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ABSTRACT

The introduction of antibacterial drugs in the middle of the last century heralded a new era in

the treatment of infectious disease. However the parallel emergence of antibiotic resistance and

decline in new drug discovery threatens these advances. The development of new antibacterials

must therefore be a high priority.

The biosynthesis of the bacterial cell wall is the target for several clinically important antibac-

terials. This extracellular structure is essential for bacterial viability due to its role in the

prevention of cell lysis under osmotic pressure. Its principal structural component, peptidogly-

can, is a polymer of alternating N -acetyl-glucosamine (GlcNAc) and N -acetyl muramic acid

(MurNAc) residues crosslinked by peptide bridges anchored by pentapeptide stems attached

to the MurNAc moieties. The biosynthesis of peptidoglycan proceeds in three phases. The

first, cytoplasmic, phase is catalysed by six enzymes. It forms a uridine diphosphate (UDP)

bound MurNAc residue from UDP-GlcNAc and attaches the pentapeptide stem. This phase is

a relatively unexploited target for antibacterials, being targeted by a single clinically relevant

antibacterial, and is the subject of this thesis.

The Streptococcus pneumoniae enzymes were kinetically characterised and in silico models of

this pathway were developed for this species and Escherichia coli. These models were used to

identify potential drug targets within each species. In addition the potentially clinically relevant

interaction between an inhibitor of and feedback loops within this pathway was investigated.

The use of direct parameter estimation instead of more traditional approaches to kinetic char-

acterisation of enzymes was found to have significant advantages where it could be success-

fully applied. This approach required the theoretical analysis of the models used to determine

whether unique parameter vectors could be determined. Such an analysis has been completed

for a broad range of biologically relevant enzymes. In addition a relatively new approach to

such analysis has been developed.
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1. INTRODUCTION

1.1 Antibacterials and antibiotic resistance

The introduction of antibacterial drugs to the clinical arsenal in the middle of the last century

heralded a new era in the treatment of infectious disease [1, 2]. However the parallel emergence

of antibiotic resistance and decline in new drug discovery threatens these advances [3, 4, 5].

Consequently making progress on the development of new antibacterials must be seen as a

critical priority for the academic and pharmaceutical communities and is the subject of this

thesis.

The development of antibiotic resistance is inevitable once a drug enters widespread use [6].

The prevalence of these drugs creates selective pressure encouraging the evolution of resistant

strains [7]. Furthermore, where broad spectrum antibiotics are used, the elimination of compet-

ing bacterial flora provides an ideal environment for the proliferation of such strains [7]. While

resistant strains were initially encountered in nosocomial infections they are increasingly ob-

served in community acquired infections [8]. Worldwide reports of emerging multidrug-resistant

Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, provides a worrying ex-

ample of the scope of this problem [9, 10, 11].

Historically the majority of new antibacterials have been developed by modification, or synthesis

of analogues, of natural products [7, 12]. Despite this, still rich, source of antimicrobials, new

drug discovery has declined in the last thirty years [5, 12]; there was a gap of almost four

decades before the introduction of a new class of antimicrobials (oxazolidinones) after 1962
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(quinolones and streptgramins) [2]. The causes of this trend are by no means simple, however

the economics of drug discovery must be considered a significant factor [1]. With the cost of

drug development rising four fold between 1987 and 2000 [1]; antibacterials typically requiring

only short treatment periods; and high attrition within the antibacterial development pipeline,

this area of research is an increasingly unattractive proposition for the pharmaceutical industry

[13].

Little can be done about the effectiveness of antibacterial therapy; however reducing the cost

and attrition in antibiotic development may be achievable. The use of in silico models to design

inhibitors based on crystal structures may reduce the cost of drug discovery [14]. Furthermore

the ability to model increasingly complex biological systems may allow the effectiveness of a

particular inhibitor to be assessed, thus further reducing cost and attrition [15, 16]. The focus of

this thesis is the development of an in silico model of the cytoplasmic phase of the peptidoglycan

biosynthesis pathway; a potential antibacterial target [17].

1.1.1 Antibacterial mode of action

Antibacterials are drugs which interfere with a process or structure that is essential for bacterial

viability without compromising the eukaryotic host. There are presently three main antibac-

terial targets [7]: bacterial DNA transcription and replication; bacterial protein synthesis; and

cell wall biosynthesis. These areas are briefly discussed in the following section. Other potential

modes of action, such as the disruption of cell membranes [18], exist but are not considered

here.

1.1.1.1 Bacterial DNA transcription and replication

In order to allow transcription and replication of DNA, the two strands of the double helix must

be separated [19]. This process is mediated by topoisomerases which cleave and then recombine

one or both DNA strands to release tension when the DNA is uncoiled. Bacterial cells possess
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unique topoisomerases, not found in eukaryotes, such as DNA gyrase and topoisomerase IV

which are the targets of the fluoroquinolone family of antibacterials [19, 20]. These drugs form

a complex with cleaved DNA and the topoisomerase inhibiting religation and causing a fatal

accumulation of double-strand breaks [7]. Transcription of DNA is also inhibited using the

rifamycin family of drugs [21]. These drugs bind to the β subunit of bacterial RNA polymerase.

The nitroimidazole group of drugs is capable of oxidizing DNA and proteins causing damage to

both [22, 23].

1.1.1.2 Bacterial protein synthesis

The bacterial protein synthesis mechanisms are sufficiently different from their eukaryotic coun-

terparts to provide numerous targets for antibacterials. The focal point of protein synthesis is

the ribosome, a ribonucleoprotein assembly of two subunits, 30S and 50S, which associate upon

initiation of protein synthesis [24]. Inhibitors of protein synthesis target either distinct subunits

of the ribosome or the various steps in protein synthesis. Examples include: the macrolides,

preventing translocation; tetracyclines, which compete with tRNA; and aminoglycosides which

cause misreading of mRNA [7].

1.1.1.3 Cell wall biosynthesis

The bacterial cell wall is essential for preventing cell lysis under osmotic pressure and thus for

bacterial survival. The principal source of mechanical strength in the structure is a polymer

of alternating glycan residues crosslinked by short peptide bridges called peptidoglycan [25].

It is associated to the extracellular face of the plasma membrane. The biosynthesis of this

macromolecule is described in detail in Section 1.2. The major antibacterials used in human

medical treatment known to target this process are presented in Table 1.1.
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Antibacterial Mode of action

Fosfomycin [26] The N -acetylmuramic acid subunit of peptidoglycan is

derived from N -acetylglucosamine by the addition of a

lactic acid substituent derived from phosphoenolpyru-

vate. The pyruvyl transferase enzyme involved is MurA

and is inhibited by fosfomycin.

D-Alanine analogues [27, 28] The terminus of the pentapeptide sidechain is a dipep-

tide of two D-Ala moieties. This dipeptide is produced by

racemisation of L-Ala to D-Ala and subsequent ligation

by a D-Ala-D-Ala ligase, Ddl. The racemisation reaction

is inhibited by a number of D-Ala analogues. Both re-

actions can be inhibited by D-cycloserine, an antibiotic

used in the treatment of tuberculosis.

Ramoplanin and analogues [29] Ramoplanin is a lipoglycodepsipeptide active against

Gram-positive bacteria. It inhibits the uptake of N -

acetylglucosamine by growing cells with a resultant accu-

mulation of UDP-MurNAc-pentapeptide (U5P). Inhibi-

tion is of N -acetylglucosaminyl-transferase, MurG, that

adds N -acetylglucosamine to the undecaprenyl-muramyl-

pentapeptide.

Bacitracin [30] The lipid carriers involved in transporting the disaccha-

ride subunits across the cell membrane are C55 isoprenyl

phosphates. In the transport process the lipid acquires

an additional phosphate moiety and must be dephospho-

rylated to continue transport. Bacitracin binds to the

isoprenyl pyrophosphate preventing dephosphorylation.

β-Lactams [31] β-Lactams inhibit the transpeptidase domain of penicillin

binding proteins, PBPs, by forming an acyl-enzyme com-

plex which is very slow to degrade. This inactivates the

PBPs preventing the crosslinking reactions which provide

rigidity to peptidoglycan.

Glycopeptides[32] These molecules bind with high affinity to the un-

crosslinked D-Ala-D-Ala termini of the MurNAc-

pentapeptide moieties. This steric hindrance prevents

crosslinking with similar effect to that of the β-lactams.

Table 1.1: Medically relevant classes of antibacterials that inhibit cell wall synthesis and their mode
of action.
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1.1.2 Mechanisms of antibacterial resistance

Bacteria have evolved a variety of antibacterial resistance mechanisms broadly categorised into

the following groups: reduction of antibacterial concentration in the cytoplasm; inactivation

or modification of the antibacterial; and alteration of the antibacterial target [7]. Validated

responses to these antibacterial resistance strategies are also discussed where they have been

developed.

1.1.2.1 Reduction of antibacterial concentration in the cytoplasm

The control of metabolite concentrations within the bacterial cell is necessary for viability.

Naturally it requires mechanisms for influx and efflux of metabolites. Given that the majority

of antibacterials target intracellular processes these mechanisms are a natural area in which

antibacterial resistance can evolve [33].

Gram-negative bacteria have two cell membranes encasing the bacterial cell wall, Figure 1.1.

The outer membrane is composed principally of lipopolysaccharides which carry a net negative

charge. This membrane significantly reduces penetration by hydrophobic molecules in com-

parison to inner phospholipid bilayers, providing a passive defence against certain antibiotics,

such as the glycopeptides [34]. Influx of hydrophobic compounds to these bacteria is dependent

on specialized porins. Where antibiotics take advantage of these paths bacteria may adapt by

reducing or eliminating formation of the porins used [35]. Alternatively the structure of the

porin can be altered preventing efflux of the challenging antibacterial [36].

Most Gram-positive organisms are less well protected from penetration by antibiotics, Figure

1.1, [37]. The peptidoglycan macromolecule does not typically pose a barrier to molecules

smaller than 50000Da. However modifications to the cell wall structure can reduce penetra-

tion by antibiotics; as demonstrated by the intermediate vancomycin-resistance phenotype of

Staphylococcus aureus. Here increasing the cell wall thickness and incorporating unamidated
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glutamine allows the cell wall to bind more vancomycin, preventing it from reaching its target

[38].

Efflux pumps, ATP or proton motive force dependent membrane proteins, are found in all bac-

teria and are used for the transport of lipophilic and amphiphatic molecules [39]. They also

prevent the accumulation of fatal concentrations of antimicrobials in antimicrobial producing

species [40]. Proteins of this type are implicated in numerous cases of clinically relevant an-

tibacterial resistance [41, 42]. Inhibitors of these pumps, intended to reverse this resistance, are

currently under development [40, 43].

1.1.2.2 Inactivation or modification of the antibacterial

The two classical examples of this strategy are hydrolysis of the β-lactams by β-lactamases

and enzymatic modification of the aminoglycosides [7]. The β-lactamases may represent a

modification of the PBPs, sharing as they do similar functional structure and binding affinity

to the β-lactams [44]. However these enzymes hydrolyze the β-lactam ring much more rapidly

than the PBPs inactivating these drugs [45]. The spread of β-lactamase genes via mobile

genetic elements, such as plasmids, has allowed the rapid spread of this form of resistance and

its integration with other resistance strategies, yielding multidrug resistant strains [46]. The

use of β-lactamase inhibitors to restore the efficacy of β-lactams has yielded some success and

is of great potential interest [47].

The aminoglycosides are not subjected to hydrolysis. They are instead modified by the addition

of acetyl, nucleotidyl and phospho groups by appropriate transferases decreasing their affinity to

their target, ribosomal RNA, [48]. The addition of these groups is necessary to control processes

within the cell indicating a route by which this resistance strategy may have developed [49].

While inactivation of the antibiotic is sufficient for antibacterial resistance, it is unlikely that

this completes the metabolism of the drug. It has been shown that some species of soil bacteria
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can subsist using certain antibiotics as their sole carbon source [50]. While soil bacteria have

historically been a source of antibacterials, they are also likely to be a source of antibacterial

resistance genes.

1.1.2.3 Alteration of the antibacterial target

Alterations to the protein machinery necessary to the viability of the cell may be risky however

it has proven effective in introducing antibacterial resistance. Mutation of PBPs producing

enzymes with low affinity to β-lactams is another source of resistance to these drugs [7]. The

MRSA phenotype has developed by this route [51].

Vancomycin resistance can also be attributed to this type of strategy. Vancomycin binds to

the D-Ala-D-Ala terminus of the MurNAc pentapeptide moiety within peptidoglycan. When

an alternative dipeptide is used, D-Ala-D-Lac, the hydrogen bonding network required by van-

comycin is disrupted drastically reducing the effectiveness of this drug [52].

1.1.3 The cost of antibacterial resistance

The cost of antibacterial resistance from the economic and health care perspectives has been

much discussed, for examples see [3, 45, 53, 54]. It has been observed that antibiotic resistant

infections result in higher mortality, prolonged hospitalisation, and higher health care costs

relative to antibiotic susceptible bacteria [55]. Three studies, summarised in [54], show signifi-

cant increases in these measures, a five fold increase in mortality in one case, where infections

were resistant. The broader economic cost of antibacterial resistance to the USA economy

was estimated at between 0.1-30 billion USD in 1989 [56]; follow-up of this study would ap-

pear to be lacking. Nonetheless what data are available indicates that the development of new

antibacterials is justified economically and socially.
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1.2 Construction of the bacterial cell wall

There are at present six major classes of antibacterials targeting the construction of the bacterial

cell wall, Table 1.1. However as yet many of the stages within the pathway are not targeted

by effective antibacterials [28]. Of particular interest, in the context of this thesis, are the

inhibitors of cytoplasmic phase enzymes which have been discovered, but as yet not developed

as antibacterials [57]. Some additional inhibitors of the amino acid ligases have been developed

since that review, for example [58, 59, 60, 61, 62, 63].

Several of these inhibitors, specifically targeting MurC or MurD, were shown to have antibac-

terial effect in vitro [62, 63]. These inhibitors demonstrate that inhibition of this section of the

pathway can have antibacterial effect, but raises the question of why other inhibitors have as

yet proved ineffective. Passage through the cell membrane may be a problem in the case of the

phosphinate inhibitors, for example [64]. Competitive inhibition can be overcome by sufficient

accumulation of the substrates with which the inhibitor competes. This effect has been termed

metabolic resistance and may also be a factor [65, 66, 67]. It should be possible to study this

effect through in silico modelling of the pathway.

The structure of the bacterial cell wall is reviewed briefly in the next section. In the following

sections the peptidoglycan biosynthesis pathway is covered. The cytoplasmic phase, being the

focus of this thesis, is covered in the most detail. The remaining membrane bound phases and

remodelling and recycling phases are then covered briefly.

1.2.1 Cell wall structure

Bacteria are broadly classified as Gram-positive or Gram-negative based on their reaction to

a particular iodine-dye complex. Staining with this reagent is dependent on cell wall struc-

ture. Where Gram-positive bacteria have a thick (20 - 80nm) peptidoglycan layer which reacts

strongly with Gram’s reagent, Gram-negative bacteria have a relatively thin layer of pepti-
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doglycan surrounded by a second cell membrane which excludes the dye, Figure 1.1 [68, 69].

As observed above, Section 1.1.2.1, these differences significantly affect the bacterial response

to antibiotics. However, the changes in the peptidoglycan biosynthesis pathway necessary to

support these differences are as yet uncharacterised.

Gram-positive Gram-negative

Peptidoglycan
layer

Cell membrane

Surface protein

Lipoteichoic
acid

Membrane protein

Teichoic acid

Peptidoglycan
layer

Inner membrane

Porin

Membrane protein

Liposaccharides

Periplasm

Outer membrane

Figure 1.1: Schematic diagram of the Gram-positive and Gram-negative extracellular structure. In
both species a peptidoglycan layer forms the structural basis of the cell wall, a thicker
layer being present in Gram-positive species. Gram-negative species have two cell mem-
branes, Gram-positives a single membrane. Lipoteichoic acids are found only in Gram-
positive species. They are lipolyated polysaccharides which extend through the peptido-
glycan layer to the cell surface; they act as antigenic determinants. Lipopolysaccharides
are found only in Gram-negative species and act both as a structural component of the
outer membrane and as antigens.

Living cells concentrate metabolites and cellular machinery within a confined volume. This

results in a significant pressure differential across the cell membranes. Without structural

support this pressure would result in osmotic lysis and consequently cell death. In bacterial

cells, the cell wall, specifically the peptidoglycan layer, is responsible for satisfying this need

[70]. In Gram-positive bacteria it also provides an anchoring point for a variety of cell surface

molecules [71].

Peptidoglycan is composed of a linear glycan backbone of alternating N -acetylglucosamine,

GlcNAc, and N -acetylmuramic acid, MurNAc, subunits. This backbone is common to all

bacterial peptidoglycans and has only minor variations between species. In S. aureus up to

half of the MurNAc moieties have an O -acetyl group on the sixth carbon which is known to
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provide resistance to lysozyme and is implicated in resistance to β-lactams [72]. The glycan

strands found in a given cell wall are of varying lengths, average lengths vary between species

[73, 74, 75].

Pentapeptide stems extend from the carboxyl group of each MurNAc moiety. These stems

are crosslinked either directly or by short peptide bridges, dependent on bacterial species [71];

transforming the glycan strands into a rigid mesh. The typical peptide sequence of this stem

is L-Ala-D-Glu-X-D-Ala-D-Ala; where X is an L-amino acid with an amino sidechain. The

alternating stereochemistry of the amino acids is unique and prevents attacks by proteases. The

third peptide in the stem is typically L-Lys in Gram-positive species and 2,6-diaminopimelic

acid, mDAP, in Gram-negative species [76]. Variation of the other peptides is less common but

is implicated in a number of resistance strategies. For example alteration of the terminal D-Ala

to a D-serine or D-lactate is associated with weak or strong vancomycin resistance respectively

[77, 78].

Crosslinks are typically formed between the third and fourth peptides of two stems. In general

if the third peptide is mDAP this link is direct, if it is L-Lys the link is indirect [76]. The degree

of crosslinking can vary substantially depending on which penicillin binding proteins (PBPs)

are present. In certain cocci, S. aureus for example, more than 90% of the peptide side chains

are cross-linked, while in bacilli only 20-50% are cross-linked [79].

1.2.2 The cytoplasmic phase of cell wall biosynthesis

The first committed steps in the cell wall biosynthesis pathway occur in the cytoplasm, Figure

1.2 [17]. Two enzymes, MurA and MurB, convert UDP-GlcNAc (UGP) into UDP-MurNAc

(UMN). The pentapeptide stem is then constructed by four amino acid ligases, MurC, MurD,

MurE and MurF. The substrates of this pathway are used in a variety of metabolic functions

with the exception of D-Glu and D-Ala-D-Ala which are formed by MurI, glutamate racemase,

and Alr, alanine racemase, and DdlA/B, the D-alanine ligases.
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Carbohydrate metabolism

Figure 1.2: Schematic diagram of the cytoplasmic phase of cell wall biosynthesis, [17]. L-DA denotes
an L-diamino acid.

1.2.2.1 Formation of UDP-MurNAc

The hexosamine biosynthesis pathway, a subsection of carbohydrate biosynthesis, converts D-

fructose-6-phosphate to UDP-GlcNAc, which is then incorporated into several macromolecules:

peptidoglycan, lipopolysaccharides, and teichoic acids in bacteria [80]. The first committed step

of peptidoglycan biosynthesis is the addition of the enolpyruvate group from phosphoenolpyru-

vate, PEP, to UDP-GlcNAc to give UDP-GlcNAc-enolpyruvate (UDPPEE). This reaction is

catalysed by UDP-N -acetylglucosamine enolpyruvyl transferase, MurA and MurZ [81, 82]. The

E. coli and S. pneumoniae forms of this enzyme have been kinetically characterised on steady

state and pre-steady state time scales for a range of experimental conditions [82, 83, 84].
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The reduction of the vinyl bond of UDPPEE, catalysed by UDP-N -acetylenolpyruvylglucos-

amine reductase, MurB, yields UDP-MurNAc [85]. The reaction proceeds via a hydride transfer

mechanism transferring electrons from NADPH to FAD, a tightly bound cofactor of MurB, and

finally to the unsaturated substrate. The E. coli and S. pneumoniae forms of this enzyme have

been kinetically characterised on steady state and pre-steady state time scales [85, 86]. In vitro

reconstructions of the peptidoglycan biosynthesis pathway suggest that it is possible to produce

an unreduced form, UDPPEE-pentapeptide, by omitting MurB.

1.2.2.2 Structure and catalytic mechanism of MurA and MurB

Crystal structures of MurA from E. coli and Enterobacter cloacae reveal two globular domains

connected by a double stranded linker [87, 88]. The folds of these two domains are very similar,

three parallel α-helices enclosed in three further helices and three β-sheets. This structure

closely resembles that of 5-enolpyruvylshikimate-3-phosphate synthase, the only other known

enolpyvuyl transferase.

UGP is constrained at the catalytic site by hydrophobic associations and hydrogen bonds be-

tween the uridine ring and regions of these two domains. The result is highly specific binding

to the uridine ring. However since the cytoplasmic phase intermediates all contain this moiety

some may also be bound by MurA with possibly inhibitory consequences. A covalent adduct

can be formed between PEP and an active site cysteine [84]. This is exploited by the antibiotic

fosfomycin [89, 90]. The antibiotic has no effect on M. tuberculosis MurA which lacks an active

site cysteine [91, 92].

The reaction proceeds by ordered formation of a tetrahedral intermediate, with UGP binding

first followed by PEP [84]. The subsequent elimination of phosphate completes the reaction.

The binding order proposed is substantiated by the significant conformation changes observed

on binding of UGP. The resulting closed state facillitates the binding of PEP [93].
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Crystal structures of MurB show it to be composed of three domains of mixed α+ β structure

[94]. In the absence of UDPPEE the third domain swings closer to the other domains, conse-

quently leaving the enzyme in a more closed conformation. However this movement opens the

channel through which the substrate accesses the active site.

Kinetic studies suggest that the mechanism should be described by a ping-pong model [95].

This observation is substantiated by NMR studies which indicate that both substrates use

the same binding pocket [96]. Furthermore these results are consistent with the bound FAD

cofactor mediating the two electron transfer from NADPH to UDPPEE. The overall reaction

is composed of two stages, first the NADPH substrate binds and is oxidised, reducing FAD to

FADH2. The release of NAD
+ then allows binding of UDPPEE which is reduced to UMN while

the bound cofactor is oxidised returning it to its original state.

Substrate inhibition has been observed for both substrates. The inhibitory effect created by

UDPPEE is much stronger than that produced by NADPH [95]. Given the mechanism described

above, this likely arises from the formation of a nuisance complex containing the wrong substrate

for a given oxidation state of FAD.

1.2.2.3 Construction of the pentapeptide stem

The pentapeptide stem is appended to the lactyl group of UDP-MurNAc by the sequential action

of four amino acid ligases: MurC, MurD, MurE, and MurF, Figure 1.2 [57]. These enzymes

require a Mg2+ cofactor and use ATP. The amino acid sequences of the E. coli enzymes share

10-20% sequence identity, suggesting that these enzymes may be evolutionarily related [70].

A comparison of these enzymes across seven bacterial species found them to share a common

ATP binding sequence and six separately conserved amino acids [97]. The reactions catalysed

by these enzymes share a common mechanism [57].

Variability of the pentapeptide stem between and within species has been observed. Specifically
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in Gram-positive species typically L-Lys is found in the third position, while in Gram-negative

species m-DAP is usually found here. This is specified by the form of MurC encoded by the

species. As has been noted previously alternatives to the classical D-Ala-D-Ala terminus are

found in vancomycin resistant S. aureus. MurF has been shown to utilise a number of alternative

dipetides so alternative forms of MurF are not needed in this case.

Each of the E. coli ligases has been kinetically characterised for steady state time scales [98,

99, 100, 101, 102]. The results are summarised in Table 7.4.

1.2.2.4 Structure and catalytic mechanism of the amino-acid ligases

Crystallisation of MurC has shown that it exists in equilibrium between monomeric and dimeric

states. No kinetic differences have been observed between these two forms [103]. As noted above

the amino-acid ligases show a high degree of sequence homology. These similarities are reflected

in the crystal structures obtained for MurC, MurD, MurE and MurF [104].

Each of the amino acid ligases are composed of three globular domains each of which contains

the binding pocket for a specific substrate. The ATP binding pocket is located on the central

domain and is closely associated with a conserved glycine rich loop which resembles the canonical

mononucleotide P-loop observed in ATP and GTP binding proteins. This domain also contains

Mg2+ binding motifs, indicating that it is responsible for coordinating these essential ions.

The central domain is the mostly closely conserved of the three domains across the amino-acid

ligases.

The C-terminal domains are also essentially topologically conserved and have a Rossmann-type

fold. However these domains lack the dinucleotide binding motif usually associated with such

folds and are believed to be responsible for binding the amino acids. They also contribute some

residues to securing ATP.

