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Contributions to the Unified Theory of FFAG Fields
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I, Introduction

Terwilliger has developed a unified theory of all FFAG
fields (unpublished) based on an expansion of the orbit equations
about a reference circle, keeping only linear terms, In view of
Laslett!s discovery that second order terms contribute focussing
effects comparable to the first order focussing, it seems desirable
to try to develop the unified theory in terms of an expansion of
the orbit equations about the actual equilibrium orbit, We there-
fore propose to assume a set of equilibrium orbits given in terms
of -suitable parameters, and to determine from these parameters
the character of the associated radial and vertical betatron
oscillations as well as the magnetic field pattern required,
II. Geometry of the Equilibrium Orbits.

We will assume that a set of closed equilibrium orbits
lying in the median plane is given., The geometrical properties
of each orbit, and the relations between orbits will be periodic
in the azimuthal angle © with period 2 T /N, Each orbit will be

specified by its equivalent radius p defined by
L =2mr (1)

where L is the length of the orbit, In general, v will be some=-
what larger than the mean radius 7 « We define an azimuthal
parameter ¢ by the equation

s=@r (2)
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where 5 1s the distance measured along the orbit from some reference
point, The reference points shall be so chosen that they lie

along an orthogonal trajectory to the set of orbits. The parameter
& will be equal to the azimuthal angle €@ plus a small periodic

function with period 2 7 /N,
Each orbit will now be specified by a periodic parameter

MAe 1 ) defined by
f/

/o{’/" /4[@ (3)

where/o is the radius of curvature, Specification of/u (@ & )

together with the requirement that the center of the orbit lie at

the origin in the median plane, completely determines the orbit £

Choice of the parameter/u is restricted only by the requirement

that it be periodic with mean value

L.
{

f/“ e 75“-"/ (4)

We will need also z parameters £ relating the

increment d8 in 8 along an orthogonal trajectory and the
perpendicula¥ distahce dx between two nearby orbits, to the increment

dr in the parameter ¢ :

(.fx == 7(:‘]-’
d@-w:ii (5)
&
The area between the two orbits is
- AT
dA = fdxds = pdr (9df =amngrde (6)
S5=0 o
If we define a mean radius j~ by
A=mF1 (7)
then we have from Eq. (6),
e O Ay (8)
77 fd{f

so that ? is very nearly 1 unless the scallops in the orbit are
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very great,
It is shown in the appendix that
&
€= (py-d& , sy =1/ (9)
and that ¥ gatisfies the differentio-integral equation
&

j{) *—ﬂj(p)-?)da—lr/,; g + ( (10}
where the constant G L4 chosen so that the right member has zero
mean value, Since the integrands on the richt have periods 27 /N ,
it is clear that the periodic part of # 1s of order 1/N%,
relative to the periodic part Of//L or %/4/ﬂ95’ (whichever is

greater), If for example, we set
A= a o (Nﬁ"(jﬁ(/f)) (11)
v =)t 5 Hh o NG-¢) + C (W - b)

(12)
and substitute in Egs (9) and (10), requiring that Eq. (10) be
satisfied to terms in sin N, cos NO, we find

G/ e &
frar e 7 (13)
/V“ 2”4
“ <
e ' i S S A | T
lmﬂjr.d? d r NV o ¢ (1)
. A
/ ey X .
¢> — 2 ﬁ_éi i1 d(/[/d
(15)
# ¥ r"- 5
& = /V A P 4 daa, (/Vf“'r‘ﬂ / [V[("a"'t )("_,'y,; - (;'f‘/‘w/

uL
!L(xf)df‘ — o2 (v & —1(:,!
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for N - 10, the coefficients £ and ° are negligible, For Mark I
machines, C = 0, while for Mark V, r dd/dr may be of order N, so
that C is of the same order as a.

