Solutlon(ApIO: Ry =Zkg = O ()
@y =0 (k=0) 181!

®o a —Jﬁ— coﬂne'z.
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A‘n = AZ o o; Aa = = _é’_e !(ﬁ"‘-?’e”x)cosh 61 (3::2)

The closeness of this approximation may be found by substituting

(3.1) in equations (2.2) with z = o, and into equations (2.3).

We obtain:

Prio =Hg, =0  [exactly)

Hz 0™ el (Br,=ye -1 E“};LF— aslagainst its prescribe? 3)
value _ ¢ (gr-ye-X) 3.

[V e (V"“ﬁ )Jr = eif@r‘-—Teﬂl‘){r[c\]on] -i}: cosh@z _@:E-Q“ c,oshﬂz}

[¥x (vxRV] = e iCer-vo il - Cobr, by Lo]g (3.4)

[\htv X A ):[z = e i(r —Ye—)’>{ c[0] + [0] - I‘__.-sinh(lz_}

This field satisfied both the conditions on the median plane, and

is Maxwelian except for terms of the order fﬁ%“ and higher. It
L o
therefore represents a very good approximation when |@[r is

large. 1If one leaves out of consideration the quantities H, , and
. ?

[V v (fo)jg the approximation is even better.

For the special field

ax

 the (Ap]o solution is Ap=A, =0, Ap= B— cos az (3.5)
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Solution (AP)_ri t Ry=Zy =0 (0), @, =0 (x#0,-1)

; .6
®0 = - -!a— Goﬁh@z (3 )
®—-l = _g'._?—: EC;GSH@Z- - "Eg:"" sfnkﬁzJ

Ap = Az =0 =
A, = B euyg=Y) {— ! coshaz + — (.0 - ex _.
& * e e @ @,_p E'. sh@2 = anhﬁz} (3.7)

The closeness of the approximation may be found as in the case of

(Ap)o. Thus we find

Hro=Hgo = @ (exactly)

- Hy 0 = of (Br-ve-X) (exactly) (3.8)
{Vx (VXZ )]r-‘ e; (FT‘—W{Q-T) [\"["J"' [o]‘- i‘}’-coshﬁz - f'z'i‘ sfnhﬁzg
o (b, -mre-Dfo £ B o] -

[Vx (Vﬂi );]z“ el (&P-Té-)’){rﬁ]ﬂ}]_ -}'—s:nhﬁz + 1—1’3_ Esmh@z * pzc,osh@z:[%
a8r

The prescribed conditions on the median plane are satisfied exactly.

This is Maxwelian except for terms of the order ‘J%Z_if or higher.
e r

For the special field

~. ‘the (Ap); solution is
Z

ArgA =0

z

s poritaton, | | o_-z_s_'ﬂ_ﬁb..&.]
Ae-e { - o cos a2z + EN
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Solution (Ap) 1R =0(K); 24 =0 (x# -1) /
@o= -—-é— coshpa
o B Bz
B, = Szeoshe= - 72 ""’“pz] (3.10)
2__1 = 12' 5fn\wg7_
g
A.=0
A = e_i(ﬁ'"*TQ-;ﬁ{—_"—c,osh@z +y A L h N e h ]
6 @ e RS - g Rilhge {2.11)
:Y y -— —
A, é"ij e i(gr-re-x) sinhfz
The closeness of the approximation:
i Her,o =0 (exactly)
(3.12)

Hzﬁ)=e'(6f—TGJI) (exactly)

[V’( (V X-_K )]r.,.ei (er —YQ‘Y){rLa:I 1-[9:[%-%- LO]—g;I Eos\n@z +E’-:-: 5,‘,—;}-,(52_3}

[V « (7 Xfﬂg= oiler-re -Y){[o] + !F.[o] - #BTl_] Jeoshpz +Eg'—sfnh B?:]g (3.13)