Despite these commonalities each enzyme is highly specific to an amino acid/UDP-intermediate



1.2. CONSTRUCTION OF THE BACTERIAL CELL WALL 15

combination. This specificity is thought to be determined by the N-terminal domains of each

ligase which display much greater sequence variety [17]. The N-terminal domain is responsible

for binding the UDP-intermediate. The structure of this domain takes two forms, one in MurC

and MurD and a second in MurE and MurF. This reflects alternative means of securing the

UDP-intermediate. MurC and MurD rely on securing the uridine ring by means of hydrophobic

regions and hydrogen bonds, in a manner similar to that employed by MurA. However the

increased length of the amino-acid stem associated with the substrates of MurE and MurF may

render this approach intractable. Regardless for these enzymes the UDP-intermediate appears

to be secured by a hydrogen bonding loop which directs the end of the stem towards the binding

pockets for ATP and the amino acid. The end of the stem appears to form associations with

domains 2 and 3 for these enzymes [104].

The four enzymes appear to take a relatively open conformation in the absence of substrates.

This is believed to contract to a closed form upon substrate binding to shelter the catalytic site.

In MurF this is particularly pronounced [105].

The reaction catalysed by each ligase is believed to proceed as follows. An acylphosphate inter-

mediate is formed by ATP and the nucleotide substrate stabilised by the enzyme. Nucleophilic

attack by the amino group of the condensing amino acid or dipeptide follows releasing phos-

phate and forming the peptide bond [106, 107]. In MurD the binding order has been shown

to be: ATP, UDP-MurNAc-L-Ala, D-Glu [108]. MurD and MurE derived from E. coli and S.

pneumoniae have been shown to produce adenosine tetraphosphate in the absence of amino

acid substrate [109, 110]; MurC does not.

1.2.2.5 Production of D-amino acids

D-alanine and D-glutamic acid are directly synthesised from their respective L- forms by the

racemases Alr and MurI [111, 112]. An alternative route for D-Glu formation has been observed

catalysed by a D-Ala aminotransferase [113]. The D-alanine dipeptide is formed by an ATP
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dependent D-Ala:D-Ala ligase, Ddl [114]. Inhibitors of these enzymes have been discovered

which have antibacterial activity, D-cycloserine being clinically used antibiotic [27, 115]. Kinetic

characterisations of these enzymes have yet to be undertaken.

1.2.2.6 Data available for pathway modelling

As noted above each of the enzymes MurA to MurF from E. coli have been kinetically charac-

terised. However the characterisations were undertaken under a variety of different experimental

conditions; the most significant difference being the range of temperatures from room to 37oC.

These differences are likely to have a profound effect on the observed maximal rates of reac-

tion catalysed by each enzyme (denoted kcat). As such these kinetic constants are not ideally

suited for use in a predictive in silico model of this pathway; parameters collected under more

consistent conditions would be preferred.

Concentrations of many of the substrates required by this pathway have been estimated in

vivo for E. coli for a variety of growth conditions [116, 117, 118]. As yet similar estimates of

enzyme concentrations are unavailable. These concentrations will eventually be necessary for

the validation of in vivo models of pathway dynamics.

1.2.3 Membrane bound phases

The final two phases of peptidoglycan biosynthesis are membrane anchored; either to the intra-

or extracellular face of the inner membrane, Figure 1.3 [119]. On the intracellular face the

phospho-MurNAc-pentapeptide moiety of UDP-MurNAc-pentapeptide (U5P) is transferred to a

lipid carrier, undecaprenyl-phosphate, producing Lipid I and releasing uridine mono-phosphate,

UMP. This reaction is catalysed by translocase I, MraY, an integral membrane protein with

ten membrane spanning helices [122]. A condensation reaction, catalysed by translocase II,

MurG, transfers the GlcNAc moiety from UDP-GlcNAc to the C4 hydroxyl group of Lipid I

forming Lipid II. MurG is not an intrinsic membrane protein; instead a hydrophobic patch on
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Figure 1.3: Schematic diagram of the membrane bound phases of cell wall biosynthesis, [119]. The
putative flippase MurJ is as yet uncharacterised [120, 121]

its N-terminal domain anchors it to the cell membrane [123]. Lipid II is then transferred to the

extracellular face of the cell membrane. The membrane protein MviN, renamed MurJ by some

authors, is thought to be a flippase responsible for this transfer [120, 121].

On the extracellular face PBPs are responsible for forming the mature peptidoglycan [124].

Further condensation reactions, catalysed by transglycosylase domains of the PBPs, form the

glycan backbone from multiple molecules of Lipid II. The undecaprenyl-diphosphate released is

dephosphorylated and returned to the intracellular face of the cell membrane by UppP [119]; this

reaction is inhibited by bacitracin. Transpeptidase domains catalyse the crosslinking of adjacent

pentapeptide sidechains in a wide variety of conformations [76]; these steps are inhibited by the

β-lactam family of antibacterials.

PBPs can be classified into two groups: high molecular mass (HMM) and low molecular mass

(LMM). HMM PBPs consist of a cytoplasmic tail, a transmembrane anchor and two extra-

cellular domains responsible for peptidoglycan biosynthesis or remodelling [124]. LMM PBPs

are involved in cell separation, peptidoglycan maturation or recycling.



1.2. CONSTRUCTION OF THE BACTERIAL CELL WALL 18

Kinetic characterisations of MraY, MurG and a number of class A PBPs have been undertaken

for enzymes from a number of species [125, 126, 127, 128, 124]. The ratios of UDP-MurNAc-

pentapeptide to Lipid I and Lipid II were estimated at 300:1:3 and 140:1:2.7 in E. coli [129, 117].

As such based on the estimated levels of UDP-MurNAc-pentapeptide the concentrations of

Lipid I and Lipid II are quite low in vivo [116]. Given the high kcats reported and the relative

abundance of undecaprenyl phosphate this suggests that the utilisation of these intermediates

is quite efficient [119]. However the kcats reported for PBPs are quite low suggesting that either

these enzymes are present at significantly higher concentrations than MraY and MurG or that

other classes of PBPs are more active.

It should be noted that the kinetic characterisations undertaken assume typical Michaelis-

Menten kinetics for these reactions. This assumption is likely to be inappropriate given that,

for each reaction, one substrate and the catalyzing enzyme are membrane bound and are thus

less mobile than the second substrate. This may significantly alter the appropriate model for

the kinetics of these reactions [130].

1.2.4 Remodelling and recycling of peptidoglycan

The expansion of the bacterial cell wall, prior to replication for example, requires the peptido-

glycan mesh to be cleaved to provide a location in which to expand [131]. Enzymes that catalyse

the breakdown of peptidoglycan are found in all bacteria with cell walls and are referred to as

murein hydrolases [132], some are also LMM PBPs [124]. There is a murein hydrolase for almost

every bond of E. coli peptidoglycan: some of which accepting only the intact high molecular

weight peptidoglycan while others are active only on soluble degradation products [131]. Some

of these enzymes are potentially autolytic, disruption of their tight regulation processes is a

potential target for antibacterials [133].

The activity of these processes results in a large number of potential peptidoglycan precur-

sors. In E. coli, and presumably other Gram-negative organisms, the disaccharides released are
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subject to an efficient recycling pathway [134]: losing only 6-8% per cell cycle in contrast to

Gram-positives which lose between 25-50% [135]. Uptake of these molecules is via the AmpG

permease; recycling then proceeds through a number of cytoplasmic steps. The AmpD amidase

releases the tri-peptide (L-Ala-D-Glu-L-DA) which can then be attached to UDP-MurNAc by

the Mpl ligase [136]; the specificity of AmpD is sufficient to ensure it does not degrade the

UDP-MurNAc-tripeptide and downstream products which are part of the cytoplasmic phase

of biosynthesis [131]. The disaccharide is hydrolysed by the N -acetylglucosaminidase NagZ to

GlcNAc and 1,6-anhydroMurNAc [137]; these residues are then fed back into the hexosamine

biosynthesis pathway. Inhibition of NagZ is being investigated as a possible means to reverse

β-lactam resistance [138].

1.3 In silico modelling of metabolic pathways

While in vitro reconstruction of large metabolic pathways is possible obtaining detailed quanti-

tative data becomes increasingly difficult as more reactions, and thus species to be monitored,

are added. For sufficiently complex systems it is preferable to construct an in silico model of

the pathway which can then be validated against specific in vitro and in vivo experiments to

ensure that it remains representative of experimental pathway dynamics. Such a model provides

the additional benefit of providing a low cost means to identify interesting interactions between

inhibitors, knockouts, and other means by which a pathway can be challenged which can then

be validated experimentally [16].

In order to construct such a model a variety of data are required dependent on the complexity of

the desired model. To fully understand a metabolic pathway it is necessary to model everything

from levels of gene expression and transcription; to the dynamics of the species within the

pathway; to uptake and efflux of the raw materials and final products. Thus each of these

stages needs to be modelled and characterised so that they can be interpreted mathematically
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[15].

Such a model of the peptidoglycan biosynthesis pathway would dramatically exceed the scope

of this thesis. Instead a model of the species dynamics of the cytoplasmic phase of this pathway

will be developed.

1.3.1 Mathematical modelling of metabolism

Constructing a mathematical model of any system always involves a trade-off between amount

of detail and ease of analysis. The mathematical model can only ever be an approximation of the

true system. It is necessary to decide how detailed, and thus how complex, the mathematical

model must be in order to provide the information required. Furthermore for the model to be

useful it must be possible to analyse it, either symbolically or through numerical solutions. The

difficulty of this analysis is directly related to model complexity.

In mathematical modelling of metabolism, an inherently complex and multiscale system of

interactions, this trade-off is of particular importance. It is feasible to model the metabolism

for a whole cell under certain simplifying assumptions, specifically that the dynamics of internal

processes establish a steady state very rapidly. It is then possible to consider various phenotypes,

characterised by a specific steady state, and how they are affected by changes in external

variables, i.e. the introduction of a drug. Such models are broadly categorised as stoichiometric

models and have been used for a wide variety of purposes [139].

Such models are however limited in that they do not consider the internal dynamics, the tran-

sient behaviour, of the system. Consequently they neglect the control structures that regulate

these processes. Models constructed by coupling the kinetics of individual processes provide a

means to study these details, however they are inherently more complex than stoichiometric

models. Consequently they are typically used to model pathways within the overall metabolism

rather than the global metabolic state [140]. Determining parameters for such models experi-
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mentally is more complex than it is for stoichiometric models, which can be constructed based

on observed levels of substrates within the cell. Typically the kinetics of individual processes

are characterised in isolated, in vitro experiments. Consequently the results must be treated

with caution given that in vivo behaviour may differ from that observed in vitro. For example

spatial effects are typically ignored, the system is simply assumed to be well mixed. While in

experiments this is often true, in vivo we would expect compartmentalisation to play a part in

most aspects of metabolism.

Use of this approach must also overcome the problem of modelling of fluxes into and out of the

pathway of interest. Such fluxes arise from other pathways yet it is not feasible to construct

such detailed models of all the possible pathways that may feed into a pathway of interest. A

possible solution is the introduction of cybernetic components, relatively simple functions which

are designed with a particular goal which is thought to be a function of that pathway [140].

It is this sort of model which is most appropriate in this case. The subsection of the pathway

to be considered is relatively small and its dynamics and regulatory processes are of particular

interest. It is these details which would be expected to most directly influence the effect of an

inhibitor on a pathway, assuming of course that the inhibitor will be taken up in vivo.

Models of the individual reactions could be constructed from deterministic or stochastic dif-

ferential equations [141, 142]. Stochastic models are most appropriate for modelling processes

involving very small amounts, in the tens of particles, of substrate or enzyme [143]. As such,

within the context of peptidoglycan biosynthesis, stochastic techniques could be best applied in

modelling the expression of enzymes and possibly in the membrane bound phases. The cyto-

plasmic phase reactions, which have been observed to have high substrate pool levels, are best

modelled using deterministic models [141].

Thus the key requirements for construction of this model are kinetic characterisations of the

enzymes MurA to MurF for given species of bacteria; in vitro methods to monitor species within
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the pathway; and ultimately estimates of the in vivo levels of these species and enzymes.

1.3.2 Kinetic characterisation of enzymes

The steady state kinetic characterisation of enzymes by traditional techniques is time con-

suming, requiring the measurement of initial rates for a range of combinations of substrate

concentrations [144]. Time courses measured on pre-steady state time scales are typically anal-

ysed differently, by direct estimation of parameters for a selection of exponential forms, see for

example [145]. The resulting parameters can then interpreted in the context of the reaction

mechanism.

In light of improving computational resources it is natural to extend this approach to parameter

estimation using a full recorded time course in combination with a mechanistic model of the

reaction. Such a technique has been demonstrated with some success [146, 147]. However it has

not entered general usage in the biochemistry community: see for example [82, 83, 85, 86], [98]

- [102], all of which have been published since the works cited above. Nonetheless this approach

makes more efficient use of the data obtained and consequently is less time consuming. As such,

given the need for large scale kinetic characterisation as a precursor to pathway modelling, the

development of this approach seems appropriate. The parameter estimation techniques used

are outlined in Section 3.4.

If the results obtained from this approach are to be meaningful it is necessary to determine

whether the parameters determined are unique and furthermore whether the model used is

appropriate. Structural identifiability and indistinguishability are concerned with determining

whether two or more sets of parameters or different candidate models can give rise to the same

output [148, 149, 150]. These fields and the tools deriving from them are described in Sections

3.2 and 3.3.
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1.3.3 Numerical solution of differential equations

The use of numerical methods to solve differential equations is well developed. Typical ap-

proaches rely on the interpolation of an approximation of the differential equations describing

the system over time or spatial steps. The size of these steps, and the accuracy of the approxi-

mation, determine the accuracy of these methods. As such the method that should be used is

dependent on the complexity of the system and the degree of accuracy required. A brief outline

of the techniques is given in Section 3.5.

1.4 Goals

The principal goal of this work is to investigate the fluxes through the cytoplasmic phase of the

peptidoglycan biosynthesis pathway; in order to identify potential drug targets and investigate

the effects of and interaction between pathway inhibitors. Differences in these dynamics between

Gram-positive and Gram-negative pathway are of additional interest. This is achieved by the

construction of an in silico model of this pathway.

The enzymes, MurC to MurF, are as yet kinetically uncharacterised for a Gram-positive species;

thus these enzymes must be characterised prior to construction of the model. In addition since,

for the purposes of pathway modelling, it is best that kinetics be obtained under a consistent

set of initial conditions MurA and MurB will also be characterised. The enzymes used derive

from S. pneumoniae.

Structural identifiability and indistinguishability analyses of the relevant reaction models will

also be undertaken to determine in which cases direct parameter estimation is appropriate.

This approach will be attempted in conjunction with more traditional approaches in kinetic

characterisation; providing basis for comparison between the techniques.
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1.4.1 Outline of the remainder of the thesis

The experimental and theoretical methods used are described briefly in Chapters 2 and 3.

Chapter 2 also describes the provenance of the various substrates and enzymes used.

The results obtained are described in Chapters 4-7. Quasi-steady state models for the kinetics

of two and three substrate models is the subject of Chapter 4. These models are derived from

transient mechanistic models of the ping-pong or simple ordered types. They are then subjected

to structural identifiability and indistinguishability analyses for experimentally relevant output

structures.

Kinetic characterisations, for the quasi-steady state time scale, of the six S. pneumoniae en-

zymes used are presented in Chapter 5. In addition the use of direct parameter estimation

is demonstrated for MurA and MurB. Simulation of candidate models of the MurF catalysed

reaction is used to suggest a new approach for the detection of substrate inhibition.

In Chapter 6 structural identifiability analyses of the transient two substrate models is pre-

sented. Time courses recorded under pre-steady state conditions for MurB and IDH are then

subjected to direct parameter estimation.

The E. coli and S. pneumoniae cytoplasmic phases are compared using quasi-steady state in

silico models in Chapter 7. The predictions of the S. pneumoniae model are validated against

in vitro reconstructions of this pathway. Finally the interaction between internal pathway

inhibitors and a recently developed inhibitor of MurC is investigated using both in vitro and in

silico methods.

The final chapter, Chapter 8, draws together the results presented within the context of new

antibacterial discovery and the development of antibacterial resistance.



2. EXPERIMENTAL METHODS

2.1 Introduction

In order to study the cytoplasmic phase of the peptidoglycan biosynthesis pathway with a mini-

mum of noise the enzymes MurA-F from Streptococcus pneumoniae were cloned, over-expressed

in host Escherichia coli strains and purified. Spectroscopic assays were then used to analyze

the steady state kinetics of the enzymes. Pre-steady state kinetics were also considered in some

cases. Pathways were also reconstructed in vitro and their fluxes assessed by spectroscopic and

chromatographic techniques. In this chapter the experimental methods used throughout the

project are described.

In the following section the preparation of E. coli strains to express the desired enzymes is

described. The source and structure of the transformation plasmids and techniques for produc-

ing them and assessing their structure are outlined. Then preparation of chemically competent

cells and their transformation is described. The long term storage transformed cells is also cov-

ered. In the third section expression and purification of enzymes is described. Two expression

systems are outlined as is the preparation of crude cell lysates. Chromatographic purification

techniques are then outlined. Analysis and quality control of the process is also covered, detail-

ing SDS-PAGE and assays of protein concentration. Spectroscopic assays are discussed in the

fourth section. Determination of substrate concentration is outlined first. Then two continuous

assays and two direct assays producing steady state data are described. Assays of reconstructed

in vitro pathways are covered as are stopped-flow experiments.
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2.2 Transformation of E. coli strains with plasmid DNA

E. coli strain Genotype

TOP10 [151] F− mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ ∆M15

∆lacX74 deoR recA1 araD139 ∆ (ara-leu)7696 galU galK

rpsL (STRR) endA1 nupG

BL21 Starr (λDE3) [152] F− ompT hsdSB (r−B m−
B) gal dcm rne131 (λDE3)

Table 2.1: E.coli strains used in this project

2.2.1 Transformation vectors

Transformation vectors were created in a preceding project. The murA-F genes, cloned from

S. pneumoniae R6, were individually incorporated into plasmids using the pET46 EK/Lic

vector (Merck Chemicals Ltd, Nottingham, UK). The chosen vector incorporates ampicillin

resistance, lactose based expression control and adds 6 N-terminal histidine residues to the

resultant protein. Plasmids were preserved in vivo in glycerol stocks of E. coli TOP10 cells and

stored at -80◦C.

2.2.2 Preparation of plasmid DNA

A small sample from each glycerol stock was streaked onto sterile lysogeny broth (LB) 10:5:5

agar plates containing 0.1mg/ml ampicillin. The plates were incubated overnight at 37◦C. A

single colony from each plate was then grown overnight in sterile 10ml LB broth and ampicillin

(0.1mg/ml) at 37◦C and 180rpm. Plasmid DNA was extracted from these cultures using the

Qiagen MiniPrepr extraction kit, according to the manufacturer’s instructions. This kit em-

ploys the alkaline lysis method, where DNA is purified by adsorption to a silica matrix under

high salt conditions.
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2.2.3 Validation of plasmid integrity

The gene content of the plasmids was checked in two ways, sequencing and diagnostic polymerase

chain reaction (PCR). For sequencing 500ng of DNA (determined by Microdrop spectrometer)

were mixed with 5 pmol of forward or reverse primers corresponding to the gene inserted in

10µl dH2O. The mixture was then submitted to the University of Warwick Sequence Facility.

The resulting reverse sequence was complemented in BioEdit Sequence Alignment Editor and

aligned with the forward sequence (Ibis Therapeutics, Carlsbad, USE). The resulting consensus

sequence, excluding sections of unreliable data, was then compared to the published sequences

of the gene.

Diagnostic PCR was undertaken to determine whether the gene was correctly inserted into the

plasmid. The Taq Polymerase kit (Fermentas, York, UK) was used according to the manu-

facturer’s instructions. Primer combinations used were: T7P fwd and rev; gene for and rev;

gene for and T7P rev; and T7P for and gene rev. Reactions were carried out in a 25µl volume

using 100ng of template DNA in an Eppendorf Mastercycler Gradient thermal cycler with an

annealing temperature of 50◦C. The resulting DNA was run on a 1% agarose gel, see Section

2.2.4.

2.2.4 Agarose gel electrophoresis

A 1% (w/v) solution of high melting point agarose (Invitrogen Ltd, Paisley, UK), was prepared

by melting 1g of agarose per 100ml 1x Tris-acetate-EDTA (TAE) buffer and heating in a mi-

crowave oven. The solution was cooled to hand heat and 5µl of a 10mg/ml solution of ethidium

bromide added per 100ml agarose solution. The solution was then poured into a cast and left

to set. The gel was submerged in a gel tank containing 1x TAE buffer and DNA samples were

loaded into wells with 2 µl 6x DNA Loading Buffer (0.25%(w/v) bromophenol blue, 0.25%

9(w/v) xylene cyanol FF and 15% (v/v) Ficoll 400) per 10µl of DNA sample. 3 µl of a DNA
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standard 1Kb ladder, premixed with loading buffer, was loaded to allow determination of the

size of DNA samples. Electrophoresis was carried out at 120V for 30 minutes and samples

visualised under ultraviolet light.

2.2.5 Preparation of competent cells for DNA transformation

Cells from the required strain of E. coli were streaked onto a sterile LB agar plate containing the

appropriate antibiotic and incubated overnight at 37◦C. 10ml of sterile LB broth containing the

appropriate antibiotic was inoculated with one colony from the resulting plate and incubated

at 37◦C with shaking at 180rpm. This culture was used to inoculate 100ml of sterile LB broth

which was incubated at 37◦C with shaking at 180rpm until the optical density at A600nm

reached 0.5. The culture was centrifuged at 4500×g to pellet cells and resuspended in TFB1

buffer (30mM potassium acetate pH 5.8, 10mM calcium chloride, 50mM manganese chloride,

100mM rubidium chloride, 15% glycerol by volume), centrifuged and resuspended in TFB2

buffer (10mM MOPS or PIPES pH 6.5, 75mM calcium chloride, 10mM rubidium chloride, 15%

glycerol by volume), following the procedure adapted from [153]. Competent cells were frozen

in 200µl aliquots in liquid nitrogen and stored at -80◦C.

2.2.6 DNA transformation of E. coli

Chemically competent cells, see Section 2.2.5, were thawed on ice and 20-50 µl of cells incubated

with 50-200ng of plasmid DNA on ice for 5 minutes. Cells were heat shocked at 42◦C for 30

seconds and then returned to ice to incubate for 2 minutes. 500µl of sterile LB broth was added

and the cells were incubated without shaking for one hour. 100µl of transformation mixture

was plated using aseptic technique onto sterile LB agar plates containing 0.1mg/ml ampicillin.

Plates were incubated overnight at 37◦C.
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Primer name Primer sequence

T7P† TAA TAC GAC TCA CTA TAG GG

T7T† GCT AGT TAT TGC TCA GCG G

murA1 fwd GAC GAC GAC AAG ATG AGA AAA ATT GTT ATC AAT GG

murA1 rev GAG GAG AAG CCC GGT TTA ATC CTC AAC AAG TCT AAT ATC C

murA2 fwd GAC GAC GAC AAG ATG GAT AAA ATT GTG GTT CAA GG

murA2 rev GAG GAG AAG CCC GGT TTA TTC ATC TTC ATC ATT TGC C

murB fwd GAC GAC GAC AAG ATG TCT GTA AGA GAA AAA ATG C

murB rev GAG GAG AAG CCC GGT CTA CCT CTT GCA GGG AGT AAA ACC

murC fwd GAC GAC GAC AAG ATG TCA AAG ACA TAT CAT TTT ATC G

murC rev GAG GAG AAG CCC GGT CTA TTG AAC ATT GCT TGT CAA GTT AGA C

murD fwd GAC GAC GAC AAG ATG AAA GTA ATA GAT CAA TTT AAA AAT AAG

murD rev GAG GAG AAG CCC GGT TTA TTC TTT TAA CTC CGC TAC TGT GTC G

murE fwd GAC GAC GAC AAG ATG ATT AAG ATT GAA ACC G

murE rev GAG GAG AAG CCC GGT TTA TAA ATA ATT TTC TGC GAC G

murF fwd GAC GAC GAC AAG ATG AAA TTA ACA ATC CAT GAA ATT GC

murF rev GAG GAG AAG CCC GGT TCA CTT GTC TTC ATT TTC TAA ACT TTC TAC

Table 2.2: Sequences of the primers used throughout the project. Primers marked † obtained from (Merck Chemicals Ltd, Nottingham, UK).
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2.2.7 Preparation of glycerol stocks

10 ml of sterile LB broth was inoculated with a single E. coli colony from a fresh transformation,

see Section 2.2.6, and grown overnight in the presence of 0.1mg/ml ampicillin with shaking at

37◦C. 1 ml of culture was aseptically mixed with 1 ml of analytical reagent grade 100% glycerol

by volume in a Corningr cryovial and frozen at -80◦C (Sigma-Aldrich, St Louis, USA).

2.3 Expression and purification of MurA-F from Streptococcus pneumoniae

2.3.1 Protein over-expression in E. coli (induction by IPTG)

Proteins were over-expressed in E. coli BL21 Star Rosetta (DE3) transformed as described

above, Section 2.2.1 and Section 2.2.6. 10ml of sterile LB broth, 0.1mg/ml ampicillin and 0-

0.2% (w/v) glucose was inoculated with a single E. coli colony from a fresh transformation

and incubated overnight at 37◦C with shaking at 180rpm. This culture was used to inoculate

750ml of sterile LB broth, 0.1mg/ml ampicillin and 0-0.2% (w/v) glucose which was incubated

at 37◦C with shaking at 180rpm until the optical density at A600nm reached 0.7. Cultures

were induced with 1mM IPTG and grown at 37◦C with shaking for 2-3 hours. 1ml samples of

the culture were harvested before induction and after completion of this growth period to check

protein expression these cultures were pelleted at 10000rpm and stored at -20◦C. The remaining

cells were centrifuged at 50000×g using a Beckman JLA 8.1000 rotor and an Avantir J-20XPI

centrifuge, resuspended in 250mM pH 7.6 Hepes, 50mM magnesium chloride, transferred to a

Falcon� tube and centrifuged at 5000×g in a Labofuger 400R (DJB Labcare Ltd, Newport

Pagnell, UK). The resulting pellets were stored at -20◦C.

