

GAP IN A SPIRALLY RIDGED POLE

D. W. Kerst

May 10, 1955

This is a calculation similar to that made by Terwilliger in MURA/KMT-2 but for a sinusoidal distribution of magnetic

field in the median plane instead of for a step distribution of field.

Terwilliger has pointed out that for B = B₀ γ^k (1+f $\sin \frac{x}{\lambda}$), the magnetic potential for the case of k = 0 is $V = \frac{1}{\lambda} \left\{ \sum_{k=0}^{\infty} Y_k f_k^{\lambda} \sin \frac{x}{\lambda} \sin \frac{y}{\lambda} \right\}$.

maximum gap between opposing pole

We want to calculate the

ridge tops, G, for different values of the fractional field variation, f, in the median plane. This maximum G is the separation between ridge tops for the limiting magnetic equipotential which developes an infinite crevice between ridges.

The crevices occur where $\frac{dV}{dY} = 0$ or $0 = 1 + f \sin \frac{X}{X} \cos H$ ($\frac{1}{X}$) and the value of $\frac{X}{X}$ at crevices is $\frac{X}{X} = -\frac{1}{2}$. Thus $\frac{1}{f} = \frac{1}{2}$ cosH(Y \approx /X). For this equipotential $V_{\infty} = B_0$ ($\frac{X}{X} \cos H^{-1} = \frac{1}{f} = \frac{1}{f}$) On this same equipotential surface

$$Y_{\min} = G/2$$
 occurs at $\sin x / \chi = + 1$ and it satisfies
$$V_{\infty} = B_{o} \left\{ Y_{\min} + f \chi \sin H \left(\frac{Y_{\min}}{T} \right) \right\}$$

equating

$$\frac{Y \min}{X} + f \sin H\left(\frac{Y_{\min}}{X}\right) = \cos H^{-1} \frac{1}{f} - \sqrt{(1+f)(1-f)}.$$

If we now impose the condition that the smooth approximation $\sum_{z=1}^{2} \frac{f^2 \sqrt{2}}{\sqrt{2}} = 2A.G.$ be a constant, then, since

in cases where $k \neq 0$ N is already chosen by radial motion considerations, we are imposing the condition $\frac{f}{dx}$ = constant. This is also requiring that $\frac{dB}{dx}$ = constant in the orbital

plane for different parameters tried.

The graphs show $\frac{G}{\lambda} = 2 \frac{Y_{min}}{X_{min}}$ determined by the transcendental equation above and $\frac{G}{X_{min}}$ which is proportional to the maximum gap attainable for $\frac{f}{X_{min}} = constant$, or $\frac{Y}{H} = \frac{dH}{dY} = constant$.

The curves show that $f = \frac{1}{4}$ gives about the maximum gap if one is designing for a fixed \int_{Z} , but only 10% of the gap is lost if f = .35 or .15 is used. The biggest usable value of G/λ is .28 which is a good design rule. This result is very closely the same as that given by the Illiac for the solution to the Cauchy problem with $k \sim 150$, that is for $B = B_0 (r/r_0)^k (1 + f \sin \frac{X}{3})$ in the orbital plane. Terwilliger found a broad maximum at $f = \frac{1}{3}$ for step shaped field variations.