[V« (vxA ), - iler-ve-0){ 1]+ [a)- % [O:'*;‘?EE—‘%&— # ﬂ’i&ﬁ}’ﬂ}

The solution takes its prescribed values on the median plane exactly
~

and is Maxwelian except for terms of the order
82| ¢ *

and higher.
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For the special field
- oY, _
Hzio =€ ifeo = Hyy = 0

the (Ap)l solution is

or \tosaz azsinoz
A9=e E——--._i—-[c,‘osa.z-\-—-"'p‘:—'—

a 2

- “aml o fa_.r‘

Ex 'z c.osaz .‘:'a.zsma.lﬂ}

Solution (4p)y : Ry, =0 (k) Zx=0(x#4-1) B, =0 (v #4¢0 ~1)

@o = = -ri—coshpz.
@, = E’-’;_.; [coshpz— £2- sinhgz] (3.14)
B, » < E_ 2
2 Jegy )20k po oz vt )
-Z.—" = -@Iﬁ-— Sluh}’)@z

The closeness of the approximation:

Hr:o Iy Hz,o = 0 (exactly)

: ‘ 31D
Hz,o = e pr—vé - X) (exaclty) ( ;

[VX (Vx;f?lﬁ er(ﬂr‘Te‘x){r[o]+[o]+%-[Q] - -—T—E E:.oshpz + %7; srn\—ap:] }

7« OR], o oot LB 20 35 B e i)

[V+(V x?ﬂe, ef(ﬁ:l“—‘(&"r){r_[o]+[o]+%[OJ+£%‘.—(2—’]:5'—’%—’—&- =z 2‘%’2&]}
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This solution takes its prescribed values on the median plane exactly

and 1s Maxwelian except for terms of the order -JE!—%;‘_":';' and higher,

For the special field: H_ _ = e2r, H

z,0 )

ho = Hoo® o

the (4,::)%. solution is: Ar=A, =0

_ _orlcosa az e 4 P
Ap=e {-__Z_z’ o .2-27. E_osa,z t 2 5‘”‘2'7-] + n [a'e‘r Ryoscm - _5’42511@@2]}
a"r fa" r

: . o~ ar . _
Section IV. The field H _ = Im[e*"" (byr-16-7)]: &*sinpyr-ve-1X),
9 ¥

In order to find the pure imaginary part of certain expressions
containing ei(ﬁr‘—‘ré‘ -X) where p = @, = ia , and where a,p,,y, X are

real, the following definitions m* relations are useful.

Definitions: l'p = a+ iy = Ke (?
) -.-_-ﬁi‘r‘ "Te—'x_'h'-}l/ | (4ul)

Go_nc) - %g—rl— coshpz = (_an,r) +i(2nei)

iLn

Eoop) = K" (4.2)

where (.¢r) (2.ci) («2,sr), (2.si) are real, and are given by:

K" (thr)— cosﬂn c.osa.zcora[—»le,iz +gin_Qnsinazsm'np,iz
K" (_anl'):: -cos.Qn s.-na,zsinb{g.ir_+sin.Q.ne.oSG-.z.cos|n@12 (4.3)
" (-Qns"'] = cos_Qn cosaz%inh(z’:iz -I-anﬂn sinazcesh ﬁiz-_

Kn (Qn%,-)z ~coeL2y g{nmzws\n{alz + sinﬂncasazsmhpiz
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The following relations are also needed:
e i (@"'*Te“ I)Eﬁiﬁb_@_z__ = ea.v-{... (.Qicf) e f(ﬂic,r)g
& (ﬁr-yé'-r)cosggz. # \c a"‘g(ﬂ'&cr) + ';(.O.za.i)z
&
eilpr-ve-Mysinbpw - o @rf-(gsi) + (2,50
¢ ' (4.4)

{ (X
e_i(ﬁr‘-‘fé':r)smige?_ L g(ﬂasr)+ \( '2'%\)%
e

ei(pr-Ye—X)sinhsez. g Scnss;) i (2,5 }
e

The following expressions for partial derivatives are useful:

..52_ Q) = -1 (‘Oh-i,s) __é};___ie‘a-v(g_nc)‘]: & (0 n—i}c) ( |

4.5
2= @9 -1, O 2 Lo(0,9) | = < @nn?)
Equating real and pure imaginary parts in these expressions, one finds:
@) = (2, 4o 2 e ) J = e H2n-1%7)
j—(ﬂnCi) & _(-Qn-lsr) %— [e dr(—Q’n Ci)j =€ &7‘(_(2_”_7 cr’)
=z r (4.6)

e @] e

j 2 (Q“Si)z ‘(Qn_l“") hbr [e&" (f?_hsi{Z:e_d)—(ﬁﬂ_Isj)

These latter relations are not used in this paper, but they are
particularly useful when the vector potentials are substituted in

the differential equations of motion of a charged particle.
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If we take the pure imaginary part of equations (2.35) and
(2.36), we at once find the corresponding equations for the field
H = Im [eerﬁ(ﬁzr-ra-?r)]-
250

For this latter field, we obtain

R# ;-.0 (K) Z+J - ZD :0
@o i e:n-(_n_Ici) Z_] =—Y@°”"(./I)__2_si)
S ’ f1isr - X aor /
@_ - ~e? [(.Qz_c!) + (. J-I { Z—l = [_@35 )+2.(_QLM-)]

® > [yys .
b =g [‘fY F(_ler)z-;-%—*(_/l]c:)zlj

2

We can now write down at once the solutions (Ap)o (Ap}l 6t
for this field, as follows: bt

Solution (Ap)s: A -4, =

Ap = te er(_(lj c‘")

]

Solution (Ap)y ! A, = 4,
2

& AP
Ag = e""g(ﬁf c".)"J-;[/-QLC") 'f-;—(./l/ s*r)'B

Solution (Ap)y: A, =0
A5 = ed,f(nz ci) —_’I;—[/ﬂz_ ai)+2- (12, “7}

/42 " —re:" {'n'g_s‘j)
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Solution (,4,9);/?_ A, =0
/49 =ee»£/j),1c1'_)——;:—[(fllci)-g.—;:{f)_z Sry—f:%[ia;r
{/_(ll S"‘)L-J-MZ'L]}
3

A =y 22 (n, =)

Section V. The vector potential for the Mark V, FFAG accelerator.

We are now able to write down solutions corresponding to the
various approximations for the Mark V, FFAG accelerator, where

Hro =Hg o =0
'uf-.: 0 :Hoe-,f[m [fc‘”'-f(pe‘”'*j(‘ef r-YQ-I,/

(see equation 1.11). By using the values of ¢, Bz ¥ and jx- given
by eguations (1.13), we at once obtain the values of A corresponding
to the proposed fields for this machine. See equations (1.1) and

(La2)

Solution (4p), : A, = A, =0

Ay _ Hoeem‘f{c?az f (QJCf)}

Solution (ﬂ,)i C A, 2 A =0

A - H edr-k [ cosez I
9 HD """'—a——— -‘z—): COS&Z '*%]

#‘[ml ei)-L ((flch)*“i"_'fflf 9"))/
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Solution (A,n)] ' /4,_, =0

A5 =H a:—-rgcos'az _..I_ cosca +a>z;:~.\7 /7/;‘0-!‘54')—3’:
(/ylL“f)ﬁ-z (Yljsr) Jf
:fHo e "(fl i)

Solution (A,o)% Ayz0

4 = Her-njcosez d_ Feas 2z
Pl TR a3 = S/
fu) H {[ @ @7_ i i s @z *cosqaz- -&2simaz
g & re

TO1D %[ty s 5 g, 00)) L lore)sagsyt +

(g ei)z ])j
/4;_ f_é % eenh(_o_lsj)

Which of the above solutions are used, should be decided in accordance

with the conditions discussed in Section I. The better the approxi-
mation, the more the time required for the computation of each point
on the orbit. Higher approximations may be found in the same way.

The next one requiresC)_5 which can be found as a solution of

the second of equation (2.33).