2.3.2 Protein over-expression in E. coli (using autoinduction media)

The procedure above, Section 2.3.1, was followed with the following exceptions. A 1ml sample

was taken from the overnight culture to check protein expression. The overnight culture was
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then used to inoculate 929ml of sterile LB broth, 50ml sterile 20xNPS (0.5M ammonium sulfate,

1M monopotassium phosphate, 1M disodium phosphate, pH 6.75), 20ml sterile 50x 5052 (20%

glycerol by volume, 2.5% (w/v) glucose, 10% (w/v) α-lactose), and 1 ml sterile 1M magnesium

sulphate. The cultures were incubated at one of 17, 27, 37◦C for between 18 and 48 hours

and the cultures were not induced. The balance of glucose to lactose in the expression culture

controls expression directly. When the cells exhaust the available glucose supply they start

metabolising lactose initiating expression [154].

2.3.3 Preparation of crude cell lysates

Lysates were prepared from previously frozen cells, see Sections 2.3.1 and 2.3.2. Pellets were

thawed on ice and resuspended in 20-50ml of nickel column running buffer A (NCRBA) (50mM

Hepes pH 7-7.6, 0.5-1M sodium chloride, 1mM magnesium chloride, 5% glycerol by volume,

5mM imidazole, 0.2µM leupeptin, 0.2µMpepstatin, 0.2mMPMSF). Chicken egg white lysozyme

(Merck Chemicals Ltd, Nottingham, UK) was added to the cell suspension to a concentration of

2.5mg/ml. The treated cells were sonicated on ice for 2-5 bursts 30 second bursts at 70% power

using a Bandelin Sonopuls sonicator and centrifuged in two stages of thirty minutes at 70000×g

to pellet cell membranes and other debris (Bandelin, Berlin, Germany). The supernatant was

collected and applied directly to an equilibrated chromatography column.

2.3.4 Affinity chromatography

Proteins were partially purified from cell lysates through binding affinity to nickel. HisTrapr

HP, high performance nickel columns were used (GE Healthcare, Little Chalfont, UK). Columns

were developed using ACTA� purifier 100 systems (GE Healthcare, Little Chalfont, UK). They

were first washed with 10 column volumes of filtered dH2O, to remove the 20% ethanol storage

solution, then equilibrated with 10 column volumes of filtered NCRBA. Cell lysate was then

loaded and flowthrough collected. Columns were washed with filtered NCRB until A280 and
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A258 returned to baseline levels. Protein was eluted by increasing imidazole concentration

introduced by mixing filtered NCRBA and filtered NCRBB (as NCRBA but containing 0.5-

1M imidazole). A chromatogram was recorded on a linked PC, typically 10ml fractions were

collected, however peaks (increases in A280 and A258) were manually fractionated where possible

to increase purity.

After use affinity columns were either stripped with 5 column volumes of 500mM EDTA pH 8.0

followed by 10 column volumes of water, or washed with 10 column volumes of water. Columns

were washed with 10 column volumes of 20% ethanol by volume prior to storage. Stripped

columns were recharged by washing with 10 column volumes of water followed by 50mM sodium

acetate pH 4.0 containing 10mg/ml nickel chloride to chelate Ni2+ to the Sepharoser resin.

2.3.5 Size exclusion chromatography

Proteins were separated on the basis of size using 300ml Superdex� 200 columns attached to an

ACTA� purifier 100 system (GE Healthcare, Little Chalfont, UK). Columns were equilibrated

with a single column volume of gel filtration running buffer (GFRB) (50mM Hepes pH 7.6,

500mM sodium chloride, 1mM magnesium chloride, 10% glycerol by volume, 0.2µM leupeptin,

0.2µM pepstatin, 0.2mM PMSF). Samples were loaded via an injection loop in volumes of less

than 10ml to reduce loss of resolution due to sample smearing. Buffer was pumped through the

column at 1ml per minute for one column volume and 10 ml fractions were collected. Peaks

recorded as an increase in A280 and A258 were manually fractionated where possible to increase

purity.

2.3.6 Anion exchange chromatography

Proteins were separated on the basis of charge using a MonoQ� HR 5/5 column (10µm beads)

attached to an ACTA� purifier 100 system (GE Healthcare, Little Chalfont, UK). The resin

has an attached quaternary amine group, which gives the resin a strong positive charge over a
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broad range of pH 2-12. Proteins applied in low salt buffer at least one pH unit above their

isoelectric point have an overall negative charge and bind strongly. They can be eluted by a salt

gradient with weakly bound proteins eluting at low salt and strongly bound proteins eluting at

high salt.

Columns were equilibrated by three washes of 10 column volumes of MonoQ� running buffer

A (MQRBA) (20mM Tris pH 8.2, 1mM magnesium chloride, 2mM β-mercaptoethanol, 0.2µM

leupeptin, 0.2µM pepstatin, 0.2mM PMSF) followed by 10 column volumes of MQRBB (20mM

Tris pH 8.2, 500mM sodium chloride, 1mM magnesium chloride, 2mM β-mercaptoethanol,

0.2µM leupeptin, 0.2µM pepstatin, 0.2mM PMSF) and a final wash of 10 column volumes of

MQRBA. This procedure ensured that no excess salt or other contaminants were bound and

that the resin was charged with the appropriate ion. Samples of no more than 1ml were loaded

via an injection loop and the column developed by washing with a sodium chloride gradient

from 0 to 500mM over 20ml. Fractions of 2ml were collected throughout and the presence of

eluted protein was judged by an increase in A280 and A258.

2.3.7 Buffer exchange

Buffer exchange was performed by placing the protein solution into 14 or 28 millimetre dialysis

tubing, which had previously been boiled in 5mM EDTA and washed in dH2O. The ends of

the tubing were secured and placed in at least 10× its volume of the required exchange buffer

chilled to 4◦C. Dialysis was performed overnight with stirring at 4◦C.

2.3.8 Concentration of protein

Protein solutions were concentrated using Vivaspin� centrifugal concentrators with a molecular

weight cut off (MWCO) of 10kDa. The protein solution was placed in the top chamber of the

concentrator and centrifuged at 3500×g in 10-15 minute bursts in a chilled Labofuger 400R
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bench top centrifuge at 4◦C until the desired concentration was reached. The concentration of

the protein was determined as described in Section 2.3.11.

2.3.9 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

SDS-PAGE used the Tris-glycine buffer system to separate and visualise polypeptides under

denaturing conditions on a discontinuous gel system consisting of a resolving gel at pH 8.8

and a stacking gel at pH 6.5 [155]. The final composition of the resolving gel was 0.371M

pH 8.8 Tris-HCl, 10% acrylamide:bis-acrylamide (29:1), 0.01% SDS. Gels were cast using the

BioRad Mini-PROTEANr kit (Bio-Rad Laboratories Ltd, Hemel Hempstead, UK), 22.75ml

was polymerised with 0.23ml 10% APS and 20µl TEMED, then overlaid with 100% ethanol

to remove the meniscus. The final composition of the stacking gel was 0.123M pH 6.5 Tris-

HCl, 10% acrylamide:bis-acrylamide (29:1), 0.01% SDS. 10ml of stacking gel was polymerised

with 0.1ml 10% APS and 15µl TEMED and pipetted onto the polymerised resolving gel, to an

appropriate thickness, where a plastic comb was inserted to form the wells. Protein samples

for analysis were prepared in 4 × loading buffer (62.5mM pH 6.8 Tris-HCl, 10% glycerol by

volume, 2% SDS, 5% 2-β-mercaptoethanol and bromophenol blue to colour) and heat denatured

at 95◦C in a heat block for 5 minutes. The gel comb was removed and the wells washed with

SDS-PAGE running buffer (25mM Tris, 0.192M Glycine, 0.1% SDS pH 8.3) and samples were

pipetted into the wells. Gels were run in SDS-PAGE running buffer at 100V for 20 minutes or

until the gel front created a thin band at the interface of the stacking and resolving gels. The

voltage was then increased to 120V and run until the gel front reached the base of the gel.

2.3.10 Coomassier staining of gels

Proteins resolved by SDS-PAGE, see Section 2.3.9, were visualised using Coomassier dye. Gels

were stained for up to 1 hour in either 50% methanol, 10% acetic acid, 40% water containing

10mg L−1 Coomassier R-250 dye or a colloidal mix (10% ammonium sulphate, 0.1% Coomassie
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R-250 dye, 3% orthophosphoric acid, 20% ethanol). Gels were destained overnight with either

the same solution in the absence of Coomassie R-250 or dH2O respectively. Gels were pho-

tographed and then disposed of.

2.3.11 Determination of protein concentration

Protein concentration was determined by colourimetric assay at 595nm (Bio-Rad Laborato-

ries Ltd, Hemel Hempstead, UK). xµl of protein sample were added to 800 − xµl dH2O and

200µl BioRad Protein Assay Dye Reagent in a cuvette, mixed and the absorbance measured

at 595nm using an Ultrospec� 2000 UV-visible spectrometer (GE Healthcare, Little Chalfont,

UK). Protein concentrations that gave a reading beyond the linear range of the assay (above

0.6 at 595nm) were diluted and the reading repeated. Readings for several x were collected,

absorbances were plotted against x and a straight line was fitted to the data using Microsoft

Excel© (Microsoft Ltd, Reading, UK). The gradient of the best fit line was used to calculate

the concentration of protein using the following equation:

[protein] = gradient×19500× dilution factor . (2.1)

2.4 Biochemical spectrophotometric assays

2.4.1 Determination of concentration of substrates

The concentrations of substrates with a measurable absorbance were determined directly by

spectroscopic analysis. A UV-visible quartz cuvette was filled with 200-xµl of dH2O and placed

in the cell changer of a Caryr 100 spectrometer (Varian Medical Systems Inc, Palo Alto, USA).

The wavelength of the instrument was set to that of the absorbance maxima of the substrate and

the absorbance of the sample was set to zero. The absorbance of the sample was then followed

for 1 minute before xµl of substrate was added to the cuvette and mixed. The absorbance was
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then followed for an additional 5 minutes. The concentration of the substrate, [substrate], was

then determined from a Beer-Lambert Law calculation:

[substrate] = Ay /ǫy × dilution factor . (2.2)

The absorbance measured at the desired wavelength is denoted Ay and the extinction coeffi-

cient of the substrate at the same wavelength by ǫy. Typically four assays were undertaken

simultaneously for different values of x and the results averaged.

Where substrates did not have a directly measurable absorbance one of the assays described

below, Sections 2.4.2, 2.4.3, and 2.4.4, was used to ascertain its concentration. The components

of a reaction which utilised the substrate were assembled, consumable elements in significant

excess of that expected of the substrate assayed. The total absorbance change produced by

adding a known volume of substrate to this mixture was then determined. A coupled assay was

used if necessary. This absorbance change was assumed to result from the total consumption of

the assayed substrate and thus its concentration could be determined by a Beer-Lambert Law

calculation.

Substrate Name Abs Max (nm) Ext Coeff (M−1cm−1)

Adenosine triphosphate (ATP) 260 13400

Uridine diphosphate glucosamine (UGP) 260 10000

Nicotinamide adenine dinucleotide (NADH) 340 6220

Nicotinamide adenine dinucleotide phosphate (NADPH) 340 6220

Phospho-enolpyruvate (PEP) 240 1700

Table 2.3: Absorbance maxima (Abs Max) and extinction coefficients (Ext Coeff) of the substrates
used throughout the project. Note that all peptidoglycan precursors have the same ab-
sorbance characteristics, as such only one has been listed UGP.



2.4. BIOCHEMICAL SPECTROPHOTOMETRIC ASSAYS 37

2.4.2 Continuous ADP production assay

This assay links the production of ADP to NADH oxidation, creating an absorbance change

which can be measured at 340nm [156]. ADP is phosphorylated by the conversion of phospho-

enolpyruvate to pyruvate catalysed by pyruvate kinase regenerating ATP. Pyruvate is then

converted to lactate by lactate dehydrogenase requiring the oxidation of NADH to NAD+

(Figure 2.1). NADH oxidation can be measured spectrophotometrically as the quinone ring of

NADH absorbs light at 340nm, extinction coefficient 6220M−1cm−1, while the aromatic ring of

NAD+ does not. Therefore NADH oxidation is observed as an absorbance decrease at 340nm

which only occurs when ADP is produced by the reaction to be investigated. The assay was

used as an indirect measure of Mur ligase activity since these enzymes are ATP dependent.

ADP is formed upon ligation of amino acid to the peptidoglycan precursor peptide. When this

assay is used ATP concentration is maintained at a constant level throughout the measurement

period.

A typical reaction mixture using this assay system contained 50mM HEPES pH 7.6, 10mMmag-

nesium chloride, 1mM dithiothreitol (DTT), 200µM NADH, 2mM PEP, 3.2 units of pyruvate

kinase (PK), 4.6 units of lactate dehydrogenase (LDH) (Sigma-Aldrich, St Louis, USA) and the

components of the reaction made up to a concentration of 200µl. All components listed above

and all but one of the reaction components were added to a UV-visible quartz cuvette, mixed

and placed in the cell changer of a Caryr 100 spectrometer (Varian Medical Systems Inc, Palo

Alto, USA), with temperature control set to 37◦C. The cuvette was allowed to equilibrate to

temperature before setting the absorbance at 340nm to zero. Sample absorbance was followed

for 1-2 minutes to establish a base rate. The cuvette was then removed from the instrument,

the final component of the reaction was added to the reaction mixture which was mixed and the

cuvette was quickly returned to the cell changer. The absorbance changes were recorded using

Varian kinetics software for 5 to 10 minutes. Sampling rates were dependent on the number of
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reactions being monitored in a particular experiment. For a single reaction a measurement can

be made every tenth of a second; two reactions allow a measurement every four seconds; and

four reactions allow a measurement every ten seconds.
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Figure 2.1: Schematic diagram of the basis of the continuous assay for ADP production, coupled to
pyruvate kinase and lactate dehydrogenase. NADH oxidation is monitored spectropho-
tometrically by a decrease in absorbance at 340nm.

2.4.3 Continuous phosphate production assay

This assay uses the production of inorganic phosphate to phosphorylate MESG, creating an

absorbance change which can be measured at 360nm [157]. Purine nucleoside phosphorylase

catalyses the conversion of MESG and phosphate to methylthioguanine and ribose 1-phosphate

see Figure 2.2. The purine ring of MESG and MTG is sensitive to pH. Increasing pH causes

the dissociation of hydrogen from the nitrogen atom closest to the sulphur atom inducing a

rearrangement of the ring structure. Since MESG and MTG have different pKa’s they exist

in different states between pH 6.5 and 8.8, see Figure 2.3. A change in absorbance due to

this rearrangement, change in extinction coefficient 11000M−1cm−1 at pH 7.6, is observable at

360nm. The assay was used as an indirect measure of Mur ligase and MurA activity. Mur

ligases release inorganic phosphate upon ATP hydrolysis and formation of the peptidoglycan
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peptide precursor. MurA catalyses the transfer of the enolpyruvate to UDP-GlcNAc releasing

phosphate from PEP.

As this assay produces an increase of absorbance from a low initial level, unlike the assay

described in Section 2.4.2, noise levels are typically lower over the initial minutes of the assay.

This is an advantage when assaying enzyme kinetics based on initial rates. However it is highly

sensitive to phosphate contamination of the substrates and as such it is often impractical to use

it.

Typically the following components were mixed in a cuvette to a final volume of 200µl:50mM

Hepes pH 7.6, 10mM magnesium chloride, 40µl of nominally 1mM MESG, 1mM dithiothreitol,

2.244 units of PNP, and the components of the reaction to be assayed. Assays were carried

out in similar fashion to the ADP production assay described in Section 2.4.2 in a Caryr 100

spectrometer at 360nm and 37◦C.
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Figure 2.2: Schematic diagram of the basis of the continuous assay for inorganic phosphate produc-
tion, coupled to purine nucleoside phosphorylase. Conversion of MESG to methylth-
ioguanine is monitored spectrophotometrically by an increase in absorbance at 360nm.
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Figure 2.3: Diagram showing the dependence of the absorbance change measured in the phosphate
release assay on pH. Dissociation of the nitrogen bound hydrogen causes a rearrange-
ment of the purine ring reducing its absorbance. MESG and MTG have different pKa’s
allowing the two structures to be distinguished between pH 6.5 and 8.8.

2.4.4 Continuous assay of MurB activity

MurB activity produces a native absorbance change at 340nm by the oxidation of NADPH

[85]. NADPH is oxidized by MurB when catalyzing the reduction of a double bond on the

peptidoglycan precursor, see Figure 2.4. As with NADH, Section 2.4.2, NADPH oxidation

can be measured spectrophotometically due to the rearrangement of the quinone ring. An

absorbance change at 340nm can be measured with extinction coefficient 6220M−1cm−1. This

assay was typically used as a direct assay of the activity of MurB.

The reaction mixture for this assay typically consisted of: 50mM Hepes pH 7.6, 100mM potas-

sium chloride, 1mM dithiothreitol and 0.096µM MurB made up to 200 µl. NADPH and

UDPPEE concentration varied dependent on the purpose of the assay. Assays were carried

out in a similar fashion to that described above, Section 2.4.2, in a Caryr 100 spectrophotome-

ter at 340nm and 37◦C (Varian Medical Systems Inc, Palo Alto, USA).
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Figure 2.4: Schematic diagram of the direct assay for MurB activity. NADPH oxidation is monitored
spectrophometrically by a decrease in absorbance at 340nm.

2.4.5 Continuous assay of Lactate dehydrogenase activity

Lactate dehydrogenase activity produces a direct change in absorbance at 340nm by the ox-

idation of NADH. NADH is oxidised by LDH when catalyzing the formation of lactate from

pyruvate, see Figure 2.1. The details of the absorbance change caused by this reaction are in

Section 2.4.2.

2.4.6 Determination of pathway fluxes

Pathways were reconstructed in vitro, typically reaction mixtures included: 50mM Hepes pH7.6,

10mM magnesium chloride, 150mM potassium chloride, 1mM dithiotheitol, 1mM ATP, 2mM

PEP, 10mM of L-alanine, D-glutamate, L-lysine and D-alanyl-D-alanine. Each enzyme included

in the pathway was present at 0.1µM concentration. If MurB was included 100uM NADPH was

also included. If the absorbance change caused by this reaction was not to be monitored 0.18

units/ml of isocitrate dehydrogenase and 10mM isocitrate were added to convert the NADP+
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produced to NADPH. Typically 10-50µM of the first peptidoglycan precursor required for the

pathway was included. The assay system used to monitor the pathway was typically one

of the assays described above, Sections 2.4.2 or 2.4.3. Concentrations of NADH and MESG

were selected to provide an excess over the expected production of the pathway. The final

assay volume was 200µl however typically 4 pathways, or other sets of conditions, were run

simultaneously. The mixed reaction components excluding the first enzyme in the pathway were

added to UV-visible quartz cuvettes and placed in the cell changer of a Caryr 100 spectrometer,

with temperature control set to 37◦C. The samples were allowed to equilibrate at 37◦C and

their absorbances at the appropriate wavelength was set to zero. Sample absorbances were

then followed for 5 minutes. Then the final assay component was added, the solution mixed

and cuvettes stoppered to prevent evaporation. Sample absorbances were then recorded for an

additional 55 minutes.

2.4.7 Pre-steady state kinetics experiments

Stopped-flow experiments were carried out on a Bio-Logic SFM300/400, schematic diagram

Figure 2.5, with attached MM450 spectrometer which could measure the change in absorbance

at a preset wavelength (Bio-Logic SAS, Claix, France). 8000 data points were collected during

time scales from 2.4ms to 8 seconds. Only direct assays of enzyme activity were used for these

experiments and as a consequence only MurB and lactate dehydrogenase could be analyzed. The

activity of these enzymes oxidises NADH or NADPH, see Sections 2.4.4 and 2.4.5, producing an

absorbance change at 340nm. The reaction mixtures for these experiments typically included,

50mM Hepes pH 7.6, 1mM dithiothreitol and either 10mM magnesium chloride in the case of

LDH or 100mM potassium chloride in the case of MurB. Protein concentrations were determined

by BioRad assay as described in Section 2.3.11. MurB concentration was further checked by

observing FAD absorbance at 480nm. Assays were undertaken at a variety of ratios of enzyme

to substrate concentration typically 1:10 and 1:1. Enzyme concentration was typically 25µM
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Figure 2.5: Schematic diagram of stopped flow apparatus.

and thus concentrations of the substrates were typically 250µM or 25µM.

The measurement cell was filled with the buffer described above and the absorbance was set

to zero. NADH was then added to the appropriate concentration and the resultant absorbance

was checked against the expected value. Finally all components were mixed and transient

absorbances were measured over appropriate time frames. Assays were performed at either 20

or 37◦C. Parameters were estimated as described in Section 3.4.



3. THEORETICAL METHODS

3.1 Introduction

The ultimate goal in modelling any physical system is a quantitative, predictive, understanding

under a wide range of conditions. To achieve this the system must be expressed in mathematical

terms. A reaction mechanism can be naturally converted to a state space model as follows. The

concentrations of the species in the reaction mixture correspond to the state variables of the

mathematical model. Transitions between states normally take the form of first order differential

equations in the state variables, and can be determined from the reaction mechanism by mass

action kinetics. Given appropriate parameter values a reaction, or a system of reactions, can

be simulated to obtain predicted behaviour under a range of conditions. It is hoped that the

parameters of a model can be estimated from experimental data. In this chapter theoretical

and computational approaches to the problems of parameter estimation from experimental data

and simulation of reactions and pathways are outlined.

The first section, Section 3.2, introduces structural identifiability, the field in mathematics/sys-

tems theory concerned with whether the parameters of a model system can be determined from

perfect observations [148]. A formal mathematical basis for this problem is constructed in the

language of general state space models. A criterion for determining the structural identifiability

of a given model is provided. From this what is meant by an identifiable model is defined. Tech-

niques for determining the identifiability of a model are described and implementations within

the computer algebra package Maple are given [158]. Certain theoretical aspects of the input-
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output relationship approach are further explored to resolve some unstated assumptions in the

current understanding of this approach. The second section, Section 3.3, follows naturally from

the first, introducing structural indistinguishability, the field concerned with whether perfect

observations can be used to distinguish between two model systems [149]. This section follows

the general structure of the preceding section. It starts with definitions of what is meant by

distinguishability, outlines relevant analysis techniques and gives computational implementa-

tions of these techniques. Parameter estimation from experimental data is outlined in Section

3.4. Two computational packages COPASI [159] and Facsimile 4 (MCPA Software, UK) are

described and an overall fitting procedure using these programs is given. COPASI is also well

suited to simulation of metabolic pathways; as described in section 3.5. Microsoft Excel was

used to manually implement numerical integration of simpler systems.

3.2 Structural identifiability

The parameters of a model can be estimated by numerical fitting techniques. However even for

perfect data it is possible that there is more than one parameter vector which will produce the

observed output. If this is the case little confidence can be placed in the parameters produced

by the estimation process. This problem can be avoided by changing the model such that the

parameters that are subsumed into other parameters, for example by reparametrisation [160],

or by using additional experiments permitting the identification of more parameters [161]. The

effect of these approaches can be predicted by structural identifiability analysis. This field of

mathematics/systems theory is concerned with determining whether for a given model system,

including descriptions of the processes occurring, of the measurements made and of any inputs

to the system, a perfect, that is continuous and noise free, observation will uniquely determine

the parameters of the model.

These concepts are now formally defined [162]. The models used in this work have no inputs. It
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is therefore unnecessary to include inputs in the definitions given. Define a general state space

model, σ(x, f ,x0,y,C,p), as follows:

x′(t,p) = f(x(t,p),p), (3.1)

x(0,p) = x0(p), (3.2)

y(t,p) = C(p)x(t,p), (3.3)

where x(t,p) = (x1(t,p), . . . , xn(t,p))
T is the state vector, containing the state variables

xi(t,p). Let p = (p1, . . . , pq)
T be a vector of unknown model parameters which lies in some

open set, Ω ⊂ Rq, of feasible values. Let x(t,p) lie in a connected open subset M(p) ⊂ Rn and

f(·,p) be analytic on M(p). The vector of model outputs, y(t,p) = (y1(t,p), . . . , yr(t,p))
T ,

comprises the combination of elements of the state vector which are measured experimentally.

This is often described as a linear function of x(t,p) with an r × n observation gain matrix

C(p) [162].

For the purposes of a structural identifiability analysis the observations are assumed to perfectly

represent the input-output structure of the model. That is they are assumed to be continuous,

noise and error free. For a model of the form (3.1) - (3.3) a parameter vector p is indistin-

guishable from p, denoted p ∼ p, if they give rise to identical model outputs, that is:

y(t,p) = y(t,p), for all t ≥ 0. (3.4)

For generic p ∈ Ω (that is, for all p ∈ Ω except for a subset of a closed set of Lebesgue measure

zero) a parameter pi is locally identifiable (LI) if there exists a neighbourhood of points

around p, N(p), such that if p ∈ N(p), p ∼ p implies that pi = pi. If no such N(p) exists for

pi it is unidentifiable. If N(p) = Ω for pi then it is globally identifiable (GI). A model is

unidentifiable if any parameter is unidentifiable. It is structurally locally identifiable (SLI)
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if all parameters are LI and at least one is not GI. It is structurally globally identifiable

(SGI) if all parameters are GI.