In machines in which all orbits are geometrically similar,
V't and ¢ must depend only on 8 except for a possible phase shift,
so that

B, 0) = e (W~ gle)) (16)

and in order for the same to be true of /¢, by Eq. (10), we

must require that
r*"‘/ We-¢) = Ly (we-4) (17)

where A is a constant ( radial distance between ridges in units

of r). Hence
e/ = ’-”r}m s (18)
Machines satisfying Eqs (16) and (lé}owill be referred to as
machines which scale,
III, Betatron Oscillations,
If a particle of momentum p moves in an equilibrium
orbit r, then we have, by Eqs (3)
pe =eHo = SUE (19)
so that
H(r,8) = —~§/4(Q ) e
The magnetic field is thus given in terms of the coérdinates ry, S

If we differentiate Ig. (19) with respect to X, where X

is measured perpendicular to the orbit, we have

ng ‘3 _'.‘Z./j - £ Q7
H.‘_}K 1‘/ ,;Jﬂ = D K (21)
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The field index 1s therefore

n=- LM -0 _ Lo
H % Ix o Idx (22)

o ‘ 2 ,_) /ﬂ}’? }?
- Jﬁ; /b X

Making use of Egs., (3), and (5), we find

e o I (23)
Z
where
d In
ko= ’f‘/df z e (24)
S Qﬁ Fa— A--"
H ": f)_f: 3 &_ =l JZ—— (25)

According to Courant and Snyder (EDC/HSS-1, p.l), the

linearized equations for betatron oscillations about an equilibrium

orbit are
(f&v L S
ey (26)
- ‘a.-.. - j
{ -~ }“(_ — ("
e o
Jz© 2 ' i (27)
bl foeoma
beeoms-knows . by Eqs (2) and (3),
4
(i._&- -+ _.J{I-)‘L))( = ('} (28)
d@° 7
:Jiz & 0
7 Bl (29)
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The character of the betatron oscillations is therefore determined

by the functions J/aa(}?/f:) and
3 /
T = - = FX R
e A i P X (30)

If the orbits scale, then, by Egs. (16) and (18), s is a function
only of (Ne-@):

S ‘3’_7,_"_ P = _“L”—i—«
) 1 1 A s T YY) (31)

Thus‘/Lgn will be a function of (N@-=¢) only, and the betatron

oscillations will also scale provided k is constant, so that

A AV A‘ "/

e (32)
and H e ;¥ ‘ff (A/ ? - ’7__71’ :.i ’,;—)

=, (;://’L il (33)

(For a Mark I, A=c¢0 , K =0),
IV, Approximate Treatment of Betatron Oscillationse.

Since (1= /“*7) has the period 27 /N, zero mean, and
is of order 1, the first term in Eq. (10) will contribute a periodic
term in 7 of order ‘/{/Na, which is negligible for N - 10. The
integrand in the second term in Eq., (10) may be of the order of
several hundred in a Mark I or II machine in which the flutter
factor changes appreciably in a small (raction of the radius, or in
the Mark V (spiral ridge) machine proposed by D, W, Kerst, We

therefore write Eqe (10), making use of Eq. (25), in the approximate

form &
d ») % = .
L = = [ xd &
d & 'f ) (3l)

where the constant of integration is to be chosen so that fly/ﬁlé

has zero mean. (Note that since 4« =1 for all ¥, K is necessarily
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periodic with zero mean,) We have, therefore,

P

¥ = ,jf oot (35)
5o e 3

the constants of integration being chosen so that the double integral

is periodic with zero mean, If we write

M= +/_f'(.f:_ &)

(37)
where z{ 1s periodic with zero mean, then by Eq. (9),

f«/ =/ ){_:’

(38)
The second term is negligible unless the flutter factor (amplitude

of /7*7: ) is changing rapidly with r,

We now expand 1/;7 in powers of K, in Eq. (30):

/{3}2 e w /f,(lr)("f H Y

[ ':- 'f“ S Wf—)-ﬁn /
7 (£]4 4 (39)
If we separate the right side into constant terms and periodic

terms of zero mean, we get

[kr® 77, (ki + A ey SR
pin = [ER T UF R K PR e,
i 0l R 7

it bt ke @ R, eh K, UK, b G
Z i ; AR —i—;—--—----w_ = e
7 7° J

(41)
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The second term in the square brackets can be rewritten by integrat-

ing by parts:

R R S
){.lf.z =5 5}-} KJ J(/‘\'-.Ii'_: r.'[l.é’ e M—J;}" ] [f}”“:)/ ’lt’.
& -—K,i (42)

In all machines so far proposed ¥, is not greater in
magnitude than 1/10, so that we may neglect higher order terms in

4ps and Eq (40) becomes, if we also set y =1,

I

1

A

e o s T R S .
PR e S e (L:3)

Gurrent to 1% in the constant terms, and 10% in the periodic terms,

Equations (28) and (29) to this approximation become

d " w5 5 BB (LT = g .
wi)+4/Hr*X—H;+f~*#Miﬂbﬂf-y Thfd/x: i

ol ’ S 4 (L)
12 2 [,.11 —® XA ke “H=X o = L

ig? (45)

The corresponding smooth approximation equations are (KRS(MURA)=l).

2 ; Bty b g @ .
AKX Jirk e e F3 4 iy e aioa R [X = 0
gt / (46)
& iz et e s T g

J_é +- l“lf <X FL )‘{,4 b /ﬂ,i # 4 !‘/‘”- }“J Z g

d8? |

where we have neglected terms of order (1 + k)/Ne, (The last two
terms in brackets in both equations are of order k2/N2 and are also
small unless k is of order NZ2,)

The gubscript 1 indlcates the integral of the periodic part of 4

functiont &

a(l) = fﬂid{-‘g
(7)
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the constant of integration to be chosen so that a, has zero mean,
In general, a, is of order a/W,

We note that the term in;gg.drops out of the radial
focussing equation and appears doubled in the vertical focussing
equation, This is the effect discovered by Laslett for the Mark V
machine in second approximation, The present treatment shows that
(as long asJkg 1s negligible) the Laslett effect is to be expected
in any machine in which the main focussing effects come from the
terms in Y. The present derivation involves no approximation so
far as the equilibrium orbit is concerned, It is curious to note
that according to the present derivation, the Laglett effect arises
out of a coincidence in phase between the term.y'arising from differ=
ences in amplitude and phase of the scallops in adjacent orbits,
and the term X, in.7 arising from the variation in perpendicular
distance between orbits as a function of £ 4 The effect is therefore
due to the fact that where ¥ is positive, the orbits are farther
apart, and where ;/ is negative, they are closer together, so that the
positive gradients are smaller and the negative gradients larger,

The alternating gradient term V 1s still present in the radial
aquation (l4l) and is in fact larger in magnitude than the mean term
-gg-by a factor of the order of N2. However the focussing effect
of an AG term is less by a factor 1/N2 than that of a constant term,
hence the cancellation in the smooth equation (L6).

The number of betatron wavelengths per revolution given by

Eqse. (46) and (47) for radial and vertical motion are given by

|

>

& 5 g A 142 ¢ 2k aX
25 =itk +F F +A/. Vel | (48)
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(49)
In Mark I and Mark II machines, ¢ 1s zero or small, and the terms
in /ZJT} are the dominant AG focussing terms. We can then solve

Eqss (L49) and (50) for k,/;?I as follows:

ngley a O R L
2h = . -1 24X, A ot ./ﬁ (50)

Sy —_— = &
- g R 7 4 e d__ JEo ==
Jf‘;‘/,z = jjx +)jz ‘_/ a’)'(; ‘,Lk/‘ I o (51)

It is clear from Eqe (50) that if ), ./ are to be independent of r,

k must be very nearly so, since only the small termscan depend on I.
It is also clear from Egq, (51) that /:;i must be of the order N ¥ /k/a;
k can not be larger than g?m/?, if 3 << s and since N

nust be at least Ly 1in order for the smooth approximation to

be valid, we have /ji‘mféa An accurate treatme nt of Mark I in a
typical case yields flutter amplitudes of L to 6 in fleld, In the
Mark V machine, Kk 1s of order N° and is the dominant AG focussing

y -
serm; In this case, we can write

-

v ykg—f._. 2}‘/‘?‘_)7' —-L\j‘r‘;:&- /Z‘_;“ = 17 (53]

frenn Pl L ;AR o =2
aR: = AR Ak an - AT (5k)
Here again, k must be nearly independent of r, if 1, is. If V<< Y
then k must be of order@ NY /[53 k can not be larger than ))KE, ;
and if we set W =I+L& y We have}<~J3k.
Ve Approximate Magnetic Field Patterns,