The following subsections outline a number of approaches to structural identifiability analysis.

Implementations of these approaches in the computer algebra package Maple are also given.

3.2.1 Taylor series approach

To determine whether a model is structurally globally identifiable it must be shown that the

observations determine a unique parameter vector. The output function y(t,p) can be expanded

as a Taylor series in t since f(x,p) is analytic. Expansion at time, t = a, creates a unique

expression:

y(t,p) =

∞∑

i=0

y(i)(a,p)
(t− a)i

i!
, (3.5)

in terms of derivatives of the output at that point. Using Equation (3.1) these derivatives can

be written in terms of elements of the state vector and elements of p. The coefficients of a Tay-

lor series are unique for a given output, thus by solving these equations for p it is possible to

determine whether there is a unique p for the output structure used [163]. If a unique solution

exists the model is structurally globally identifiable. However this technique provides an infinite

number of coefficients. For a linear system, without input (or with a single impulsive input),

it is known that at most 2n− 1 (where n is the state space dimension) independent equations

are required to determine the possible solutions for p [164]. For general non-linear systems no

strict upper bound has been determined although a loose upper bound exists [165]. As such it

can be difficult to prove unidentifiability using this technique. Moreover, in either case, high

order coefficients are very complex making them difficult to solve even using symbolic algebra

packages. In some cases it may be possible to construct an inductive argument to describe the

form of the Taylor series coefficients and thus prove unidentifiability.
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While for some systems it is possible to apply this approach by hand, many systems are too

complex for this to be practical. Regardless, in order to avoid errors, it is preferable to implement

it using a computer algebra package. In this work it was implemented in Maple as follows [158].

This approach is applied to a simple model in Section 3.2.4.

Step 1: Definition of model

Model constants, initial conditions, and differential equations were defined as follows:

assume(constant_name, constant):

variable_name(0) := initial_value;

D(variable_name(t), t) := function;

The use of the assume function when defining constants ensures that Maple will not attempt to

differentiate them. Initial values are either zero or a constant that has been defined. There is

no intrinsic reason why an initial condition should be used rather than a nonzero time. However

for the models analyzed the most appropriate time at which to expand was t = 0 since this

was the time at which concentrations could be controlled. The D function in Maple denotes

the differential operator and can be applied to a function. The definitions used cause Maple to

replace variables to which the operator has been applied with the function given. This function

should thus be the relevant differential equation in variable\_names(t) and constants.

The output function was defined as follows:

y := [a_1*variable_name_1(t), ... ,a_n*variable_name_n(t)];

SUBS1 := a_1 = value_1, ... , a_n = value_n;

f_0_i := subs(SUBS1, y)[i];

g_0_i := eval(f_0_i, t=0);

For maximum flexibility a matrix A could be defined and multiplied by the state vector x to

obtain the output functions. However for the models analyzed outputs did not consist of linear
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combinations of species, as such the definition above was sufficient. SUBS1 determines which

variables were measured, the value_is were either 1 or 0 indicating whether the variable was

measured. The f\_0\_is are the output functions and the g\_0\_is are the zeroth order Taylor

series coefficients.

Step 2: Calculation of Taylor series coefficients

The Taylor series coefficients were calculated as follows:

f_i_j := D(f_i-1_j):

g_i_j := eval(f_i_j, t=0):

The Taylor series coefficients are determined inductively, starting from the coefficients defined

above. The differential operator D was applied to the previous derivative of the output function.

The eval function is then used to determine the corresponding Taylor series coefficient. There

being no strict upper limit on the number of Taylor series coefficients needed for a nonlinear

system an arbitrary number of coefficients was computed. Calculation of these coefficients in

Maple requires large amounts of memory and can require significant computational time. The

number of coefficients calculated typically depends on these factors.

Step 3: Definition of an alternative parameter vector

Suppose there exists an alternative parameter vector, p, which produces the same output as the

starting parameters. If it can be shown that p = p then the model is globally identifiable. If

there are countable many solutions the model is locally identifiable. The alternative parameter

vector was defined and used to create equations from the Taylor series coefficients as follows:

SUBS2 := parameter_name_1 = alt_parameter_name_1,

... , parameter_name_m = alt_parameter_name_m;

ga_i_j := subs(SUBS2, g_i_j):

eqn_i_j := g_i_j - ga_i_j:



3.2. STRUCTURAL IDENTIFIABILITY 50

The subs function uses the list defined by SUBS2 to replace names on the left with names on

the right. This creates the alternative Taylor series coefficients. Equations are then defined

by subtracting these coefficients from the coefficients determined. When these equations are

solved Maple will assume that they are equal to zero unless otherwise stated.

Step 4: Solving for the alternative parameters

The equations derived above are now solved for the alternative parameters:

s:= solve({eqn_1_1, ... , eqn_a_b}, {alt_parameter_1,

... , alt_parameter_name_m}):

eqn_1_1 := alt_parameter_1 = solve(eqn_1_1, alt_parameter_1):

eqn_j_k_1 := simplify(subs(s1, ... , si-1, eqn_j_k)):

si := alt_parameter_i = solve(eqn_j_k_1, alt_parameter_i}:

There are two possibilities. In some cases Maple is able to solve all the equations determined

for the alternative parameters. In this case the first line of code is used. The solution can

be seen by inputting s;. However, this calculation, like the determination of the Taylor series

coefficients, consumes memory and computational time. If a solution cannot be obtained within

a reasonable time, or without exhausting the available memory, an iterative approach is possible.

The first equation is solved for one of the alternative parameters and this solution is used to

create a term that can be used in subs. Proceeding one equation at a time, further solutions

for alternative parameters are determined, by substituting all known solutions into an equation

and then solving for an alternative parameter. This approach is more manageable although it

may still run out of the available resources.

3.2.2 Pohjanpalo’s Jacobian rank test

As observed above symbolic implementations of the Taylor series approach can be computa-

tionally expensive. In cases where computing power is insufficient a result, due to Pohjanpalo,
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can be used [166]. The derivatives of the output are used as the elements of an infinite vector.

The Jacobian matrix of this vector with respect to the unknown parameters is given by:

J(x) =




∂y1(x)
∂p1

. . . ∂y1(x)
∂pq

. . .

∂yr(x)
∂p1

. . . ∂yr(x)
∂pq

∂y
(1)
1 (x)

∂p1
. . .

∂y
(1)
1 (x)

∂pq

. . .

∂y(1)
r (x)
∂p1

. . .
∂y(1)

r (x)
∂pq

. . .




(3.6)

A non-regular point, θ, satisfies the condition, det(Jk(θ)) = 0, k = 1, . . . ,∞ where the super-

script denotes the kth selection of q rows. If the set of non-regular points has measure zero in

Ω then the model is locally identifiable if and only if there exists some α such that J(α) has

rank q. Note that when the elements of the Jacobian are polynomial in p this condition holds.

Thus by evaluating the Jacobian matrix at a point it is possible to establish that a model is

locally identifiable. This condition does not demonstrate that the model is not globally iden-

tifiable [166]. Since differentiation simplifies the coefficients to be used this approach is less

computationally demanding than the Taylor series approach.

This test was implemented in Maple as follows. This approach is applied to a simple model in

Section 3.2.4.

Steps 1 and 2 were implemented as above. Note that in order for the Jacobian matrix to have

sufficient rank at least q non-zero Taylor series coefficients are needed.

Step 3: Computation of the rank of a Jacobian matrix
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There is a package in Maple which will compute the Jacobian matrix of two vectors.

\with(VectorCalculus}:

J1 := Jacobian([g_1_1, ... , g_a_b], [parameter_name_1,

... , parameter_name_m]):

The VectorCalculus package should be called only after the Taylor series coefficients have

been computed as it changes certain definitions that are used during these calculations. The

vector of Taylor series coefficients should include all nonzero coefficients computed. The vector

of parameters should list all unknown model parameters. The rank of this Jacobian matrix can

then be calculated using another Maple package.

\with(LinearAlgebra):

\rank(J1);

For the models analyzed Maple was able to compute a Jacobian matrix with the resources

available. If this is not true it is sometimes possible to partially simplify the Jacobian matrix

to allow Maple to complete the task. No algorithm is provided as this simplification must be

done by hand.

3.2.3 Input-output relationship approach

An alternative to the Taylor series approach, an approach, deriving from differential algebra,

uses the (input-)output relation associated with the model in question to determine identifia-

bility. The differential equations and equilibrium relations defining the system model are the

generators of a radical differential ideal [167]. This differential ideal can be decomposed into

an intersection of differential ideals using the Rosenfeld Gröbner algorithm, a generalisation

of the division algorithm to differential polynomials [168]. The resulting decomposition cor-

responds to the general and singular solutions of the differential equations [169]. Given an
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appropriate choice of ranking each ideal contains expressions in derivatives of the output (and

input) functions only, the (input-)output relation [170]. Given that the models used have no

input functions; this relation will be referred to as the output relation. Furthermore since a

single output function is used in each case the output relation will consist of a single func-

tion denoted h(y(p, t), y(1)(p, t), . . . , y(i)(p, t),p). The following analysis can be generalised for

multiple output functions with a corresponding vector output relation.

The output relation is a generator of an ideal and as such must equal zero. Since the coefficients

of this differential polynomial are generically non-zero, they are linear combinations of the

elements of the parameter vector, p, the monomials are linearly dependent. It can however be

rearranged to give the highest order derivative of y(t) as a possibly rational function of strictly

lower order derivatives:

y(i)(t) = ĥ(y(t),y(1)(t), . . . ,y(i−1)(t),p). (3.7)

This relation is used in the analysis of structural identifiability as follows. Two indistinguishable

parameter vectors, p and p satisfy Equation (3.4). Consequently they also satisfy:

y(1)(t,p) = y(1)(t,p), for all t ≥ 0, (3.8)

since Equation (3.4) holds for all t and x(t,p) and thus y(t,p) are analytic. Furthermore by

induction:

y(n)(t,p) = y(n)(t,p), for all t ≥ 0 and n ∈ N, (3.9)

where N denotes the natural numbers. Thus for indistinguishable parameter vectors:

y(i)(t,p)− ĥ(y(t),y(1)(t), . . . ,y(i−1)(t),p)

= y(i)(t,p)− ĥ(y(t),y(1)(t), . . . ,y(i−1)(t),p), (3.10)



3.2. STRUCTURAL IDENTIFIABILITY 54

which can then be rearranged to obtain:

0 = ĥ(y(t),y(1)(t), . . . ,y(i−1)(t),p)− ĥ(y(t),y(1)(t), . . . ,y(i−1)(t),p). (3.11)

The second expression, Equation (3.11), can now be rearranged to give a differential polyno-

mial. Assuming the monomials of this differential polynomial are linearly independent their

coefficients must all be zero. As such these coefficients can be solved for p. A single solution

implies that the model is SGI; countably many solutions that it is SLI; and uncountably many

that the model is unidentifiable.

Thus it is critical to determine whether the monomials of this differential polynomial are linearly

independent. If it can be rewritten as a simple polynomial then the Fundamental Theorem of

Algebra can be applied. However, where this is not the case an alternative approach is needed;

this is discussed in the following section (Section 3.2.3.1).

For exceptionally simple systems it is possible to apply this approach by hand. However in

general the algebraic manipulations required are best handled by a computer algebra package.

This approach was implemented in Maple as follows [158]. It is assumed that a single species is

measured and that there are no inputs. This approach is applied to a simple model in Section

3.2.4.

Step 1: Definition of the model

A field extension of the rational numbers and a differential ring are defined as follows:

with(diffalg):

F := field_extension(transcendental_elements = CONSANTS):

R := differential_ring(derivations = [t], ranking = RANKING,

field_of_constants = F, notation = diff):

The first command indicates that the differential algebra package will be used. CONSTANTS
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is the set of constants associated with the model, i.e. the elements of p and non-zero initial

conditions. RANKING is an ordered list of the symbols denoting the reaction species. The last

element in this list should be the measured species. The model equations are then defined as

follows:

eqn_mi := diff(x_i, t) - f_i(x):

eqn_ei := Ci - g_i(x):

Thus the derivatives of the state vector are rearranged and then denoted by the eqn_mis, while

the conservation relations are denoted by the eqn_eis.

Step 2: Derivation of a differential polynomial from the output relation

An autoreduced (see Section 3.2.3.1) ordered subset of the model equations is selected, generally

containing all the equilibrium relations, and denoted GenId. The Rosenfeld Gröbner algorithm

is then used to calculate a decomposition of the ideal generated by these equations [170].

P1 := Rosenfeld_Groebner(GenId, R);

The generators of the ideals of this decomposition can be output using the following code:

rewrite_rules(P1)[i];

Where this decomposition contains multiple ideals, ideals describing singular model states, that

is cases which could be eliminated experimentally, are eliminated by inspection. The output

relation of the remaining ideal, the general solution, is the last generator of the remaining

ideal and is denoted inout. Let the highest derivative in the output relation have order i. The

output relation is converted to a multinomial by substitution of the derivatives by an alternative

symbol.

SUBSA := diff(y(t), [t$i]) = y_i, diff(y(t), [t$i-1]) = y_i-1, ... , y(t) = y:

inout := subs(SUBSA, inout):
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The relation is then solved for the highest order derivative to obtain inout1. An alternative

parameter vector is defined as described in Section 3.2.1 and substituted into inout1 to obtain

inout2. The highest order derivative is then eliminated by subtracting inout2 from inout1.

The result is converted to a polynomial form.

inout1 := solve(inout, y_i):

inout2 := subs(SUBS2, inout1):

outrel := denom(simplify(inout1 - inout2))*simplify(inout1 - inout2):

Step 3: Analysis of the coefficients of the differential polynomial obtained

The highest degree of each y_j are determined and denoted o_j. The coefficients of the mono-

mials of outrel are separated from their monomials using the coeff function.

coeffs_0 := 0:

for k from 0 by 1 to o_0 do

coeffs_0 := coeffs_0, coeff(outrel, y_0, k):

end do:

coeffs_0 := {coeffs_0}:

coeffs_j := 0:

for k from 2 by 1 to nops(coeffs_j-1) do

for l from 0 by 1 to o_j do

coeffs_j := coeffs_j, coeff(coeffs_j[k], y_j, l):

end do:

end do:

coeffs_j := coeffs_j

The final set obtained, coeffs_i-1, contains all the monomial coefficients. It is then solved for

the alternative parameter vector.
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s:=solve(coeffs_i-1, {alt_parameter_1, ... , alt_parameter_name_m}):

A single solution implies that the model is SGI; countably many solutions that it is SLI; and

uncountably many that the model is unidentifiable.

3.2.3.1 Establishing linear independence of monomials

The linear independence of the monomials of the differential polynomial derived from Equation

(3.11) can be checked by computation of a Wronskian. The Wronskian of the monomials is

the determinant of the square matrix constructed by using the monomials as the first row and

the i-th derivative of this row as the i + 1-th row. If there exists a time point at which the

Wronskian is non-zero, the monomials are linearly independent [171]. However typically one of

the monomials will be the output function y(t,p). As such using this approach is ultimately

equivalent in complexity to calculation of i− 1 Taylor series coefficients, where i is the number

of monomials in the input-output relation, and thus to undertaking a Taylor series analysis. An

alternative test can be derived using concepts from differential algebra.

For a more formal introduction to these concepts see Ritt [167] or more recently Boulier et al.

[168]. Define a ranking on a differential ring, K{y1, . . . , yn}, to be a total ordering on the ring

which is compatible with the differentiations over the alphabet; specifically ranking is preserved

by differentiation and higher order derivatives are ranked higher than lower order derivatives.

For a differential polynomial, p of K{y1, . . . , yn}, and a ranking R, the leader, u, of p is the

largest derivative with respect to the ranking R which appears in p. Let d be the degree of u in

p. The initial, Ip, of p is the coefficient of ud in p. The separant, Sp, of p is the initial of all

the proper derivatives of p. The differential polynomial q is partially reduced with respect

to p if no proper derivative of u appears in q. It is reduced with respect to p if it is partially

reduced with respect to p and its degree in u is less than d.

A set of polynomials A is triangular if its elements have different leaders. It is autoreduced
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if each element is reduced with respect to every other element. It is orthonomic if the initials

and separants of its elements are in K [168, 170].

If a set of generators is autoreduced and orthonomic then the ideal generated by them is prime

[168] and the corresponding variety is irreducible. As such the generators cannot be factorised

and must have a single solution. The output relation is a generator of the differential ideal,

albeit restated in an alternative form, and thus shares this property.

So if the leader is eliminated, as described in Section 3.2.3 (Equation (3.11)) the resulting

expression can only be identically zero if the coefficients of the remaining monomials are zero;

or equivalently the monomials are linearly independent. It is however necessary to check that

the initial is generically non-zero since, if this is not the case, the elimination process would

involve division by zero.

If the initial is generically zero then it is a generator of the ideal arising from the system model.

Thus the ideal defined using the system equations and the initial should be equivalent to that

obtained just from the system equations. As such their decompositions under the Rosenfeld

Gröbner algorithm should be identical. If this is not the case then the initial is generically

non-zero. For the cases considered, in Chapters 4 and 6, the resultant decomposition is a

subset of the original decomposition constituent of ideals describing singular reaction states

demonstrating that the initial is generically non-zero.

In summary in order to determine whether the monomials of differential polynomial derived

from Equation (3.11) are linearly independent it is sufficient to check that the generators of the

ideal are orthonomic and autoreduced with respect to some ranking and that the initial of the

output relation is generically non-zero.
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3.2.4 Application of the identifiability analysis techniques to a simple model

The Taylor series approach, Pohjanpalo’s Jacobian rank test and the input-output relationship

approach are now applied to the one substrate enzyme catalysed reaction mechanism below:

E + S
k1

⇋
r1

ES

ES
k2→ E + P (3.12)

where E, S, ES and P represent enzyme, substrate, enzyme-substrate complex and product

respectively. The concentrations of these species constitute the model state vector, denoted

x(t,p). It and the initial conditions used are given below:

x(t,p) = (E(t,p), S(t,p), ES(t,p), P (t,p))T , (3.13)

x(0,p) = x0 = (E0, S0, 0, 0)
T . (3.14)

The derivative of the state vector is given by:

dx(t,p)

dt
=




−k1E(t,p)S(t,p) + (r1 + k2)ES(t,p)

−k1E(t,p)S(t,p) + r1ES(t,p)

k1E(t,p)S(t,p)− (r1 + k2)ES(t,p)

k2ES(t,p)




, (3.15)

where k1 and r1 are the association and dissociation rate constants for the formation of the

complex, and k2 is the rate of irreversible breakdown of the complex. These constants are the

elements of the unknown parameter vector denoted p. The observation considered, denoted

y(t,p), will be measurement of the concentration of P :

y(t,p) = P (t,p). (3.16)
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The first five coefficients of the Taylor series expansion of Equation (3.16) at t = 0 are given

below:

y(0,p) = 0, (3.17)

y(1)(0,p) = 0, (3.18)

y(2)(0,p) = k1k2E0S0, (3.19)

y(3)(0,p) = −k1k2E0S0(k1(E0 + S0) + r1 + k2), (3.20)

y(4)(0,p)

k1k2E0S0
= (k21(E

2
0 + 4S0E0 + S2

0) + 2k1k2(E0 + S0) + r1k1(E0 + 2S0) + (r1 + k2)
2). (3.21)

The rank of the Jacobian matrix of these coefficients with respect to the unknown parameter

vector is three. Thus this model is at least locally identifiable by Pohjanpalo’s Jacobian rank

test. The alternative unknown parameter vector given by:

p = (k1, k2, r1)
T , (3.22)

was used to construct simultaneous equations in the two sets of unknown parameters. For

example using Equation (3.19):

0 = y(2)(0,p)− y(2)(0,p) = (k1k2 − k1k2)E0S0. (3.23)

The equations obtained from the first five Taylor series coefficients were solved for the alterna-

tive parameters producing two solutions. The equation obtained from the sixth Taylor series

coefficient eliminated one of these solutions leaving p = p, thus this model is structurally

globally identifiable.

The model equations are rearranged into the conventional form for generators of a differential
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ideal below:

E(1)(t,p) + k1E(t,p)S(t,p)− (r1 + k2)ES(t,p) = 0, (3.24)

S(1)(t,p) + k1E(t,p)S(t,p)− r1ES(t,p) = 0, (3.25)

ES(1)(t,p)− k1E(t,p)S(t,p) + (r1 + k2)ES(t,p) = 0, (3.26)

P (1)(t,p)− k2ES(t,p) = 0, (3.27)

E(t,p) + ES(t,p)− E0 = 0, (3.28)

S(t,p) + P (t,p)− S0 + ES(t,p) = 0. (3.29)

The last four of these generators, Equations (3.26)-(3.29), constitute an orthonomic and au-

toreduced subset of these generators, for any ranking for which the members of the following

set, {E, S}, are ranked above the remaining variables, {ES, P}. As such the ideal generated

by these expressions is prime by the argument presented in Section 3.2.3.1.

In this case an input-output relationship can be derived by hand. First the conservation re-

lations, Equations (3.28) and (3.29), are used to eliminate E(t,p) and S(t,p) from Equations

(3.26) and (3.27), P (t,p) is relabelled y(t,p). The rearrangement then proceeds as follows,

from Equation (3.27):

y(1)(t,p) = k2ES(t,p), (3.30)

ES(t,p) =
y(1)(t,p)

k2
, (3.31)

ES(1)(t,p) =
y(2)(t,p)

k2
. (3.32)

Substituting these expressions into Equation (3.26) gives:

y(2)(t,p)

k2
= k1(E0 −

y(1)(t,p)

k2
)(S0 −

y(1)(t,p)

k2
− y(t,p))− (r1 + k2)

y(1)(t,p)

k2
. (3.33)
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The input-output relationship contains the monomials: z1 = 1, z2 = y(t,p), z3 = y(1)(t,p),

z4 = y(t,p)y(1)(t,p), z5 = (y(1)(t,p))2, z6 = y(2)(p). A second expression was created using

the alternative parameter vector and subtracted from Equation 3.33 eliminating z6 to yield:

0 =
(k1k2 − k1k2)E0S0z1 − (k1k2 − k1k2)E0z2 + (k1 − k1)z4 + (k1

k2
− k1

k2
)z5 −

− ((k1 − k1)(E0 + S0) + (r1 − r1) + (k2 − k2))z3.

(3.34)

Thus the relations to be solved are:

k1 − k1 = 0, (k1k2 − k1k2)/(k2k2) = 0,

k1k2 − k1k2 = 0, (k1 − k1)(E0 + S0) + (r1 − r1) + (k2 − k2) = 0.





(3.35)

A unique solution to these relations exists, p = p, thus the results of the Taylor series and input-

output relationship approaches agree. In this case it is possible to check linear independence of

the monomials by computation of a Wronskian1 as noted in Section 3.2.3.1; the monomials z1

to z5 are linearly independent as expected based on the argument presented in that section.

3.3 Structural indistinguishability analysis

Where structural identifiability is used to determined whether two parameter vectors can give

rise to the same model output, structural indistinguishability is concerned with whether two

models structures do likewise for some feasible pair of parameter vectors. As such structural

identifiability is, strictly speaking, a specific case of structural indistinguishability although typ-

ically they are treated separately [149, 150]. Similar techniques are used for indistinguishability

analysis as have been described in the previous section.

These concepts are now formally defined. Suppose there exist two state space models

1 The file containing this calculation is available electronically on request and at:
http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.
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Σ(x, f ,x0,y,C,p) and Σ̂(x̂, f̂ , x̂0, ŷ, Ĉ, p̂) as defined previously, Equations (3.1)-(3.3). Analo-

gously to Equation (3.4) the two parameter vectors are said to be indistinguishable if:

y(t,p) = ŷ(t, p̂), for all t ≥ 0. (3.36)

The models Σ and Σ̂ are structurally indistinguishable if:

for all p there exists p̂ such that p ∼ p̂,

and for all p̂ there exists p such that p ∼ p̂.





(3.37)

Otherwise the models are structurally distinguishable[172].

The Taylor series and input-output relationship approaches described in Sections 3.2.1 and 3.2.3

can be generalised to indistinguishability analysis; the principles of both techniques remain the

same. The Laplace transformation approach, applicable only to linear models, and the similarity

transformation approach can also be adapted for indistinguishability analysis [150]. However

they are not considered here.

For the Taylor series approach, a Taylor series expansion of the output function of both models

is calculated. Taylor series coefficients of the same order are then used to construct simultaneous

equations in the two parameter vectors. The resulting equations are then solved, if no solution

can be found the models are distinguishable. Note that proving indistinguishability falls prey

to the same difficulties as proving unidentifiability. If only a finite number of Taylor series

coefficients are used it is possible that the models could be shown to be distinguishable using

additional Taylor series coefficients.

Similarly for the input-output relationship approach, an output relation for each model is cal-

culated. In all cases where this was applied the two models had the same leader, which was

eliminated by subtraction of one output relation from the other. For the models considered
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this yielded a simple, rather than differential, polynomial the monomials of which were linearly

independent by the Fundamental Theorem of Algebra. This approach has not yet been gener-

alised for models which do not yield simple polynomials at this stage. The coefficients of the

monomials were then used to construct simultaneous equations in the two parameter vectors

which were then solved.

For both approaches it was sometimes necessary to subject the solutions to case analysis on

the initial conditions to determine whether the solutions were in fact feasible. In some cases

experimental constraints prevent the use of initial conditions which would otherwise render the

models distinguishable; thus while these models may be structurally distinguishable, they are

practically indistinguishable.

3.4 Numerical parameter estimation

This work makes extensive use of numerical parameter estimation in the analysis of experimental

data. In this section methods by which parameters may be estimated from experimental data

are discussed. Two cases are considered, first the issue of nonlinear curve fitting to data obtained

by typical kinetic characterisation techniques, and second the estimation of parameters for a

dynamic model from full experimental time courses. In the latter case structural identifiability

and indistinguishability analyses are an essential precursor to the numerical techniques. The

methods used are described below; they all use least squares minimisation.

The kinetic characterisations undertaken in this work (Chapter 5) involve the measurement

of initial rates of reaction for a range of initial substrate concentrations. A single initial sub-

strate concentration is varied while the remaining concentrations are kept constant. The use

of mechanical mixing in these experiments allows the reactions to reach the quasi-steady state

described by the Michaelis-Menten approximation. As such the data collected can be fitted
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using the non-linear equations:

v =
VmaxC

(C + km)
, (3.38)

v =
VmaxC

(C + km +
C2

ki
)

. (3.39)

The variables v and C denote the initial rate of reaction and initial substrate concentration

respectively. The parameters Vmax, km and ki correspond to kinetic constants to be estimated.

Equation (3.38) describes uninhibited reaction kinetics while Equation (3.39) describes the effect

of substrate inhibition.

Two software packages were used to estimate parameters for these characterisations: xmgrace

(Grace Development Team) and Facsimile 4 (MCPA Software, UK). A first set of parameter

estimates were obtained in xmgrace which implements the Levenburg-Marquardt algorithm,

described below. This algorithm converges well regardless of initial parameter values. However

the software does not generate particularly detailed statistical analysis of these fits. The fitting

algorithm used by Facsimile 4 converges poorly if initial parameter estimates do not describe

the data well. However it provides in-depth statistical analysis of resultant parameter estimates.

Thus, in order to obtain this analysis, the estimates obtained using xmgrace were used as initial

parameter values in Facsimile 4. Details of the Facsimile 4 fitting algorithm can be found in

the Facsimile 4 Technical Guide [173].

Confidence intervals for the parameter estimates were estimated in Facsimile; assuming a log-

normal distribution. The basic technique is described below.2

An alternative to this approach was considered, whereby the parameters of the differential

equations describing the reaction were estimated directly from time course data. xmgrace is

unable to estimate parameter values for sets of differential equations. As such an alternative to

2 Sample code is available electronically on request and at:
http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.
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this program was required if parameters were to be estimated for time course data. The fitting

algorithms in COPASI converge adequately regardless of parameter values [159]. They were

not used for parameter estimation based on initial rate data since they are not optimised to a

system which is not constructed from differential equations. In addition they require sufficient

statistical analysis of the parameter estimates obtained to obviate the need for Facsimile 4.

The quasi-steady state equations are not implemented in this program and were added as

needed, the equations used can be found in Sections 4.2.1 and 4.2.2. Transient models were

implemented using the reversible and irreversible mass action functions to describe each complex

formation or degradation step; the models used are described in Sections 4.2.1 and 4.2.2. In

general the Levenburg-Marquardt algorithm was used [174]; the iteration limit and tolerance

being increased to 1000 and 10−12 from defaults for best fits. The algorithm proceeds as

follows. Given an estimated parameter vector pi a new estimate is obtained by adding δ to

obtain pi+1 = p+ δ. The increment δ is determined from the following equation [174]:

(JTJ+ λdiag(JTJ))δ = JT (Y − F(pi)). (3.40)

The experimental data and model curve are represented by the vectors, Y and F(pi), J is the

Jacobian of F with respect to p. The diagonal of a matrix A is denoted by diag(A).

For some data, where the response was relatively insensitive to the model parameters, the

Levenburg-Marquardt algorithm failed to converge in reasonable time. In these cases an evolu-

tionary programming algorithm was used [175]. This algorithm, using as it does a more random

approach to the minimum, allowed a greater exploration of the solution space; allowing results

to be obtained from otherwise intractable data. However this increased ability to find a solution

also results in less consistent solutions being obtained between runs of the algorithm. As such

it was used only as a last resort. The algorithm is briefly described below.

Given a population of 200 parameter vectors, a daughter population of 400 is generated by
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adding a mutation, a random modification, of each member of the population. An R2 value is

determined for each member of the population, pj using the expression below:

R2
j =

∑N

i=1(Yi − Fi(pj))

N
. (3.41)

The number of data points is denoted N , Yi and Fi(pj) denote the i-th elements of the

experimental data and model curve vectors respectively. The elements of the population were

ranked according to these values; the 200 with the highest R2 values are eliminated. The process

is then repeated; 1000 generations were used.

Confidence intervals were estimated manually for these parameters using the statistical data

provided by COPASI in Microsoft Excel (Microsoft Ltd, Reading, UK): assuming that error

was normally distribution. The basic technique was as follows. For a given distribution of error,

X , confidence intervals were estimated for each parameter using the following equation:

v± = v ±X(p) · se(v). (3.42)

Where v is the estimated parameter value, p is a probability such that 1− 2p gives the required

confidence level and se(v) is the standard error (or standard deviation) associated with v. The

value denoted by X(p) is the value at which P (X > x) = p for the standardised distribution

X .

3.5 Simulation of reaction species concentrations

The concentrations of reaction species were predicted by numerical integration of a model

system. The trapezoidal integration method was implemented manually in Microsoft Excel

and was used to eliminate background production from experimental data. Simulation of time

courses for a single reaction were undertaken in Maple. Prediction of more complex pathway
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dynamics was undertaken using COPASI. These three methods are described in detail below.

Experimental observations of pathway dynamics were obtained using the assays described in

Section 2.4. Over long time courses background production of the observed species could signif-

icantly affect the measured data. Rates of background production at the start and end points

of the time course were estimated from experimental data. These data were combined with

models of background production to extrapolate rates for all points in the time course. The

resulting curve was integrated numerically using a manual implementation of the trapezoidal

integration method (Equation (3.43)) in Microsoft Excel. The iterative function describing this

method is given below:

xn+1 = xn +
tn+1 − tn

2
(f(xn+1, tn+1) + f(xn, tn)), (3.43)

time steps are enumerated by superscripts; t, x, and f are time, concentration of species, and

rate of change of species concentration respectively. This method is rather crude; being prone

to accumulation of error and not suitable for stiff systems. However it is adequate to integrate

the relatively low curvature functions used to model background production in the models used.

The superior algorithms implemented in Maple or COPASI could have been used. However

aligning the resulting time courses to the experimental data would have been a non-trivial

problem and as such the simpler solution, a direct implementation in Microsoft Excel, was

preferred.

Time courses for a single reaction were generated in Maple using the dsolve function. This uses

an algorithm similar to that used by COPASI which is described below. Maple was used for this

case since the subsequent analysis desired was best implemented in this program. Specifically

Maple was used to plot rates of accumulation of certain reaction species, corresponding to

experimental data, and initial rates against initial concentrations of substrates, simulating the

initial rate kinetic characterisations described in Sections 2.4 and 5. In order to create equivalent
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plots from data simulated using COPASI it would have been necessary to export the data to

an alternative program.

The differential equations describing model pathways were numerically solved using the time

course functions in COPASI [159]. This program has a number of features which make it ideal

for modelling of metabolic pathways. Models of individual reactions can be selected from a list

and populated with relevant parameters. Incorporation of additional reactions to an existing

model is relatively simple. Finally it is possible to use stochastic or deterministic simulations,

or a hybrid of both.

Time course simulations were deterministic and were produced using a variant of the Livermore

Stiff ODE solver [176]. Given that the lowest particle numbers considered were of the order

of 1011 deterministic simulations are appropriate. Options for the algorithm were left as de-

fault. Thus the algorithm was allowed to use mass conservation laws; the relative and absolute

tolerances were 10−6 and 10−12 respectively, significantly higher than can reasonably be ex-

pected experimentally; and the maximal internal steps before the next reporting time was 105.

The algorithm incorporates both stiff, backward differentiation formula (BDF), and non-stiff,

Adams-Moulton, integration methods.

The Adams-Moulton and BDF methods of order q are given by the following expressions:

Yn = Yn−1 + hn

q−1∑

j=0

βjfn−j , (3.44)

Yn =

q∑

j=1

αjYn−j + hnβ0fn, (3.45)

respectively. The interval required in divided into internal, not necessarily regular, increments

denoted by the length N vector ξ. The step size is denoted hn(= ξ
n
− ξ

n−1
), the difference

between the n-th and (n − 1)-th elements of ξ. The estimated solution and the derivative of

this solution are denoted by Y and f respectively. Subscripts denote the position in the vector



3.6. SUMMARY 70

corresponding to the mesh point at the same position in ξ. Thus fn is the derivative of Y

at ξ
n
. The coefficients {αj} and {βj} are associated with particular orders of these methods.

Equations (3.44) and (3.45) are implicit, they require solutions at mesh points which have not

yet been simulated, the unknown values are predicted using explicit methods and then corrected

iteratively. This approach provides excellent accuracy, that is the difference between estimated

and actual values at a given point is small, and stability, that is the accumulated difference

between estimated and actual values grows slowly [177].

In the implementation in COPASI, the maximal order the Adams method will attempt before

switching to the BDF method is 12; the maximal order the BDF method will attempt before

switching to smaller internal step sizes is 5.

3.6 Summary

Two primary approaches to structural identifiability and indistinguishability analysis are pre-

sented in this chapter, the Taylor series approach and the (input-)output relationship approach.

The Taylor series approach is well-known and understood. However the implementation of this

approach is often computationally difficult. The theory behind the (input-)output approach is,

by contrast, much less developed. The test presented here to determine whether the monomials

of the expression analysed are linearly independent has not been previously proposed. The rel-

ative effectiveness of, and difficulty of implementing, these two approaches in analysing models

of enzyme dynamics will be assessed in the following chapters (Chapters 4 and 6).



4. IDENTIFIABILITY AND INDISTINGUISHABILITY ANALYSIS OF

QUASI-STEADY STATE MODELS OF ENZYME REACTIONS

4.1 Introduction

The cytoplasmic phase of the peptidoglycan biosynthesis pathway is composed of six enzyme

catalysed reactions. In order to simulate the the behaviour of this pathway it will be necessary

to determine the kinetic parameters of each of these reactions. These characterisations will

be undertaken using enzymological techniques as discussed in Section 3.4 and implemented in

Chapter 5. However an alternative approach, direct estimation of parameters from time course

data, may also be viable. It is necessary however to conduct a structural identifiability analysis

of the candidate models prior to attempting such an approach.

The reaction mechanisms of the enzymes in this pathway have been determined. However when

characterising a new enzyme this information would not generally be available. As such it would

be necessary to determine which model for the reaction mechanism is most appropriate during

the characteristion process. If the direct estimation approach is to be used this problem, of

multiple possible reaction mechanisms, would require a structural indistinguishability analysis

to be undertaken.

As such, in this chapter, these two forms of analysis will be undertaken for a variety of two

and three substrate reaction mechanisms. The mechanisms in question will first be introduced

and converted to state space models using mass action kinetics. Quasi-steady state forms of

these models, which are representative of typical experimental conditions, will be derived. The
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transient forms of these models will be used later (Chapter 6). Structural identifiability analysis

will then used to determine which of these models are suitable for direct parameter estimation.

Models will be further analyzed to determine which are distinguishable from quasi-steady state

measurements using structural indistinguishability analysis. Throughout both the Taylor series

and input-output relationship approaches are used.

While the input-output relationship approach has been known for some time the formal theory

behind it appears to be under developed. The basis of this approach, the input-output relation

of the system is well understood. However it is unclear from the literature why the monomials

within this relation are linearly independent. A proof is presented in Section 3.2.3 however it

seems worthwhile, where possible, to check that the two approaches yield the same results. In

addition the application of both approaches to each model allows their relative strengths to be

assessed. This constitutes a secondary goal for this chapter.

In the next section of the chapter transient and quasi-steady state models for first two and then

three substrate enzyme catalysed reactions are derived. The results of structural identifiablity

analysis of these models are presented in the subsequent section. In the fourth section structural

indistinguishability analysis of the models is undertaken. Finally the last section provides a brief

summary of the results presented in this chapter.

4.2 Derivation of quasi-steady state system equations

As the number of substrates involved in a reaction increases the possible reaction mechanisms

increases significantly [144]. However the reaction mechanisms required to model the pepti-

doglycan biosynthesis pathway can be placed into four basic categories since all enzymes are

expected to have ordered mechanisms and to catalyse essentially irreversible reactions. The

two substrate enzymes, MurA and MurB, utilise different reaction mechanisms; ordered for-

mation of a ternary complex and a ping-pong mechanism respectively [84, 85]. The remaining
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enzymes, MurC-F, require three substrates and form a quaternary complex before releasing

products [57, 64]. For ease of modelling a three substrate form of the ping-pong mechanism

is also considered. Differential equations describing the transient kinetics of these reactions

are derived in this section. The experimental conditions and techniques used typically allow

the reactions to reach a quasi-steady state before measurements can be started. As such each

of the reaction models is simplified using quasi-steady state assumptions to obtain a model

corresponding to these experimental conditions.

It will also be necessary to consider how the presence of inhibitors can be incorporated into

these models. This question is not covered in this section. Instead the necessary equations are

provided where necessary. The derivation of these equations is analogous to that presented in

this section.

4.2.1 Two substrate mechanisms

The reaction catalysed by MurB follows the two substrate ping-pong reaction scheme below:

E + S1
k1−⇀↽−
r1

ES1

ES1
k2−→ E∗ +Q

E∗ + S2
k3−⇀↽−
r3

E∗S2

E∗S2
k4−→ E + P





(4.1)

The substrates S1 and S2 each bind reversibly to one of two forms of the enzyme, E and E∗

respectively. The complex formed from binding of S1 and E, ES1, breaks down irreversibly

releasing E∗ and the first of two products, Q. Similarly the complex formed from binding

of S2 and E∗ regenerates E and releases the second product, P . It is assumed that each

complex breaks down sufficiently fast that all products involved can be considered to be released

simultaneously. The rates of forward and reverse reaction steps are denoted by kis (M s−1) and
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ris (s
−1) respectively.

The reaction scheme above can be represented by the following differential equations obtained

using the Law of Mass Action:

dE(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p) + k4E

∗S2(t,p) (4.2a)

dS1(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p) (4.2b)

dES1(t,p)

dt
= k1E(t,p)S1(t,p)− (r1 + k2)ES1(t,p) (4.2c)

dQ(t,p)

dt
= k2ES1(t,p) (4.2d)

dE∗(t,p)

dt
= k2ES1(t,p)− k3E

∗(t,p)S2(t,p) + r3E
∗S2(t,p) (4.2e)

dS2(t,p)

dt
= −k3E

∗(t,p)S2(t,p) + r3E
∗S2(t,p) (4.2f)

dE∗S2(t,p)

dt
= k3E

∗(t,p)S2(t,p)− (r3 + k4)E
∗S2(t,p) (4.2g)

dP (t,p)

dt
= k4E

∗S2(t,p). (4.2h)

Concentrations of species and rate constants are denoted by the same symbols as used in

the reaction mechanism. For a typical experiment the initial concentrations of enzyme and

substrates would be known, non-zero, values denoted E0, S10 and S20 respectively, while the

initial concentrations of the remaining species would be zero.

As previously observed typical experimental data will be representative of a quasi-steady state

formed due to the low concentration of enzyme used. This is modelled by assuming that the two

complexes and the alternative form of the enzyme rapidly reach equilibrium concentrations. The

derivatives of the concentrations of these species can then be considered equal to zero. These

quasi-steady state assumptions and a conservation relation on the concentration of E are stated
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mathematically below:

dES1(t,p)

dt
=

dE∗(t,p)

dt
=

dE∗S2(t,p)

dt
= 0, (4.3)

E(t,p) = E0 − ES1(t,p)− E∗(t,p)− E∗S2(t,p). (4.4)

With these assumptions Equations (4.2c), (4.2e) and (4.2g) can be solved for E∗(t,p), ES1(t,p)

and E∗S2(t,p). The results are then substituted into the remaining equations to produce the

quasi-steady state system for this model below:

dS1(t,p)

dt
= −

VmaxS1(t,p)S2(t,p)

S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p)
, (4.5a)

dS2(t,p)

dt
= −

VmaxS1(t,p)S2(t,p)

S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p)
, (4.5b)

dQ(t,p)

dt
=

VmaxS1(t,p)S2(t,p)

S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p)
, (4.5c)

dP (t,p)

dt
=

VmaxS1(t,p)S2(t,p)

S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p)
. (4.5d)

Parameter notation is chosen to correspond with that used by Dixon [144]. The parameters

used above can be expressed in terms of the transient state rate constants as follows:

Vmax =
E0k2k4
k2 + k4

, km,1 =
k4
k1

r1 + k2
k2 + k4

, km,2 =
k2
k3

r3 + k4
k2 + k4

, (4.6)

a reduction in the number of rate constants describing the model from six to three. Note that

the right hand sides of the differential equations above, Equations (4.5a)-(4.5d), are equivalent

up to a change of sign. The expression:

f1(S1(t,p), S2(t,p),p) =
VmaxS1(t,p)S2(t,p)

S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p)
(4.7)

is analogous to that which describes one substrate Michaelis-Menten type kinetics. The quasi-
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steady state model can thus be described using the new mechanism shown in Figure 4.1.

A similar derivation is now undertaken for the reaction scheme followed by the MurA catalysed

reaction. This scheme, referred to in this work as the simple ordered model, is given below:

E + S1
k1−⇀↽−
r1

ES1

ES1 + S2
r2−⇀↽−
k2

ES1S2

ES1S2
k3−→ E + P





(4.8)

The substrates S1 and S2 reversibly bind to the enzyme, E, in order forming complexes, ES1

and ES1S2. The ternary complex, ES1S2, then breaks down irreversibly releasing enzyme and

product. As for the ping-pong model it is assumed that complex breakdown is sufficiently fast

that all products can be considered to be released simultaneously.

As for the ping-pong model this scheme can be used to derive differential equations describing

the transient kinetics of this reaction, see below:

dE(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p) + k3ES1S2(t,p), (4.9a)

dS1(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p), (4.9b)

dES1(t,p)

dt
= k1E(t,p)S1(t,p)− r1ES1(t,p)− k2ES1(t,p)S2(t,p) +

+ r2ES1S2(t,p), (4.9c)

dS2(t,p)

dt
= −k2ES1(t,p)S2(t,p) + r2ES1S2(t,p), (4.9d)

dES1S2(t,p)

dt
= k2ES1(t,p)S2(t,p)− (r2 + k3)ES1S2(t,p), (4.9e)

dP (t,p)

dt
= k3ES1S2(t,p). (4.9f)

Concentrations and rate constants are denoted as previously described. The typical experimen-

tal initial conditions would be as described previously, that is initial concentrations of enzyme

and substrates would be known, non-zero, values denoted E0, S10 and S20 respectively, while
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the initial concentrations of the remaining species would be zero.

Following the same reasoning as used above assume that an equilibrium concentration of the two

complexes forms. The corresponding quasi-steady state assumptions and conservation relation

are stated below:

dES1(t,p)

dt
=

ES1S2(t,p)

dt
= 0, (4.10)

E(t,p) = E0−ES1(t,p)− ES1S2(t,p), (4.11)

Using these assumptions Equations (4.9c) and (4.9e) can be solved for ES1(t,p) and ES1S2(t,p)

as before. The following quasi-steady state system for this model can then be derived:

dS1(t,p)

dt
= −

k3E0S1(t,p)S2(t,p)

S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p) + km,2ks,12
, (4.12a)

dS2(t,p)

dt
= −

k3E0S1(t,p)S2(t,p)

S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p) + km,2ks,12
, (4.12b)

dP (t,p)

dt
=

k3E0S1(t,p)S2(t,p)

S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p) + km,2ks,12
. (4.12c)

Parameter notation is largely chosen to correspond with that used by Dixon [144] with the

exception of Vmax, the maximum rate of the reaction, which is denoted here by k3E0. The

parameters used above can be expressed in terms of the transient state rate constants as follows:

km,1 =
k3
k1

, km,2 =
r2 + k3

k2
, ks,12 =

r1
k1

, (4.13)

an overall reduction in the number of rate constants, from five to four. Again note that the

right hand sides of the differential equations above, Equations (4.12a)-(4.12c), are equivalent

up to a change of sign, and the expression governing their behaviour is:

f2(S1, S2,p) =
k3E0S1(t,p)S2(t,p)

S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p) + km,2ks,12
. (4.14)
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P
if

Figure 4.1: Diagram of the general two substrate quasi-steady state reaction mechanism. The rate
of conversion of substrates to products is given by a function, fi, derived as above. For
the ping-pong model, i = 1, and Equation (4.7) is used, while for the simple ordered
model, i = 2, and Equation (4.14) is used. All products released are represented by
P , its associated state variable would be a vector of the concentrations of the various
products released. If all initial product concentrations are equal all subsequent product
concentrations will be equal.

Aside from an additional constant term in the denominator km,2ks,12 the remainder of the

expression is identical in form to f1(S1(t,p), S2(t,p),p) as defined above, Equation (4.7). By

rearranging f2(S1(t,p), S2(t,p),p) as follows:

f2(S1(t,p), S2(t,p),p) =
k3E0

1 +
km,1

S1(t,p)
+

km,2

S2(t,p)

(
1 +

ks,12
S1(t,p)

) (4.15)

it becomes clear that this additional term causes an increase in the effective km with respect

to the second substrate. This is similar to competitive inhibition of the second stage of the

reaction [144]; however in this case the inhibitory effect is inversely related to the concentration

of the first substrate. When S1 = ks,12, km,2 is doubled, thus twice as much substrate S2 is

required to achieve the rate of a ping-pong mechanism with equivalent parameters. Thus ks,12

determines the degree to which the second stage of the reaction is dependent on the first. As

ks,12 approaches zero the model approaches a ping-pong mechanism. As in the case of the

ping-pong mechanism the quasi-steady state form of this mechanism can be rewritten as shown

in Figure 4.1.
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4.2.2 Three substrate mechanisms

Reaction mechanisms for three substrate enzymes are now considered. None of the three sub-

strate enzymes studied use the ping-pong mechanism however it is a useful approximation of

their kinetics and is easier to determine experimental parameters for than the correct simple

ordered mechanism. As such it will be the first mechanism considered, a schematic is given

below:

E + S1
k1−⇀↽−
r1

ES1

ES1
k2−→ E∗ +R

E∗ + S2
k3−⇀↽−
r3

E∗S2

E∗S2
k4−→ E• +Q

E• + S3
k5−⇀↽−
r5

E•S3

E•S3
k4−→ E + P





(4.16)

The substrates S1, S2 and S3 each bind reversibly to one of three forms of the enzyme, E, E∗,

E• respectively. The complex formed from binding of S1 and E, ES1, breaks down irreversibly

releasing E∗ and the first of three products, R. Similarly the complex formed from binding

of S2 and E∗ releases the product Q and E•. Finally E is regenerated by the breakdown of

the complex formed from S3 and E• and the final product P is released. Each release stages

is assumed to be sufficiently fast that all products involved can be considered to be released

simultaneously.

Proceeding as before the corresponding differential equations for the transient system were

found and are presented below:

dE(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p) + k6E

•S3(t,p), (4.17a)

dS1(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p), (4.17b)

dES1(t,p)

dt
= k1E(t,p)S1(t,p)− (r1 + k2)ES1(t,p), (4.17c)
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dR(t,p)

dt
= k2ES1(t,p), (4.17d)

dE∗(t,p)

dt
= k2ES1(t,p)− k3E

∗(t,p)S2(t,p) + r3E
∗S2(t,p), (4.17e)

dS2(t,p)

dt
= −k3E

∗(t,p)S2(t,p) + r3E
∗S2(t,p), (4.17f)

dE∗S2(t,p)

dt
= k3E

∗(t,p)S2(t,p)− (r3 + k4)E
∗S2(t,p), (4.17g)

dQ(t,p)

dt
= k4E

∗S2(t,p), (4.17h)

dE•(t,p)

dt
= k4E

∗S2(t,p)− k5E
•(t,p)S3(t,p) + r5E

•S3(t,p), (4.17i)

dS3(t,p)

dt
= −k5E

•(t,p)S3(t,p) + r5E
•S3(t,p), (4.17j)

dE•S3(t,p)

dt
= k5E

•(t,p)S3(t,p)− (r5 + k6)E
•S3(t,p), (4.17k)

dP (t,p)

dt
= k6E

•S2(t,p). (4.17l)

Concentrations and rate constants are denoted as previously described. For a typical experi-

ment initial concentrations of enzyme and substrates would be known, nonzero, values denoted

E0, S10, S20 and S30 respectively, concentrations of the remaining species would be zero.