Let us considcr a scalloped equilibrium orbit given in



=y P
terms of polar coordinates r, & by
= /C'_[/#*a‘(](/vg"ib)] (55)
where g (5 ) is a periodic function of ¥ with period A7, zero

mean, and unit amplitude, and a and ¢ may be functions of rs The

factor a is of order 1/N°, We then have

Js = Jipi 1T = Fd6 /17 2ag + N uh'%s a’y? (56)
ds = Fd@ [I+ag+inilgd] (57)

to within ,01% if N Z 10, The bracketed factor is 1 to within-1%.

The length of the orbit is
z‘fj —Ff““* N gr? e
et ol R g (59)

= AaF [I1+4N ‘n_“fi]
so that, by Eqe (1)
r = Flretna’y?] (59)

where the bracket is 1 to within 1%, By eqs (2), we have
/ N
do = do [1reg i ey /

s f*'ﬁfVi22§7i
= 4

to within 1%, so that

ﬁ s 6 Tt (;90('1_’) (61)

(60)

where é&fﬁj is the equation of an orthogonal trajectory to the
orbits, or a Mark I machine, a radius through the center of either
a focussing or defocussing sector (or in general through a point

where g has a maximum or minium) will be an orthogonal trajectory,

and 5. will be constant., FPor a Mark V. the orthogonal traiesectory
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will oscillate very slightly about a radius, being slightly convex
to the left in a region of high figld and to the right in a region
of low field if the ridges spiral outward toward the right. It

is probably a good approximation in any case to set © = 84 Egs.
(61) and (55) give the transformation from coordinates r,8 to r, 9.

The radius of curvature is given by

.
. v (62)
where, for polar coordinates,
o d 71 de ;
gt e de = d; ]‘“7 (63)
and
//, (Jr)i? J& = rJ(? (6h)

within 1%, so that

el Lol ] :

£ li-%(F4E) (65)

If we substitute from Eq. (55), we have, neglecting terms of order
1/8°,

e ?{5 = /—Ngag”(/t/ff—w

(66)
Since the flutter factor N° a is ordinarily between ﬁ and l,
we see that a is of order 1/N2. The mggnetic field can now be
computed from Eq, (20) along the orbit, gnd we can substitute
E = [iveq (/l/é’-é)]m’ (67)

to get H in terms of r, @, If k is constant, the magnetic field is

H=H,(£) k[: tag (/v&-«;a)]‘;‘[/- Wiag®ne-¢)] (68)

(h-i % 3
——/J(k) [{ ”‘*f{ /Vaj t ‘f—*)“ﬁ g (69)
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Since k f& Nz/u, the higher order terms will be small, %though not
always negligible, For a sinusoidal flutter, g" = =g, and Eqe. (69)

becomes

. ‘ : fi Tillt- d
K= H, {7’}) [/H/Vi/f)a.g + L%—-{,“ 9+ 7 (70)

so that the required flutter along a circle is somewhatiless than

along the orbit,

Appendix, Derivation of formulas for )})é.

Consider the diagram, Fig. 1,

in which BC 1s an arc of the
equilibrium orbit r having center
of curvature at A, and B!'Cf is

an arc of the equilibrium orbit

r + ér having center of curvature
at A'y (The labels on the diagram
Fig.l, are for purposes of this
discussion only and have no
relation to the meanings o¢f the
same symbols in general FFAG

theory.) Primed symbols refer

to the orbit r + dr. We have,

in terms of the orblt parameters,

Flgs 1 /Q'i/uufﬁ (1)
gl =g (2)

AB =AC =t/ u (3)

B =AC =@ 2 LM (L)

b= A8 =506 tyst (5)
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AT = ey ety de (6
¢ = P ¢br1§ (7)

/
Where the last three equations are true in the limit §r —0, de -0,

We will pass first to the limit d@ — O and then to JSr —> 0,in
order to obtain a differential equation for 1.