Following the reasoning outlined previously assume that the three complexes and the two al-

ternative enzyme forms rapidly reach equilibrium concentrations. These quasi-steady state

assumptions and a conservation relation on the concentration of E are stated below:

dES1(t,p)

dt
=

dE∗(t,p)

dt
=

dE∗S2(t,p)

dt
=

dE•(t,p)

dt
=

dE•S2(t,p)

dt
= 0, (4.18)

E(t,p) = E0 − ES1(t,p)− E∗(t,p)− E∗S2(t,p)− E•(t,p)− E•S2(t,p), (4.19)

With these assumptions Equations (4.17c), (4.17e), (4.17g), (4.17i) and (4.17k) can be solved

for ES1(t,p), E
∗(t,p), E∗S2(t,p), E

•(t,p) and E•S2(t,p). The results can then be combined

with the remaining equations to give the quasi-steady state form of the model below:

dS1(t,p)

dt
=

dS2(t,p)

dt
=

dS3(t,p)

dt
= −f3(S1(t,p), S2(t,p), S3(t,p),p), (4.20a)
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dR(t,p)

dt
=

dQ(t,p)

dt
=

dP (t,p)

dt
= f3(S1(t,p), S2(t,p), S3(t,p),p), (4.20b)

f3(S1, S2, S3,p) =
VmaxS1S2S3

S1S2S3 + km,1S2S3 + km,2S1S3 + km,3S1S2
. (4.20c)

Parameter notation is chosen to correspond with that used by Dixon [144]. The parameters

used above can be expressed in terms of the transient state constants as follows:

Vmax =
E0k2k4k6

k2k4 + k4k6 + k2k6
, km,1 =

k4k6
k1

r1 + k2
k2k4 + k4k6 + k2k6

,

km,2 =
k2k6
k3

r3 + k4
k2k4 + k4k6 + k2k6

km,3 =
k2k4
k5

r5 + k6
k2k4 + k4k6 + k2k6

.

(4.21)

The number of rate constants describing the model is reduced from nine to four. These param-

eters are a generalisation of those derived for the two substrate ping-pong mechanism as is the

quasi-steady state relation obtained. As for the two substrate case the model can be expressed

by a new mechanism (Figure 4.2).

The mechanism of the amino-acid ligases MurC, MurD, MurE and MurF is known to involve

the ordered formation of a quaternary complex. This mechanism will be referred to as the

simple ordered model and is given by the following schematic:

E + S1
k1−⇀↽−
r1

ES1

ES1 + S2
k2−⇀↽−
r2

ES1S2

ES1S2 + S3
k3−⇀↽−
r3

ES1S2S3

ES1S2S3 −→
k4

E + P





(4.22)

Diagram of the three substrate reaction mechanism in which a ternary complex is formed. The

substrates S1, S2 and S3 reversibly bind to the enzyme, E, in sequence forming complexes,

ES1, ES1S2 and ES1S2S3. The quaternary complex, ES1S2S3, then breaks down irreversibly

releasing enzyme and product, P . All products are again assumed to be released simultaneously.
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The differential equations describing the transient kinetics of this system are given below:

dE(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p) + k4ES1S2S2(t,p), (4.23a)

dS1(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p), (4.23b)

dES1(t,p)

dt
= k1E(t,p)S1(t,p)− r1ES1(t,p)− k2ES1(t,p)S2(t,p) +

+ r2ES1S2(t,p), (4.23c)

dS2(t,p)

dt
= −k2ES1(t,p)S2(t,p) + r2ES1S2(t,p), (4.23d)

dES1S2(t,p)

dt
= k2ES1(t,p)S2(t,p)− r2ES1S2(t,p)−

− k3ES1S2(t,p)S3(t,p) + r3ES1S2S3(t,p), (4.23e)

dS3(t,p)

dt
= −k3ES1S2(t,p)S3(t,p) + r3ES1S2S3(t,p), (4.23f)

dES1S2S3(t,p)

dt
= k3ES1S2(t,p)S3(t,p)− (r3 + k4)ES1S2S3(t,p), (4.23g)

dP (t,p)

dt
= k4ES1S2(t,p). (4.23h)

Concentrations and rate constants are denoted as previously described. Typical experimental

initial conditions would be as described for the ping-pong model above.

Proceeding as before to produce a quasi-steady state model the following assumptions and

conservation rules are used:

dES1(t,p)

dt
=

dES1S2(t,p)

dt
=

dES1S2S3(t,p)

dt
= 0, (4.24)

E(t,p) = E0−ES1(t,p)− ES1S2(t,p)− ES1S2S3(t,p). (4.25)

With these assumptions Equations (4.23c), (4.23e) and (4.23g) can be solved for ES1(t,p),

ES1S2(t,p) and ES1S2S3(t,p). The solutions can then be combined with the remaining dif-
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Figure 4.2: Diagram of the general three substrate quasi-steady state reaction mechanism. The rate
of conversion of substrates to products is given by a function, fi, derived as above. For
the ping-pong model i = 3 while for the simple ordered model i = 4. All products
released are represented by P , its associated state variable would be a vector of the
concentrations of the various products released. If all initial product concentrations are
equal all subsequent product concentrations will be equal.

ferential equations to obtain the following quasi-steady state model:

dS1(t,p)

dt
=

dS2(t,p)

dt
=

dS3(t,p)

dt
= −f4(S1(t,p), S2(t,p), S3(t,p),p), (4.26a)

dP (t,p)

dt
= f4(S1(t,p), S2(t,p), S3(t,p),p), (4.26b)

f4(S1, S2, S3,p) =

=
Vmax

1 +
km,1

S1
+

km,2

S2

(
1 +

ks,12
S1

)
+

km,3

S3

(
1 +

ks,23
S2

(
1 +

ks,12
S1

)) . (4.26c)

Relations between the parameters used in this system and those of the transient system are

shown below:

Vmax = −k4E0, km,1 =
k4
k1

, km,2 =
k4
k2

,

km,3 =
r3 + k4

k3
, ks,12 =

r1
k1

, ks,23 =
r2
k2

.

(4.27)

The number of rate constants required is reduced from seven to six. The second step of the

reaction is coupled to the first as observed for the two substrate simple ordered mechanism,

Equation (4.15). The third step is coupled to both the first and second steps with ks,12 acting

on ks,23 in the same way as it acts on km,2, thus if S1 and S2 are equal to their respective

coupling constants km,3 would be increased by a factor of four. The use of quasi-steady state
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approximations reduces the system to the mechanism shown in Figure 4.2.

4.3 Structural identifiability analysis

A structural identifiability analysis is now undertaken for each of the models derived in order

to determine for which models, and hence enzymes, it will be possible to estimate parameters

directly from time course data. For each model Pohjanpalo’s Jacobian rank test (Section 3.2.2)

was used to determine if the model could be shown to be at least locally identifiable. Full anal-

yses were then undertaken using the Taylor series and (input-)output relationship approaches

(Sections 3.2.1 and 3.2.3). A summary of the results of this analysis are presented in Table 4.1.

Since the kinetic parameters of the ping-pong models are structurally identifiable it would be

appropriate to use direct parameter estimation where reactions follow this mechanism. Unfor-

tunately the majority of reactions in the pathway follow a simple ordered mechanism for which

only Vmax proved structurally identifiable. As such direct parameter estimation will not be

useful for the majority of the analysis to be undertaken.

The use of both Taylor series and (input-)output relationship approaches allows the relative

effectiveness of the two approaches in analysing these types of models to be assessed. Where

both approaches produce a result the results agree providing validation for the less developed

(input-)output relationship approach. Implementation of the Taylor series approach proved

too computationally intensive for the majority of the models considered. By way of contrast

analysis using the (input-)output relationship approach was generally successful, failing only

for the most complex models.

The model equations for these reaction mechanisms were derived in Sections 4.2.1 and 4.2.2,

Equations (4.5), (4.12), (4.20) and (4.26). For a given mechanism the Taylor series expansions of

any state variable are equivalent up to a change of sign for powers of t ≥ 1 since the derivatives of

the state variables are equivalent up to a change of sign. Thus, under the Taylor series approach,
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Model Parameters Taylor series Input-output relationship

KSC USC KSC USC UIC

2 PP Vmax global CI global global global

km,is global CI global local local

ICs - CI - local unident

2 SO Vmax global CI global global -

km,is unident CI unident unident -

ICs - CI - local -

3 PP Vmax CI - global global global

km,is CI - global local CI

ICs - - - local CI

3 SO Vmax CI - global global -

km,is CI - unident unident -

ICs - - - CI -

Table 4.1: Summary of the structural identifiability analysis results for two and three substrate quasi-
steady state models. Models are denoted by a number indicating the number of substrates
and an abbreviation, PP indicating ping-pong and SO indicating simple ordered. Three
cases were considered for each model; known substrate concentrations (KSC), unknown
substrate concentrations (USC) and unknown initial conditions (UIC). Results are either:
global, structurally globally identifiable; local, structurally locally identifiable; unident,
structurally unidentifiable; CI, analysis was computationally intractable; or -, not anal-
ysed.

the only difference between non-trivial measurement schemes is the information obtained from

the first Taylor series coefficient. Given an expansion about t = 0 the first coefficient, for y0,

will be determined by the initial conditions of the experiment and as such provides no useful

information if the initial conditions are known. As such without loss of generality the analyses

undertaken assume that product concentration is measured.

Note finally that in all cases there are more transient parameters than quasi-steady state pa-

rameters. As such it is impossible to solve these parameters to obtain unique solutions for all

the transient parameters. Thus the transient model is unidentifiable under the quasi-steady

state assumptions, although a subset of its parameters may be identifiable.
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4.3.1 Two substrate ping-pong mechanism

A Taylor series analysis of the two substrate ping-pong mechanism is presented first. The

mechanism was stated in the form introduced in Section 3.2:

x(t,p) = (S1(t,p), S2(t,p), P (t,p))T ,

dx(t,p)

dt
= f1(S1(t,p), S2(t,p),p)(−1,−1, 1)T ,

x(0,p) = x0 = (S10, S20, 0)
T ,

y(t,p) = (0, 0, 1) · x(t,p) = P (t,p),





(4.28)

where x and y are the state vector and observation vectors respectively. The vector of unknown

parameters is denoted, p, and is given by:

p = (Vmax, km,1, km,2). (4.29)

The first four Taylor series coefficients were then calculated by differentiating y(t,p) with

respect to t and evaluating at t = 0.

y(0,p) = 0 (4.30)

y(1)(0,p) =
VmaxS10S20

S10S20 + km,1S20 + km,2S10
(4.31)

y(2)(0,p) =
−V 2

maxS20S10(km,2S
2
10 + km,1S

2
20)

(S20S10 + km,2S10 + km,1S20)3
(4.32)

y(3)(0,p)(S20S10 + km,2S10 + km,1S20)
5 = V 3

maxS20S10(k
2
m,2S

4
10 + 6km,2S

2
10km,1S

2
20

− 2km,2S
4
10S20 − 2km,2S

3
10km,1S20 + k2m,1S

4
20 − 2km,1S

4
20S10 − 2km,1S

3
20km,2S10) (4.33)
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The Jacobian matrix of these coefficients with respect to the elements of p has rank three.

Therefore the mechanism is at least locally identifiable by Pohjanpalo’s Rank Test (PRT) (Sec-

tion 3.2.2). Following the approach described in Section 3.2.1 an alternative parameter vector

was defined as follows:

p = (Vmax, km,1, km,2). (4.34)

The equations y(i)(0,p)− y(i)(0,p) = 0 for 1 ≤ i ≤ 3 were then solved for the elements of the

alternative parameter vector yielding the following solution:

p = p. (4.35)

As such the unknown parameters are globally identifiable when initial conditions are known.

The input-output relationship approach is now applied to the same problem. The following

functions generate a differential ideal equivalent to the system defined above:

S1(t,p)− S10 + P (t,p) = 0, (4.36a)

S2(t,p)− S20 + P (t,p) = 0, (4.36b)

dP (t,p)

dt
(S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p))− VmaxS1(t,p)S2(t,p) = 0, (4.36c)

y(t,p)− P (t,p) = 0. (4.36d)

The first two functions define conservation relations inherent in the model, the third is a rear-

rangement of P (1)(t,p) = f1(S1(t,p), S2(t,p),p) as a differential polynomial, and the fourth

restates that P is the measured variable. The elimination ordering, y(t) < P (t) < S1(t) < S2(t),

was chosen to obtain an output relation in terms of y(t):

y(1)(t) =
Vmax(y(t)

2 − y(t)(S10 + S20) + S20S10)

(y(t)2 − y(t)(S10 + S20 + km,1 + km,2) + S20S10 + km,2S10 + km,1S20)
. (4.37)
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Note that an alternative choice of y(t), i.e. y(t) − Si(t,p), will result in a different output

relation. The transformations used to create these output relations are invertible, as such they

define an isomorphism between the possible output relations. As such only one output relation

must be analysed in order to determine the identifiability of measuring any single species.

The alternative parameter vector, p, was used as described in Section 3.2.3 to eliminate the

leader of Equation (4.37), y(1)(t):

y(1)(t,p) = y(1)(t,p) (4.38)

Vmax(y(t)
2 − y(t)(S10 + S20) + S10S20)

(y(t)2 − y(t)(S10 + S20 + km,1 + km,2) + S10S20 + km,2S10 + km,1S20)
=

Vmax(y(t)
2 − y(t)(S10 + S20) + S10S20)

(y(t)2 − y(t)(S10 + S20 + km,1 + km,2) + S10S20 + km,2S10 + km,1S20)
(4.39)

Let: C = y(t)2 − y(t)(S10 + S20) + S10S20

0 = C
(
Vmax(y(t)

2 − y(t)(S10 + S20 + km,1 + km,2) + S10S20 + km,2S10 + km,1S20)−

− Vmax(y(t)
2 − y(t)(S10 + S20 + km,1 + km,2) + S10S20 + km,2S10 + km,1S20)

)
(4.40)

The result is a degree four polynomial in y(t), p, p and the initial conditions. As such the

monomials are linearly independent by the Fundamental Theorem of Algebra (FTA). The five

nonzero coefficients of the polynomial were solved showing that:

p = p, (4.41)

as expected.

So far it has been assumed that the initial concentrations of S1 and S2 are known. However the

quasi-steady state approximation applies only once constant, non-zero levels of intermediate

complexes have been established, consuming some of each substrate. As such it may be more

appropriate to model the initial concentrations of the substrates as unknown parameters.
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S10, S20 are now treated as elements of the unknown parameter vector, p. This can be done

using the Taylor series approach. However the additional coefficients required to determine

the new unknown parameters proved computationally intractable. The rank of the Jacobian

matrix of the computed coefficients was five, equal to the number of unknown parameters, thus

by PRT the model is at least locally identifiable.

The addition of S10 and S20 to the unknown parameter vector does not significantly increase the

complexity of the analysis using the input-output relationship approach. In order to account for

known nonzero initial P , P (0) was subtracted from the first two generators of the differential

ideal, Equations (4.37). This had no effect on the subsequent analysis. The parameter and

alternative parameter vectors were extended to:

p = (Vmax, km,1, km,2, S10, S20) (4.42)

p = (Vmax, km,1, km,2, S10, S20) (4.43)

respectively and the analysis described above was repeated. This model was shown to be locally

identifiable with the following solutions:

{
Vmax = Vmax, km,1 = km,1, km,2 = km,2, S10 = S10, S20 = S20

}
, (4.44a)

{
Vmax = Vmax, km,1 = km,2, km,2 = km,1, S10 = S20, S20 = S10

}
. (4.44b)

Note that the second solution, where p 6= p, swaps the km,i values and the Si0 values. Thus

the second solution above can be eliminated practically by choosing one initial substrate con-

centration to be significantly higher than the other; any solution in which an estimated initial

substrate concentration is higher than the known concentration of substrate in the reaction

mixture can be rejected.

If it is assumed that an unknown concentration of P is reached prior to reaching the steady
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state it is necessary to modify the differential ideal, (4.36), as follows:

y(t)− P (t)− P (0) = 0, (4.45)

and to add P (0) to the unknown parameter vector. Analysis using the input-output relation-

ship approach shows that Vmax remains globally identifiable and km,1 and km,2 remain locally

identifiable as in Equations (4.44). The initial concentrations of substrates and product are

unidentifiable. As such the model is unidentifiable. However since the complexes formed require

enzyme, their total concentration cannot exceed that of the initial free enzyme concentration,

E0. Thus the possible range in which the observed initial conditions can lie is determined by

the following inequality:

Sn0,act − E0 − P (0) < Sn0,obs < Sn0,act − P (0), (4.46)

Sn0,obs being the unknown concentration of substrate remaining after complex formation while

Sn0,act is the known concentration of substrate initially used. It can be assumed that P (0) and

E(0) are small. Using these constraints it is possible to practically eliminate solutions which

predict Sn0,obs values which are significantly different from the Sn0,act values. As such if the

Sn0,act values are significantly different, as above, it would be possible to determine which of

the local solutions for the km,is is appropriate.

4.3.2 Two substrate simple ordered mechanism

The two substrate simple ordered mechanism is now considered. The state space model for this

mechanism is identical to that for the ping-pong mechanism, see Equations (4.28), with the

following change to the derivative of the state vector:

dx(t,p)

dt
= f2(S1(t,p), S2(t,p),p)(−1,−1, 1)T , (4.47)



4.3. STRUCTURAL IDENTIFIABILITY ANALYSIS 91

and the following addition to the unknown parameter vector:

p = (k3, km,1, km,2, ks,12). (4.48)

A Taylor series expansion of the observation y at t = 0 was undertaken. The first four Taylor

series coefficients of the expansion are presented below:

y(0,p) = 0, (4.49)

y(1)(0,p) =
k3E0S10S20

(S10S20 + km,1S20 + km,2S10 + ks,12km,2)
, (4.50)

y(2)(0,p) =
−k23E

2
0S10S20(km,1S

2
20 + km,2S

2
10 + ks,12km,2S20 + ks,12km,2S10)

(S10S20 + km,1S20 + km,2S10 + ks,12km,2)3
, (4.51)

y(3)(0,p)(S10S20 + km,1S20 + km,2S10 + ks,12km,2)
5 =

− k33E
3
0S20S10(2ks,12km,2S

2
10km,1S20 − 6km,1S

2
20km,2S

2
10 − 2km,1S

3
20ks,12km,2

+ 2km,1S
3
20km,2S10 − 4k2m,2S

2
10ks,12S20 + 2km,2S

3
10km,1S20 + 2km,1S

4
20S10

− 2k2m,2S
3
10ks,12 + 2km,2S

4
10S20 − k2s,12k

2
m,2S

2
20 − k2s,12k

2
m,2S

2
10 − k2m,1S

4
20

− 4km,1S
2
20ks,12km,2S10 − 4k2s,12k

2
m,2S20S10 + 2ks,12km,2S

3
20S10

+ 2ks,12k
2
m,2S

2
20S10 + 2ks,12km,2S

2
10S

2
20 + 2ks,12km,2S

3
10S20 − k2m,2S

4
10), (4.52)

The fifth coefficient was also calculated but is not presented for brevity. The Jacobian matrix

of these coefficients was calculated and found to have a rank of three. This is insufficient to

establish local identifiability by PRT, however it does not conclusively establish unidentifiability

since it is possible that inclusion of higher order Taylor series coefficients would increase the

rank of the infinite Jacobian matrix.

An alternative parameter vector p = (k3, km,1, km,2, ks,12) was used as described previously.

The following relations between p and p were calculated from the Taylor series coefficients,
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Equations (4.49)-(4.52):

k3 = k3

km,1 + km,2 = km,1 + km,2

km,2(S20 − S10 − ks,12) = km,2(S20 − S10 − ks,12)





(4.53)

This shows that k3 is globally identifiable and that more coefficients are required to determine

the identifiability of km,1, km,2 and ks,12. However it will now be shown that no further infor-

mation can be acquired from additional Taylor series coefficients. The proof is inductive and

proceeds as follows.

First determine expressions for km,1 and ks,12 in terms of k3 and km,2 from the second and

third Taylor series coefficients, Equations (4.50) and (4.51), yielding:

km,1 =
y(2)(0)k3E0S10S20 − (y(1)(0))3(S10 + S20 + km,2) + (y(1)(0))2k3E0(S10 + S20)

(y(1)(0))3
, (4.54)

ks,12 = −
(S10 − S20)(y

(1)(0))3km,2 + E0S
2
20(S10y

(2)(0) + y(1)(0))2)k3 − S2
20(y

(1)(0))3

(y(1)(0))3km,2
. (4.55)

Substitution of these solutions into the fourth Taylor series coefficient yields an expression in

k3 but not km,2.

Proposition 4.1: The n-th derivative of y(t,p) for n > 1 has the following form:

y(n) =
y(n)D − 2k3E0y

(n−1)y − k3E0y
(n−1)(S1 + S2) + k3E0(y

2)(n−1) − (y(1)D)(n−1)

D
, (4.56)

where D denotes the denominator of f2(S1(t,p), S2(t,p),p), i.e.

S1(t,p)S2(t,p) + km,1S2(t,p) + km,2S1(t,p) + km,2ks,12.
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(Note that y(n) is expressed solely in terms of lower order derivatives of y and D since the first

two coefficients are included for convenience of notation, they eliminate terms of the fifth and

fourth coefficients respectively.)

Proof: Determine y(2) from f2(S1(t,p), S2(t,p),p):

y(2) =
d

dt
y(1)

=
D(k3E0S

(1)
1 S2 + k3E0S1S

(1)
2 )−D(1)k3E0S1S2

D2

=
−k3E0y

(1)(S1 + S2)−D(1)y(1)

D

and Equation (4.56):

y(2) =
y(2)D − 2k3E0y

(1)y − k3E0y
(1)(S1 + S2) + k3E0(y

2)(1) − (y(1))(1)

D

=
y(2)D − 2k3E0y

(1)y − k3E0y
(1)(S1 + S2) + 2k3E0y

(1)y − y(2)D − y(1)D(1)

D

=
−k3E0y

(1)(S1 + S2)− y(1)D(1)

D

proving the proposition holds for n = 2.

Assuming it holds for n:

y(n+1) =
d

dt
y(n)

=

D(y(n)D − 2k3E0y
(n−1)y − k3E0y

(n−1)(S1 + S2) + k3E0(y
2)(n−1) − (y(1)D)(n−1))(1)

−D(1)Dy(n)

D2

=

−2k3E0(y
(n)y + y(n−1)y(1))− k3E0(y

(n)(S1 + S2)− y(n−1)2y(1))

+ k3E0(y
2)(n) − (y(1)D)(n) −D(1)y(n) + y(n+1)D + y(n)D(1)

D
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=
y(n+1)D − 2k3E0y

(n)y − k3E0y
(n)(S1 + S2) + k3E0(y

2)(n) − (y(1)D)(n)

D

as required for n+ 1. Thus the proposition holds for all n > 1 by induction. �

Since Equation (4.56) expresses y(n) in terms of lower order derivatives, by induction y(n)(0)

contains no km,2 terms if D(0) and D(i)(0) contain no km,2 terms for i < n. Substituting the

solutions above for km,1 and ks,12 into D(S1(t,p), S2(t,p),p) results in the following equations:

D(S10, S20,p) =
E0S10S20k3

y(1)(0)
(4.57)

D(1)(S1(t,p), S2(t,p),p) = −y(1)(t)(S1(t) + S2(t))−

− y(1)(t)
E0S10S20y

(2)(0)k3 − (S10 + S20)((y
(1)(0))3 − (y(1)(0))2E0k3)

(y(1)(0))3
. (4.58)

From Equation (4.57) D(0) contains no km,2 terms. It is clear that D(i)(0), i ≥ 1, can be

expressed in terms of derivatives of y of order less than or equal to i but greater than 0 since

the derivatives of S1 and S2 are equal to −y(1). Moreover the only km,2 terms that could arise

would occur in these derivatives. Since the only derivatives of D in Equation (4.56) are of order

less than n by induction no km,2 terms arise in y(n)(0).

Thus further Taylor series coefficients will not determine km,2 and km,1, km,2 and ks,12. As

such the model is unidentifiable for a quasi-steady state measurement. The transient and

quasi-steady state parameter k3 is however globally identifiable.

Using the input-output relationship approach, the generators of the differential ideal are as
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follows:

S1 − S10 + P = 0, (4.59a)

S2 − S20 + P = 0, (4.59b)

P (1)(S1S2 + km,1S2 + km,2S1 + ks,12km,2)− VmaxS1S2 = 0, (4.59c)

y − P = 0, (4.59d)

with Vmax = E0k3, from Equations (4.13). These equations are similar to those obtained for

the ping-pong model, Equations (4.36), having a single additional term in the third equation,

ks,12y
(1)(t). Explicit statements of dependence on t and p are omitted for brevity. The output

relation obtained under the elimination ordering y < P < S1 < S2 is:

y(1) =
Vmax(y

2 − y(S10 + S20) + S10S20)

y2 − y(S10y + S20 + km,1 + km,2) + S10S20 + km,2S10 + km,1S20 + km,2ks,12
. (4.60)

An alternative parameter vector p was introduced and the leader eliminated. This produces a

degree four polynomial in y, p, p and the initial conditions. The monomials of this expression

are linearly independent by the FTA. The five non-zero coefficients were solved obtaining the

same relations between p and p as were found using the Taylor series approach, Equations

(4.53). This is sufficient to show that the model is unidentifiable, with k3 remaining globally

identifiable.

Extending the analysis to the case where the initial concentrations of S1 and S2 are unknown,
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as in Section 4.3.1, the following sets of relations were obtained:





k3 = k3 , km,1 + km,2 = km,1 + km,2,

km,2(ks,12 − S20 + S10) = km,2(ks,12 − S20 + S10),

S10 = S10 , S20 = S20,





(4.61a)





k3 = k3 , km,1 + km,2 = km,1 + km,2,

km,2(ks,12 − S10 + S20) = km,2ks,12 + km,1S20 − S10km,1,

S10 = S20 , S20 = S10.





(4.61b)

The model remains unidentifiable. However k3 remains globally identifiable and the initial

conditions are locally identifiable and can be estimated when one substrate concentration is

significantly higher than the other.

4.3.3 Deconvolution of parameters obtained by conventional means

Typically when determining quasi-steady state parameters for two substrate enzymes with this

mechanism a series of assays are undertaken in which the initial concentration of one substrate

is held constant while the other is varied. The initial rates are then plotted against the varied

initial concentration and the results fitted to the one substrate Michaelis-Menten equation given

by [144]:

dP (t)

dt
=

Vmax

1 +
km
S

. (4.62)

Typical plots can be found in Chapter 5 (Figure 5.2). The apparent kinetic constants obtained

from this approach will be denoted V app
1 , V app

2 , kappm,1, k
app
m,2 where numbers indicate which of the

two initial concentrations was varied throughout the assay series. By comparing f2 and (4.62)



4.3. STRUCTURAL IDENTIFIABILITY ANALYSIS 97

the following relations between the actual and the apparent parameters were obtained:

V app
1 =

k3E0S20

S20 + km,2
, kappm,1 =

km,1S20 + km,2ks,12
S20 + km,2

,

V app
2 =

k3E0S10

S10 + km,1
, kappm,2 = km,2

S10 + ks,12
S10 + km,1

.





(4.63)

Given that k3 is globally identifiable it should be possible to estimate its value from a progress

curve. It is then possible to deconvolute the relations above to estimate the actual parameters,

km,1, km,2 and ks,12 in terms of the apparent values.

4.3.4 Three substrate ping-pong mechanism

An analysis of the three substrate ping-pong mechanism is presented next. The model was

stated in the form given in Section 3.2:

x(t,p) = (S1(t,p), S2(t,p), S3(t,p), P (t,p))T ,

dx(t,p)

dt
= f3(S1(t,p), S2(t,p), S3(t,p),p)(−1,−1,−1, 1)T ,

y(t,p) = (0, 0, 0, 1) · x(t,p) = P (t,p),

x(0,p) = x0 = (S10, S20, S30, 0)
T ,





(4.64)

where x and y denote the state and observation vectors respectively. The unknown parameter

vector is denoted by p and given by:

p = (Vmax, km,1, km,2, km,3). (4.65)

Pohjanpalo’s Jacobian rank test shows this model to be at least locally identifiable. How-

ever solving the Taylor series coefficients necessary to complete a Taylor series analysis proved

computationally intractable. An analysis using the input-output relationship approach yielded
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complete results.

The generators of the differential ideal, analogous to those derived for the two substrate cases,

are as follows:

S1 − S10 + P = 0, (4.66a)

S2 − S20 + P = 0, (4.66b)

S3 − S30 + P = 0, (4.66c)

P (1)(S1S2S3 + S1S3km,2 + S2S3km,1 + S1S2km,3)− VmaxS1S2S3 = 0, (4.66d)

y − P = 0. (4.66e)

Dependence on t and p is omitted for brevity. An output relation was obtained using the

elimination ranking y < P < S1 < S2 < S3:

y(1) =
Vmax(y

3 − y2(S10 + S20 + S30) + y(S10S20 + S20S30 + S30S10)− S10S20S30)

(
y3 − y2(km,1 + km,3 + km,2 + S10 + S20 + S30) + y

(
km,2(S10 + S30) +

+ (S10 + km,1)(S20 + S30) + S20S30 + km,3(S10 + S20)
)
−

− S10S20S30 − km,1S20S30 − km,2S10S30 − km,3S10S20

)

. (4.67)

As previously, an alternative parameter vector, p = (Vmax, km,1, km,2, km,3), was used to create

two versions of the output relation. The second relation was subtracted from the first eliminating

y(1). The resulting expression was rearranged to produce a degree six polynomial in y(t), the

monomials of which are linearly independent by the FTA. The seven nonzero coefficients were

solved to yield p = p, indicating that the model is globally identifiable.

The case where the initial substrate concentrations are unknown was also analysed using the
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input-output relationship approach. The unknown parameter vector was modified as follows:

p = (Vmax, km,1, km,2, km,3, S10, S20, S30), (4.68)

and a corresponding alternative parameter vector was introduced:

p = (Vmax, km,1, km,2, km,3, S10, S20, S30). (4.69)

The leader of the output relation was eliminated as previously described to obtain a degree six

polynomial in y(t). The coefficients of this polynomial could not be simultaneously solved for

the alternative parameters in Maple, however it was possible to solve them iteratively using

Maple functions. Six solutions were obtained, in all cases Vmax = Vmax:

{
km,1 = km,1, km,2 = km,2, km,3 = km,3, S10 = S10, S20 = S20, S30 = S30

}
, (4.70a)

{
km,1 = km,1, km,2 = km,3, km,3 = km,2, S10 = S10, S20 = S30, S30 = S20

}
, (4.70b)

{
km,1 = km,2, km,2 = km,1, km,3 = km,3, S10 = S20, S20 = S10, S30 = S30

}
, (4.70c)

{
km,1 = km,2, km,2 = km,3, km,3 = km,1, S10 = S20, S20 = S30, S30 = S10

}
, (4.70d)

{
km,1 = km,3, km,2 = km,2, km,3 = km,1, S10 = S30, S30 = S10, S20 = S20

}
, (4.70e)

{
km,1 = km,3, km,2 = km,1, km,3 = km,1, S10 = S30, S30 = S20, S20 = S10

}
. (4.70f)

It would be possible to practically eliminate solutions as described for the two substrate case

(Section 4.3.1) by not using solutions where the estimated substrate concentration is higher

than the known concentration in the reaction mixture.

If the initial concentration of product is also unknown the output relation still yields a degree

six polynomial. As such at least one of the eight unknown parameters must be unidentifiable.

While further analysis of this case is computationally intractable, it is possible to show that Vmax
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remains globally identifiable. By analogy with the two substrate case it can be hypothesised

that the km,is will be locally identifiable while the substrate and product concentrations will

be unidentifiable. However it is currently impossible to confirm this supposition. If it does hold

then it would be possible to eliminate inappropriate solutions as described for the two substrate

case in Section 4.3.1.

4.3.5 Three substrate simple ordered mechanism

The three substrate simple ordered mechanism is now analysed. The model is similar to that for

the three substrate ping-pong mechanism with the following alteration to the function governing

the derivative of the state vector:

dx(t,p)

dt
= f4(S1(t,p), S2(t,p), S3(t,p),p)(−1,−1,−1, 1)T . (4.71)

The unknown parameter vector for this model is given by:

p = (Vmax, km,1, km,2, km,3, ks,12, ks,23). (4.72)

For the Taylor series coefficients calculated the Jacobian matrix with respect to the unknown

parameter vector was rank deficient; having a rank of four. Computational resources proved

insufficient to carry out a complete Taylor series analysis. Since Taylor series based approaches

were inconclusive, the input-output relationship approach was used.

The generators of the differential ideal, similar to those for the three substrate ping-pong model,
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are as follows:

S1 − S10 + P = 0, (4.73a)

S2 − S20 + P = 0, (4.73b)

S3 − S30 + P = 0, (4.73c)

P (1)
(
S1S2S3 + S1S3km,2 + S2S3km,1 + S1S2km,3 + S3km,2ks,12 +

+ S1km,3ks,23 + km,3ks,12ks,23

)
− VmaxS1S2S3 = 0 (4.73d)

y − P = 0. (4.73e)

Dependence on t and p is again omitted for notational convenience. An output relation was

obtained using the elimination ranking y < P < S1 < S2 < S3:

y(1) =
Vmax(y

3 − y2(S10 + S20 + S30) + y(S10S20 + S20S30 + S30S10)− S10S20S30)

[
y3 − y2(S10 + S20 + S30 + km,1 + km,2 + km,3) + y

[
(S10 + km,1)(S20 + S30)

+ S20S30 + km,2(ks,12 + S10 + S30) + km,3(S10 + S20 + ks,23)
]
−
[
S10S20

+ks,23(ks,12 + S10)
]
km,3 − km,2S30(S10 + ks,12)− (S10 + km,1)S20S30

]

. (4.74)

The alternative parameter vector, p = (Vmax, km,1, km,2, km,3, ks,12, ks,23), was used to create

two versions of the output relation. Once y(1) was eliminated the resulting expression was rear-

ranged to obtain a degree six polynomial in y. As such the FTA guaranteed linear independence

of the monomials. The seven nonzero coefficients were solved in Maple [158] to obtain relations

between p and p. Vmax and hence k4 are globally identifiable. However there are insufficient

relations to obtain solutions for km,3 or ks,23 in terms of the elements of p so the model is

unidentifiable.

If the initial substrate concentrations are treated as unknown parameters it is again possible

to construct a degree six polynomial in y from the output relation. Since the total number of
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unknown parameters, nine, exceeds the number of coefficients, seven, at least two parameters

are unidentifiable. It is possible to show that Vmax remains globally identifiable. Given that

for the two substrate case the initial substrate concentrations are locally identifiable it is hy-

pothesised that they are also locally identifiable. However analysis of this supposition proved

computationally intractable.

Deconvolution of quasi-steady state parameters using knowledge of Vmax as described in Section

4.3.3 is not possible for this model. The constraints created by the apparent parameters and

initial conditions are insufficient to determine the actual parameters.

4.4 Structural indistinguishability analysis

The reaction mechanisms of the enzymes in the cytoplasmic phase of the peptidoglycan biosyn-

thesis pathway are well characterised. However when studying a new enzyme this would not be

the case. In this case a structural indistinguishability analysis would be required to determine

whether a specific reaction mechanism could be identified from the data that could be collected.

Such an analysis is presented in this section for the models introduced earlier in this chapter.

This analysis was carried out using the input-output relationship approach (Section 3.3) for all

pairs of models. An additional analysis was undertaken using the Taylor series approach for

the two models using two substrates. As explained in Section 4.3 it is unnecessary to consider

alternative output structures for each pair of models.

A summary of the results are presented in Table 4.2. The ping-pong and simple ordered models

for a given number of substrates are indistinguishable; indicating that either model will ade-

quately describe a single experimental time course. As such more complex experiments would

be needed to differentiate between these mechanisms. If mechanisms require a different num-

ber of substrates they are distinguishable. However distinguishing between such mechanisms is

relatively simple in any case so this particular result is not of much interest.
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Result

Model 1 Model 2 KSC USC

2PP 2SO indist indist

3PP dist dist

3SO dist indist

2SO 3PP dist dist

3SO dist indist

3PP 3SO indist CI

Table 4.2: Summary of the structural indistinguishability analysis results for two and three quasi-
steady state substrate models. Models are denoted as described in Table 4.1. Two cases
were considered for each pair of models; known substrate concentrations (KSC) and un-
known substrate concentrations (USC). Results are either: indist, the models are indis-
tinguishable; dist, the models are distinguishable; or CI, analysis was computationally
intractable.

4.4.1 Two substrate ping-pong and simple ordered models

The models have been described previously in Sections 4.3.1 and 4.3.2. The variables and

parameters of the simple ordered model were relabelled as: x̂ = (Ŝ1(t), Ŝ2(t), P̂ (t))T and

p̂ = (V̂max, k̂m,1, k̂m,2, k̂s,12). The first six Taylor series coefficients for each model yielded

the following relations between the two unknown parameter vectors:





V̂max = Vmax, k̂m,1 + k̂m,2 = km,1 + km,2,

k̂m,2((S20 − S10) + k̂s,12) = km,2(S20 − S10).





(4.75)

Analysis of further Taylor series coefficients did not produce further relations. This does not

demonstrate that the models are indistinguishable for the same reason that a model cannot

be shown to be unidentifiable from analysis of a finite number of Taylor series coefficients. It

would be necessary to extend the inductive argument presented in Section 4.3.2 to show that

these models are indistinguishable using the Taylor series approach. Instead the input-output

relationship approach was used.
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The two output relations described in Sections 4.3.1 and 4.3.2 were used, relabelling the pa-

rameters of the simple ordered model as described above. The leader of these relations was

eliminated by subtraction of one from the other and the expression rearranged to obtain a de-

gree four polynomial in y. The coefficients of the monomials, being linearly independent by the

FTA yielded five nonzero coefficients. These coefficients were solved in Maple to obtain three

relations between the two unknown parameter vectors, equivalent to those above, (4.75). If it

is assumed that S10 = S20 then k̂m,2k̂s,12 = 0 and thus k̂m,2 = 0 or k̂s,2 = 0.

Since parameters must be generically nonzero these solutions do not lie in the open set of feasible

parameter values and can be rejected. (Such solutions will referred to as invalid.) Thus in this

case the models are distinguishable. However it is impossible to guarantee that this assumption

holds experimentally, in general the substrate concentrations will differ. As such two cases must

be considered. If S10 < S20 then any value of k̂s,12 > 0 results in a value of k̂m,2 > 0. Thus

any solution is valid. If S20 < S10 then if k̂s,12 ≥ |S20 − S10| then k̂m,2 ≤ 0, an invalid solution.

However if 0 < k̂s,12 < |S20 − S10| then k̂m,2 > 0 which is valid. Thus a valid solution exists in

either experimentally practical case thus the models are indistinguishable.

For unknown initial concentrations of substrates two solutions were obtained from the coef-

ficients of the polynomial obtained from the output relations. The first is equivalent to that

above, the second is shown below:

V̂max = Vmax, k̂m,1 + k̂m,2 = km,1 + km,2,

k̂m,2(k̂s,12 + (S10 − S20)) = km,1(S10 − S20),

Ŝ10 = S20, Ŝ20 = S10.





(4.76)

This second solution is comparable to the additional solution obtained in the structural identi-

fiablity analysis of the two substrate ordered model under the same assumptions. A case study

similar to that above shows that a singular solution exists where the models are distinguishable
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if S10 = S20. Otherwise either ks,12 or km,2 can be chosen freely, unless S10 −S20 < 0, in which

case ks,12 must be less than |S10 − S20|. The existence of either of these solutions is sufficient

to show that the models remain indistinguishable.

4.4.2 Two and three substrate ping-pong models

The models have been described previously in Sections 4.3.1 and 4.3.4. The variables and param-

eters of the three substrate ping-pong model were relabelled as: x̂ = (Ŝ1(t), Ŝ2(t), Ŝ3(t), P̂ (t))T

and p̂ = (V̂max, k̂m,1, k̂m,2, k̂m,3). The two output relations described in Sections 4.3.1 and 4.3.4

were used. The leader of these relations was eliminated, as previously described, and the ex-

pression rearranged to obtain a degree five polynomial in y. The coefficients of the monomials,

being linearly independent by the FTA yielded six nonzero coefficients. These coefficients were

solved in Maple to obtain the following four relations between the two unknown parameter

vectors:

V̂max = Vmax, k̂m,1 = km,1, k̂m,2 = km,2, k̂m,3 = 0 (4.77)

Since the fourth relation is invalid, the models are distinguishable.

For unknown initial concentrations of substrates twelve solutions were obtained from the co-

efficients of the polynomial derived from the output relations. Six solutions require at least

one unknown parameter to equal zero, like the solution above. As such they are invalid. The

remaining six take forms similar to that below:





V̂max = Vmax, k̂m,1 = −k̂m,3 + km,2, k̂m,2 = km,1,

k̂m,3 = k̂m,3, Ŝ10 = S20, Ŝ20 = S10, Ŝ30 = S20,





(4.78)

where the initial concentrations of each of the three substrates from the three substrate reaction

must equal that of one of the two from the two substrate reaction. These solutions can be
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practically eliminated by choosing three significantly different substrate concentrations. As

such the models are distinguishable.

4.4.3 Two substrate ping-pong and three substrate simple ordered models

The models have been described previously in Sections 4.3.1 and 4.3.5. The variables and param-

eters of the three substrate simple ordered model were relabelled as: x̂ = (Ŝ1(t), Ŝ2(t), Ŝ3(t), P̂ (t))T

and p̂ = (V̂max, k̂m,1, k̂m,2, k̂m,3, k̂s,12, k̂s,23). The two output relations described in Sections

4.3.1 and 4.3.5 were used. The leader of these relations was eliminated, as previously described,

and the expression rearranged to obtain a degree five polynomial in y. The coefficients of the

monomials, being linearly independent by the FTA yielded six nonzero coefficients. These coef-

ficients were solved in Maple to obtain two possible sets of relations between the two unknown

parameter vectors:





V̂max = Vmax, k̂m,1 + k̂m,2 = km,2 + km,1, k̂m,2 = k̂m,2,

k̂m,3 = 0, k̂m,2(k̂s,12 + (S10 − S20)) = (S10 − S20)km,2





(4.79)





V̂max = Vmax, k̂s,23(k̂s,12 + (S10 − S30)) = −(S10 − S30)(S20 − S30),

(k̂m,1(S10 − S30)− k̂m,2k̂s,12)(k̂s,12 + (S10 + S20)) =

= km,1(k̂s,12 + (S10 − S20))(S10 − S30) + km,2k̂s,12(S20 − S30),

k̂m,3((S10 − S30)(k̂s,12 + (S10 − S20))) +

+ k̂m,2(k̂s,12(k̂s,12 + 2S10 − S20 − S30) + (S10 − S20)(S10 − S30)) =

= km,2(S10 − S20)(k̂s,12 + (S10 − S30)).





(4.80)

The first solution above is invalid, since k̂m,3 = 0. The second relation in the second solution

yields a set of experimental conditions that allow the models to be distinguished, specifically
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S10 > S30 and S20 > S30. Under these conditions:

k̂s,23(k̂s,12 + (S10 − S30)) = −(S10 − S30)(S20 − S30) < 0

k̂s,23(S10 − S30) + k̂s,23k̂s,12 < 0.

Since ks,23 must be greater than zero:

k̂s,23k̂s,12 < 0. (4.81)

However this requires that k̂s,12 < 0 which is invalid. Thus the models are distinguishable given

an appropriate, and practical, choice of initial concentrations of the substrates.

For unknown initial concentrations of substrates sixteen solutions were obtained from the co-

efficients of the polynomial derived from the output relations. Eight solutions require at least

one unknown parameter to equal zero, like Equations (4.79) above. As such they are invalid.

The remaining eight are less simple. The solution below however:





V̂max = Vmax, k̂m,1 + k̂m,3 + k̂m,2 = km,1 + km,2, k̂s,12 = Ŝ20 − S10,

k̂m,3(k̂s,23 + (S10 − S20)) = km,2(S10 − S20), Ŝ10 = S10, Ŝ30 = S20,





(4.82)

is sufficient to establish that these models are indistinguishable. A singular set of initial condi-

tions exists for which this solution is distinguishable. If S10 = S20 then either k̂m,3 or k̂s,23 must

equal zero. As previously observed in Section 4.4.1 a solution of this type is experimentally

impractical. Otherwise a case analysis identical to those in Section 4.4.1 shows that the fourth

relation above allows one of the parameters, k̂m,3 and k̂s,23, to be chosen with some constraints.

Thus valid solutions for all unknown parameters of the three substrate ordered model exist and

as such the models are indistinguishable.
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4.4.4 Two substrate simple ordered and three substrate ping-pong models

The models have been described previously in Sections 4.3.2 and 4.3.4. The variables and

parameters of the three substrate ping-pong model were relabelled as described in Section

4.4.2. The two output relations described in Sections 4.3.2 and 4.3.4 were used. The leader of

these relations was eliminated, as previously described, and the expression rearranged to obtain

a degree five polynomial in y. The coefficients of the monomials, being linearly independent by

the FTA yielded six nonzero coefficients. These coefficients were solved in Maple to obtain the

following four relations between the two unknown parameter vectors:





V̂max = Vmax, k̂m,1(S10 − S20) = km,1(S10 − S20)− km,2ks,12,

k̂m,2(S10 − S20) = km,2(ks,12 + (S10 − S20)), k̂m,3 = 0.





(4.83)

Since the fourth relation requires that k̂m,3 = 0 the solution is invalid; thus the models are

distinguishable.

For unknown initial concentrations of substrates twelve solutions were obtained from the co-

efficients of the polynomial derived from the output relations. Six solutions require at least

one unknown parameter to equal zero, like Equations (4.83) above. As such they are invalid.

The remaining six solutions are like those described in Section 4.4.2, Equations (4.78). As such

they can be rendered invalid by choosing all initial conditions to be significantly different. Thus

these models are distinguishable.

4.4.5 Two and three substrate simple ordered models

The models have been described previously in Sections 4.3.2 and 4.3.5. The variables and

parameters of the three substrate simple ordered model were relabelled as described in Section

4.4.3. The two output relations described in Sections 4.3.2 and 4.3.5 were used. The leader of
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these relations was eliminated, as previously described, and the expression rearranged to obtain

a degree five polynomial in y. The coefficients of the monomials, being linearly independent by

the FTA yielded six nonzero coefficients. These coefficients were solved in Maple to obtain two

possible sets of relations between the two unknown parameter vectors:





V̂max = Vmax, k̂m,1 + k̂m,2 = km,2 + km,1, k̂m,3 = 0,

k̂m,2(k̂s,12 + (S10 − S20)) = km,2(ks,12 + (S10 − S20))





(4.84)





V̂max = Vmax, k̂s,23(k̂s,12 + (S10 − S30)) = −(S10 − S30)(S20 − S30)

(k̂m,1(S10 − S30)− k̂m,2k̂s,12)(k̂s,12 + (S10 − S20)) =

= km,2(ks,12(S30 − S10) + k̂s,12(S20 − S30)− k̂s,12ks,12) +

+ km,1((k̂s,12 + (S10 − S20))(S10 − S30)),

k̂m,3(S10 − S30)(k̂s,12 − S20 + S10) +

+ k̂m,2(k̂s,12(k̂s,12 + 2S10 − S20 − S30) + (S10 − S20)(S10 − S30)) =

= km,2((ks,12 + (S10 − S20))(k̂s,12 + (S10 − S30))).





(4.85)

The first solution is invalid since it requires that k̂m,3 = 0. The second relation in the second

solution is identical to that obtained in Section 4.4.3, Equations 4.80. As such by reasoning

advanced in that section the two models are distinguishable for the initial conditions S10 > S30

and S20 > S30.

For unknown initial concentrations of substrates twenty solutions were obtained from the coef-
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ficients of the polynomial derived from the output relations. The solution below:





V̂max = Vmax, k̂m,1 + k̂m,2 + k̂m,3 = km,1 + km,2,

k̂s,12 = Ŝ20 − S10, Ŝ10 = S10, Ŝ30 = S20,

(k̂s,23 + (S10 − S20))k̂m,3 = (ks,12 + (S10 − S20))km,2,





(4.86)

like Equations (4.82) is sufficient to establish that these models are indistinguishable. A case

analysis of the sixth relation is necessary. If S10 ≥ S20 there are infinitely many valid solutions

for k̂s,23 and k̂m,3. If S10 < S20 then:

0 < ks,12 < |S10 − S20|

ks,12 = |S10 − S20|

ks,12 > |S10 − S20|





requires

0 < k̂s,23 < |S10 − S20|

k̂s,23 = |S10 − S20|

k̂s,23 > |S10 − S20|





, (4.87)

and there are still infinitely many valid solutions for k̂s,23 and k̂m,3. Thus valid solutions for

all unknown parameters of the three substrate ordered model exist and as such the models are

indistinguishable.

4.4.6 Three substrate ping-pong and simple ordered models

The models have been described previously in Sections 4.3.4 and 4.3.5. The variables and

parameters of the simple ordered model were relabelled as described in Section 4.4.3. The two

output relations described in Sections 4.3.2 and 4.3.5 were used. The leader of these relations

was eliminated, as previously described, and the expression rearranged to obtain a degree six

polynomial in y. The coefficients of the monomials, being linearly independent by the FTA

yielded seven nonzero coefficients. These coefficients were solved in Maple to obtain three
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possible sets of relations between the two unknown parameter vectors:





V̂max = Vmax, k̂m,1 + k̂m,2 = km,2 + km,1, k̂m,3 = km,3,

k̂m,2(k̂s,12 + (S10 − S20)) = km,2(S10 + S20), k̂s,23 = 0,





(4.88)





V̂max = Vmax, k̂m,2 = 0,

k̂m,1S10 − S30)(k̂s,12 + (S10 − S20)) =

= km,1(k̂s,12 + (S10 − S20))(S10 − S30) + km,2k̂s,12(S20 − S30),

k̂m,3(S10 − S30)(k̂s,12 + (S10 − S20)) =

= km,2(S10 − S20)(k̂s,12 + (S10 − S30)) +

+ km,3(S10 − S30)(k̂s,12 + (S10 − S20)),

k̂s,23(km,2(S10 − S20)(k̂s,12 + (S10 − S30)) +

+ km,3(k̂s,12 + (S10 − S20))(S10 − S30)) =

= km,2(S20 − S10)(S20 − S30)(S10 − S30),





(4.89)
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



V̂max = Vmax,

k̂m,1(S20 − S30)((km,3 − k̂m,3)(S10 − S30)− k̂m,3k̂s,23) +

+ k̂m,3

2
((S30 − S10)(S20 − S30)− k̂s,23(k̂s,23 + S10 + S20 − 2S30)) =

= km,3




(km,3 − 2k̂m,3 + km,2 + km,1)(S30 − S10)(S30 − S20) +

+ k̂m,3(k̂s,23(2S30 − S10 − S20))


+

+ km,2k̂m,3(k̂s,12 + (S20 − S30))(S30 − S10) +

+ km,1k̂m,3(k̂s,23 + (S10 − S30))(S30 − S20),

k̂m,2(S20 − S30)




(km,3 − k̂m,3)(S10 − S30)−

− k̂m,3k̂s,23


+ k̂m,3(k̂s,23 + (S10 − S30)) =

= k̂m,3k̂s,23(km,2(S10 − S20) + km,3(S10 − S30)),

k̂m,3 + k̂m,3(k̂s,23(S10 − S30) + (S30 − S10)(S30 − S20) + k̂s,12k̂s,23) =

= km,3(S30 − S10)(S30 − S20).