We note first the following geometrical relationships,

AV =7 +d-0 -4 (8)

iE 77~;w’-:/3+¢,—fp (9)

L bl-2akbces p = (a-b) Yt Hhabac ;—) (10)

e el (11)
sin b, = y Lt 1) (12)

& i (- ¢)-*é»f2¢t(r+¢> (13)

If in Eqe (12), we let d9 -—> 0, we have, in view of Egs, (1), (7),

,d/w\q.l) + ngJE_} o = é‘bd*mﬂ r/}/ﬂ‘{@—zc’cﬂ o

(14)

t/) -~ 9 :'/_::_): Corg
g L a (g0 ¢

=g 1P ahely (15)

We now set
é), = éf’ + 85 (16)
5 E
$8 = € -{—‘ (17)

I/
so that, as §r -» 0, we have, by Eqs. (I), (5), and (10), since
¢ 1s of order S r

I

a = ’—::__(’: +/ /

/A /,‘—‘- /4

- - & = ik - &
it f/, £ plg '/]{“)

//4‘ /

— &l
. (18)

hl'('

(19)
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P g
a A«Aﬂ‘{ﬁb = -Lm *
242 i

(20)
Equation (15) then becomes, to first order in {r,
:_[-¢A+I—‘u + € e St

o _ (21)
Pl - S =

where the sign of the square root i1s determined by the fact that
cos A 1is positive for large values of '7 P

If we substitute Egqs (16) and (17) in Eq. (2), and let
d® — 0, making use of Egs. (1) and (9), we have

b~ ¢ 1/“JQ“yMJ§

.:—-M)Jﬁ +/IA éﬁ i_!_dé) (22)

We now let 52 ~—> 0, and use Eq. (21);

L—F/"fr/”l’ ié// 1"/4{ ?’/ 49 = i/t/ f’((—-féﬂ / ‘fﬁ +1‘AE ’(/l’:

»

£ BB
e = o -7/-/ (23)
According to LEgqse. (16) and (17), ¢ is a measure of the rate of
change of the parameter § as we move out along an orthogonal trajec=
tory to the gystem of orbits, If we assume that the points 8 = 0 on

all orbits lie along an orthogonal trajectory, we can integrate

(23) to obtainsg
74

=J Gpu-1)de (24)
o Z
Since & (r, 8) must be periodic in 8, we have the result

dii

7 ATy

=3

(25)
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We now substitute Egs, (5) and (6) in (13) using (8):

¥ r . o (D ———4—,—5)
= +ySe+ypdBAr = (5 4yée)
A~ é oo (bt & f’) (26)
A d8 — 0, this becomes
Ty 485 r :—:~(/:-Z—+7éf)/u4.€?7fm¢ (27)
We now let dr — 0
[ i)
Equation (2) can be rewritten with the help of Eq. (2l):
D ) -
— = = - Sr
d_[? J(_9 gﬁé) 1‘_ f%l’,—}_;’_ (29)
This can be integrated to yield
) £ l Sr
b = mEt N rou AP _],___.
7 Z// s ‘"/fJ- * + (30)
When the lntegration constant is clearly to be chosen so that
B A7 fign3
=4 (pdb =0 ?
o

The angle cﬁ is of some geometrical interest in 1tself as a
measure of the amount by which nearby orbits are out of parallel,
We may substitute Eq., (30) in Eq, (28), to obtain a differential

equation for ‘7 along any orbit r:

S ( C
~—7, = (i-y “)C‘é) f 40 + (32)
o5 7 /t

where C is to be so chosen that the right member has average value
zero, When Eq, (32) is integrated, the integration constant must be
chosen to satisfy Eq, (25), or, alternatively, Eqs (8) of

Section II,