(4.90)

The first two solutions Equations (4.88) and (4.89) are invalid since they require an unknown

parameter to equal zero. The third has a singular invalid solution; when S10 = S20 = S30,

k̂s,12 = 0. However for non-singular initial substrate concentrations it has infinitely many valid

solutions. As such the models are indistinguishable. For unknown initial conditions analysis

proved computationally intractable.

4.5 Summary

In this chapter mechanisms for two and three substrate enzyme catalysed reactions have been

introduced. These mechanisms were restated as differential equations using mass action ki-
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netics. Quasi-steady state assumptions were then used to simplify these models. Structural

identifiability and indistinguishability analyses of these quasi-steady state models were then

undertaken.

The two and three substrate ping-pong models were shown to be structurally globally identi-

fiable when initial concentrations of the substrates were known and locally identifiable when

these values were unknown. The experimental designs described for each case would allow

the appropriate local solution to be determined. Thus it is appropriate to estimate parameters

from single progress curves for mechanisms following these reaction schemes. The two and three

substrate simple ordered mechanisms are structurally unidentifiable. It is possible to use the

identifiable parameter of the two substrate simple ordered mechanism, Vmax, to deconvolute

kinetic parameters obtained from typical experimental methods. While Vmax can be estimated

in the three substrate case no deconvolution is possible.

Using the input-output relationship approach it was possible to complete the analysis for almost

all models considered. The necessary calculations become too computationally intensive in

only three cases. These problems principally arise when larger models are used and where

initial conditions are unknown. By contrast the Taylor series approach failed in a number

of cases to produce a solution due to higher computational requirements. It was possible to

adapt the Taylor series approach, using an inductive argument, to show that the two substrate

simple ordered model was unidentifiable. Where the Taylor series and input-output relationship

approaches both produced results, those results were equivalent.

For known initial conditions and appropriate experimental design the two and three substrate

mechanisms are distinguishable. For unknown initial conditions it becomes impossible to dis-

tinguish either of the two substrate mechanisms from the three substrate simple ordered mech-

anism. However these results are of limited utility. As long as the enzyme in question catalyses

only one reaction, it is possible to distinguish two and three substrate mechanisms experimen-

tally by providing only two substrates. If the enzyme requires two substrates a reaction will



4.5. SUMMARY 114

occur; if three no reaction will occur. Addition of a third substrate will not (in general) affect

the activity of a two substrate enzyme while a rate change should be immediately observable

for a three substrate enzyme.

For both two and three substrate cases, ping-pong and simple ordered mechanisms are practi-

cally indistinguishable, regardless of whether initial conditions are known. Since the equations

governing the simple ordered mechanisms can be obtained from those for the ping-pong mecha-

nisms by addition of new parameters this was expected. However experimental procedures exist

for differentiating these mechanisms. As such for each enzyme the appropriate model should

be chosen by consulting the literature or carrying out the necessary experiments.



5. STEADY STATE CHARACTERISATION OF ENZYMES MURA-F FROM

S. PNEUMONIAE

5.1 Introduction

In this chapter the results of kinetic characterisations of cloned S. pneumoniae enzymes MurA-

D and F are presented. These characterisations were carried out under a consistent array of

conditions as a preliminary step in the construction of a model of the cytoplasmic phase of the

peptidoglycan biosynthesis pathway. A kinetic characterisation of S. pneumoniae MurE had

already been undertaken under these conditions [110]. As such further characterisation was

unnecessary. A summary of the data obtained is presented in Table 5.1.

Each kinetic characterisation was undertaken using one of the assays described in Section 2.4.

For each enzyme a series of assays were undertaken in which the initial concentration of one of

the substrates was varied. Typically the concentrations of the other substrates were significantly

greater than their respective kms to minimise their effect on the kinetics of the reaction. The

initial rate of each reaction was measured as described in Section 2.4 and plotted against

the concentration of the varied substrate. Parameters were then estimated from the resulting

curves using nonlinear curve fitting as described in Section 3.4. The kcats presented below were

calculated from the apparent Vmax estimated from data obtained when the concentration of

the UDP-intermediate, that is the substrate containing a UDP group, was varied. The Vmaxs

obtained for the other substrates deviated from this value by only a small amount as such this

is a reasonable approximation.
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Enzyme Parameter name Estimated value Lower Upper

MurA† kcat (s
−1) 8.07 7.70 8.46

km (PEP) (µM) 4.81 3.35 6.92

km (UGP) (µM) 390 337 451

MurB† kcat (s
−1) 3.17 3.02 3.34

km (NADPH) (µM) 20.9 12.9 33.8

km (UDPPEE) (µM) 32.8 25.6 42.1

MurB‡ kcat (s
−1) 4.46 3.95 5.04

km (NADPH) (µM) 41.2 20.7 82.0

ki (NADPH) (µM) 1110 384 3200

km (UDPPEE) (µM) 68.7 53.5 88.3

ki (UDPPEE) (µM) 1070 718 1600

MurC† kcat (s
−1) 7.58 6.57 8.74

km (ATP) (µM) 22.4 18.5 27.1

km (L-Ala) (µM) 716 563 911

km (UMN) (µM) 202 150 273

MurD† kcat (s
−1) 36.5 34.3 38.7

km (ATP) (µM) 38.2 31.5 46.4

km (D-Glu) (µM) 293 243 353

km (U1P) (µM) 26.2 21.5 32.1

MurF† kcat (s
−1) 29.2 26.6 32.0

km (ATP) (µM) 12.3 8.86 17.2

km (D-Ala-D-Ala) (µM) 31.7 24.4 41.3

km (U3P) (µM) 3.40 1.68 6.86

MurF‡ kcat (s
−1) 54.7 45.3 66.1

km (ATP) (µM) 20.8 14.6 29.6

ki (ATP) (µM) 1810 949 3460

km (D-Ala-D-Ala) (µM) 31.7 24.4 41.3

km (U3P) (µM) 17.4 11.9 28.4

ki (U3P) (µM) 175 117 263

Table 5.1: Summary of the kinetic constants determined for the S. pneumoniae enzymes MurA-D
and F. Parameters were determined from plots of initial velocity against initial substrate
concentration by nonlinear curve fitting as described in Section 3.4. The upper and lower
bounds form a 90% confidence interval. The kcat was determined by converting the esti-
mated Vmax to µMs−1 and then normalising with respect to enzyme concentration. Two
models were used to fit the data, Michaelis Menten kinetics with‡ or without† substrate
inhibition.
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Proteins were over-expressed in E. coli and purified by FPLC. The conditions used and yields

obtained are briefly described in the following section. In the subsequent sections a more detailed

examination of each of the enzyme characterisations is presented in alphabetical order. For the

two substrate enzymes, MurA and MurB, parameter estimation from individual progress curves

was also attempted, informed by the results in Chapter 4. While characterising MurF an effect

of substrate inhibition on initial rates of reaction was observed. This effect was simulated and

the results were compared to experimental data.

5.2 Protein expression and purification

E. coli BL21 Star Rosetta (DE3) was transformed using plasmids incorporating themurA-murD

and murF genes within the pET46 EK/Lic vector, Section 2.2. The best protein expression

levels were obtained from cultures grown at 27oC in autoinduction media, Section 2.3.2. Crude

cell lysates were initially purified using immobilised nickel columns, Section 2.3.4. The resulting

solutions were shown to contain active enzyme using the assays described in Section 2.4; however

SDS-PAGE showed that they contained a number of impurities. Two additional purification

steps, using size exclusion and ion exchange columns, Sections 2.3.5 and 2.3.6, proved necessary

to achieve the desired purities.

Protein yield (mg/L)
MurA MurB MurC MurD MurF
0.83 2.30 25 8.2 6.2

Table 5.2: Yield of each enzyme after completion of the necessary purification steps.

SDS-PAGE indicated that the masses of the purified proteins were as expected (Figure 5.1); the

masses of MurA, MurC, MurD and MurF lying in the 50-52kDa range while MurB was lighter,

around 36kDa. Final yields of these enzymes are presented in Table 5.2. MurA yields were low

compared to that of the other enzymes. Cultures were observed to grow unusually slowly when

expressing MurA; it may be toxic to the cells used. Regardless the enzyme requirements of the
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(a)

MurD MurBMurC MurAMurF

97

67
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29

20.1
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M
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kDa

FC FP M DC DC DP DP DP

Figure 5.1: 10% SDS-PAGE of Mur enzymes at various stages of purification. Each lane of (a)
corresponds to a different protein, labelled on the figure. Gel (b) demonstrates the
effects of further purification steps. Lanes DC and FC correspond to protein solutions,
containing MurD and MurF respectively, prior to a purification step, DP and FP to
samples obtained after a purification step.

planned experimental program could be provided without further refinement of this expression

and purification process.

5.3 MurA characterisation

MurA was characterised using the phosphate release assay as described in Section 2.4.3. Two

reaction mixtures were prepared as described and monitored simultaneously using the Varian

cell changer system. Reactions were initiated with whichever substrate, UGP or PEP, was

not varied over the course of the assay. The final concentration of MurA in the reaction

mixture was 28.5nM. Three series of assays were completed for each varied substrate and these

data were fitted separately and combined for a final estimate of the relevant apparent kinetic

parameters, Table 5.3. For determinations with respect to PEP, sixteen PEP concentrations,

ranging between 1µM and 1mM, were used. For determinations with respect to UGP, sixteen

UGP concentrations, ranging between 50µM and 2.5mM, were used. The concentration of the

unvaried substrate was 1mM UGP or 480µM PEP.

Plots of the resulting data (Figure 5.2) show no signs of substrate inhibition which is charac-

terised by a trend of decreasing initial reaction rate for initial substrate concentrations increasing



5.3. MURA CHARACTERISATION 119

For PEP For UGP

Series Parameter Name Values Lower Upper Values Lower Upper

1 Vmax (AU min−1) 0.1124 0.1001 0.1262 0.1513 0.1434 0.1596

1 km (µM) 4.51 2.75 7.41 400 342 469

2 Vmax (AU min−1) 0.1137 0.1107 0.1168 0.1582 0.1480 0.1692

2 km (µM) 5.60 5.04 6.22 424 349 515

3 Vmax (AU min−1) 0.1164 0.1037 0.1307 0.1456 0.1334 0.1589

3 km (µM) 6.01 4.03 8.96 355 271 465

Combined Vmax (AU min−1) 0.1129 0.1027 0.1242 0.1511 0.1442 0.1583

Combined km (µM) 4.81 3.35 6.92 390 337 451

Table 5.3: Kinetic parameters obtained for MurA for each series of assays undertaken. Each series
used sixteen concentrations of the varied substrate ranging between 1µM and 1mM for
PEP and 50µM and 2.5mM for UGP. The unvaried substrate concentrations were 480µM
PEP and 1mM UGP. The upper and lower bounds determine a 90% confidence interval.

past a threshold value. Instead initial rate appears to converge monotonically to an asymptote

as initial substrate concentration increases. Such behaviour is typical of standard Michaelis-

Menten type kinetics (described by Equation (3.38)). Kinetic parameters produced for each

series of assays are comparable to each other and to the parameters estimated for the combined

data. Where measurements were made at the same initial concentration in separate series the

measurements were averaged in the combined data. This was necessary due to the limits of

the fitting program used, Section 3.4. Note however that the parameters estimated from the

combined data are not averages of the parameters of the individual sets and that the confidence

intervals are tighter.
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Figure 5.2: Plots of the combined MurA assay data. Graphs (a) and (b) correspond to varying PEP
and UGP concentration respectively. Experimental data (Exp Data), the fitted curve,
and a 90% confidence interval (Conf Interval) are plotted.
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These results correspond in part to those produced by Du et al., in which the enzyme used is

referred to as MurA2 [82]. The estimate of the km with respect to PEP, 11.1µM, obtained in that

work is fairly close to that obtained here. The lower estimate obtained for kcat, 0.78s
−1, could be

explained by the difference in temperature at which the two characterisations were performed.

In previous work a discrepancy of the same order of magnitude was observed between kcat values

estimated for the alternative MurA form, MurA1 or MurZ. This further connects the difference

between the estimated values to techniques used rather than an intrinsic difference between the

purified enzymes. The value estimated by Du et al for the km with respect to UGP, 119µM,

is significantly lower than that obtained in this work. Note that MurA is believed to follow a

simple ordered mechanism it is possible therefore that this discrepancy arises from the influence

of the dissociation constant ks,UGP (ks,12 in the general notation presented previously). This

possibility is further discussed in the following section.

5.3.1 Extended characterisation and direct fitting to progress curves

The structural identifiability analysis of the simple ordered model, Section 4.3.2, indicates that

it is feasible to identify the actual Vmax by parameter estimation. This should then allow

the deconvolution of the apparent kinetic constants derived above. It is natural to test these

theoretical observations using MurA.

A sensitivity analysis of MurB is presented in the following section, Section 5.4.1. Given that

only Vmax is to be estimated the conclusions of that analysis can be reasonably applied in this

case. Thus sensitivity to Vmax is maximised when relatively high initial substrate concentrations

are used and the reaction is allowed to proceed to completion. A reaction mixture containing

initial concentrations of PEP, UGP and MurA: 820µM, 100µM and 0.1µM respectively, was

monitored using the phosphate release assay. The experimental data were first compared to data

simulated using the parameters above, Figure 5.3(a). Production of phosphate is similar for the

first minute of the reaction. However subsequently the experimental curve slows significantly;
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eventually producing about half the phosphate predicted.

Two explanations for this discrepancy were considered: either the initial substrate and enzyme

concentrations were incorrect or product inhibition was occurring. Parameter estimation was

used to investigate these two possibilities, Figure 5.3(c). The initial concentrations of PEP

and UGP and the value of Vmax were estimated, using the kms above, for an uninhibited

model (Equations (4.28) modified by Equation (4.47)). In addition these values and that of an

additional inhibition parameter, ki, were estimated for the following model:

PEP (1)(t) = UGP (1)(t) = −f5(PEP,UGP, t),

P (1)(t) = UDPPEE(1)(t) = f5(PEP,UGP, t),

f5(PEP,UGP, t) =
(ki + UDPPEE(t))VmaxPEP (t)UGP (t)

ki(PEP (t)UGP (t) + km,1UGP (t) + km,2PEP (t))
,





(5.1)

with initial conditions as described by Equations (4.28). The best fit, that with the lowest RMS

error (the square rooted sum of the squared residuals), was obtained when product inhibition

was assumed and Vmax, ki and the initial conditions were estimated, Figure 5.3(b). However

the improvement of this model over one in which only Vmax and ki are estimated is small

and the estimates obtained for the initial conditions were experimentally unlikely. Thus the

parameter estimation undertaken suggests that MurA is inhibited by UDPPEE. Two assays

were undertaken as described in Section 2.4.3 with the initial conditions described above. One

reaction mixture also contained 100µM UDPPEE and showed a 91% reduction in initial rate

compared to the other assay. This confirms the observation that UDPPEE is an inhibitor of

MurA. This interaction has not previously been reported; although a structural basis for this

inhibition can be inferred from structural studies of this enzyme [178].

Thus in order to carry out the desired analysis it was necessary to develop an assay of MurA

activity which does not allow accumulation of UDPPEE. This was achieved by coupling MurA
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Figure 5.3: Comparison of experimental to simulated time courses for the MurA reaction. Graph
(a) plots an experimental time course and a time course simulated for the same initial
conditions using the parameters in Table 5.1. Graph (c) plots fits for two models of
MurA: Equations (4.28) modified by Equation (4.47) (uninhib) and Equations (5.1)
(prod inhib). Table (b) contains the RMSE and estimated standard deviation (SD) for
these fits.

to MurB and MurC and using the ADP release assay previously described see Figure 5.4. Isoc-

itrate and isocitrate dehydrogenase (IDH) were used to recycle NADPH to ensure that only

ADP production was measured, Figure 5.5(a). MurB and MurC concentrations were 28.6 and

70µM respectively. Pyruvate kinase, lactate dehydrogenase and DTT concentrations were as

described in Section 2.4.2. Isocitrate, NADPH and IDH concentrations were 10mM, 100µM

and 0.18 units/ml respectively. NADH was provided in excess to ensure that the reaction could

be monitored throughout. As such the concentration of NADH was 100µM higher than that of

UGP.
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Figure 5.4: Schematic diagram of an alternative assay of MurA activity. MurA activity is coupled
to ADP release via MurB and MurC. The ADP release assay is then used.

It is also theoretically possible to use NADPH reduction for a more direct measure of MurA

activity. However at the concentration of MurB chosen, the rate of reduction of NADPH by

MurB, in the absence of UDPPEE, was very high, Figure 5.5(b). As such it was impossible

to accurately distinguish between UDPPEE production and NADPH autoreduction using this

assay and so it was not used for the following analysis.

Reaction mixtures were prepared containing the coupling system described above and initial

concentrations of PEP, UGP and MurA: 820µM, 200µM and 0.1µM respectively, Figure 5.5(c).

Total production of ADP was approximately equal to the initial UGP present. Thus it is

reasonable to conclude that this assay is not subject to product inhibition. Three combinations

of parameters were estimated from the experimental curves produced, Figure 5.5(d-f). Those

parameters which were not estimated were fixed by the stated initial conditions or parameters

above, Table 5.1. The estimated time courses were in good agreement with the experimental

data. The RMS errors (RMSEs) were lower than obtained for the product inhibited time

courses. The estimated standard deviations were close to the RMSEs indicating a relative lack

of bias in the fitting procedure. The best fits were obtained when Vmax and the initial conditions

were estimated.

The RMS errors associated with estimates of PEP initial concentration exceed the estimated

values of this parameter, Figure 5.5(g). Thus little confidence should be placed in these esti-

mates. The sensitivity of this reaction to the concentration of PEP is probably very low due
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Estimated parameters RMSE Standard Deviation
Vmax ICs kms (d) (e) (d) (e)
yes no no 2.83 4.78 2.83 4.79
yes yes no 2.83 3.07 2.84 3.09
yes yes yes 2.87 3.08 2.89 3.10

(g)

(d) (e)
Parameter EV RMSE Lower Upper EV RMSE Lower Upper

Vmax (µM min−1) 173 1.03 175 171 177 5.04 167 187
PEP(0) (µM) 630 1600 - - 664 8600 - -
UGP(0) (µM) 200 0.189 200.4 199.6 205 0.244 204.5 205.5

Figure 5.5: Parameter estimation from time courses recorded using the inhibition free assay. Graphs
(a), (b) and (c) each plot time courses obtained using the assays described above. Graphs
(a) and (c) plot the release of ADP. Graph (a) shows the results of insufficient IDH in
the reaction mixture. Graph (b) plots the oxidation of NADPH due to the action of
MurB. Graphs (d) and (e) plot fits to the two experimental time courses plotted in
Graph (c). Table (f) presents the RMSE and standard deviation for these fits. Table
(g) contains the parameter estimates (EV) corresponding to estimation of Vmax and the
initial conditions; the associated RMSE and the bounds of a 90% confidence interval.
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to the high concentration, relative to its km, of PEP present, see Section 5.4.1. The RMS

errors associated with the remaining parameters are three orders of magnitude smaller than the

estimated values; as such these parameters are well determined. The initial concentration of

UGP corresponds well to the expected value. The estimated Vmax corresponds to a kcat value

of 28.8s−1, much higher than that previously estimated, Table 5.1.

(a)

Parameter Value RMSE
Vmax (min−1) 0.127 0.00777
km,PEP (µM) 0.284 0.165
km,UGP (µM) 248 36.3
ks,UGP (µM) 808 601
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Figure 5.6: Characterisation of MurA using secondary plots. Table (a) summarises the kinetic con-
stants obtained for MurA from Graphs (c)-(d). Graph (b) is the primary plot: 1/v
(min) against 1/[UGP] (µM−1) for a range of PEP concentrations as indicated in the
key. Graphs (c) and (d) plot the gradient and y-intercept respectively of the lines in
Graph (b) against 1/[PEP] (µM−1).

A series of assays were undertaken using the phosphate release assay under the conditions

described in Section 5.3 for initial PEP and UGP concentrations 1-20µM and 100-1700µM

respectively. The results were analyzed using secondary plots as described in Enzymes, [144],

to determine actual kinetic parameters for MurA, Figure 5.6. This analysis suggests that UGP

is the first substrate to bind since this is the assumption that yields kinetic parameters closest

to those determined previously, Table 5.1. The resulting kcat is 6.79s−1 and corresponds well

to those parameters, but not to the value determined by parameter estimation.

The two assays show a marked difference in initial rate under identical conditions, Figure 5.7.

This suggests that the difference between the kcats obtained from the two assays are caused
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Figure 5.7: Comparison of MurA progress curves using two assays: the phosphate release assay (P
release) and the coupled ADP release assay (coupled ADP) as indicated in the key.

by UDPPEE inhibition of MurA in the phosphate release assay. This could be confirmed by

undertaking a kinetic characterisation using the alternative assay developed. Deconvolution of

the apparent parameters obtained is not feasible given the size of the discrepancy.

Returning to the differences between the results obtained here and those of Du et al. note that

the technique used by Du et al is a stopped rather than continuous assay. Such a technique

typically uses measurements taken after a significant concentration of reaction product has

accumulated. Consequently the results of this approach are likely subject to greater product

inhibition than those obtained using initial rates. Thus just as the phosphate release assay

produces lower kcats than the coupled ADP release assay, the stopped assays produce lower

kcats than continuous assays where initial rates can be obtained.

The complete characterisation undertaken in this section estimates a km with respect to UGP of

248µM, which is a somewhat better match to the value obtained by Du et al. This improvement

appears to arise due to separately estimating the dissociation constant even though the value of

this constant is poorly determined. The relatively good match between the estimated values of

the km with respect to PEP is lost in the complete characterisation, the estimates obtained differ

by an order of magnitude. Further kinetic characterisation of MurA is required to determine

this parameter, and the dissociation constant, more precisely.
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5.4 MurB characterisation

MurB was characterised using the direct assay for MurB activity described in Section 2.4.4.

Reaction mixtures were prepared as described and assays were monitored individually. Reac-

tions were initiated with the unvaried substrate, NADPH or UDPPEE. The final concentration

of MurB in the assays was 96nM. Three series of assays were undertaken for each substrate and

the resulting data were fitted and combined to produce a final estimate of the apparent kinetic

constants, see Table 5.4. For determinations with respect to NADPH, twenty NADPH concen-

trations, ranging between 25-500µM, were used. For determinations with respect to UDPPEE,

twenty UDPPEE concentrations, ranging between 10-600µM, were used. The concentration of

the unvaried substrate was 200µM in each case. It was noted that a significant concentration

of potassium chloride, 100mM, was required to permit maximum activity of MurB as observed

by Sylvester et al., [86]. Parameters were initially estimated for Equation (3.38).

For NADPH For UDPPEE

Series Parameter Name Values Lower Upper Values Lower Upper

1 Vmax (AU min−1) 0.1039 0.0987 0.1095 0.1137 0.1037 0.1246

1 km (µM) 29.2 22.3 37.3 66.3 46.2 95.1

2 Vmax (AU min−1) 0.0916 0.0836 0.1003 0.1136 0.1078 0.1198

2 km (µM) 14.5 5.7 36.9 27.5 20.8 36.6

3 Vmax (AU min−1) 0.0859 0.0798 0.0924 0.1193 0.1121 0.1270

3 km (µM) 16.8 8.73 32.4 31.7 22.7 44.4

Combined Vmax (AU min−1) 0.0920 0.0863 0.0982 0.1139 0.1084 0.1198

Combined km (µM) 20.9 12.9 33.8 32.8 25.6 42.1

Table 5.4: Kinetic parameters for an uninhibited model of MurB for each series of assays undertaken.
Each series used twenty concentrations of the varied substrate ranging between 25 and
500µM for NADPH and 10 and 600µM for UDPPEE. The unvaried substrate concentra-
tions were 200µM NADPH and 200µM UDPPEE. The upper and lower bounds determine
a 90% confidence interval.

Estimates of parameters are relatively consistent across series of assays although there is greater

deviation in the km of UDPPEE than would be preferred. With this proviso the estimated pa-
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Figure 5.8: Plots of the combined MurB assay data. Graphs (a) and (b) correspond to varying
NADPH; (c) and (d) correspond to varying UDPPEE. Graphs (a) and (c) assume stan-
dard Michaelis-Menten kinetics; (b) and (d) assume substrate inhibition. Experimental
data (Exp Data), the fitted curve, and a 90% confidence interval (Conf Interval) are
plotted.

rameters are also consistent with those estimated from the combined data which produce tighter

confidence intervals. Plots of the data indicate that both substrates may be substrate inhibitors

as expected given [86], see Figure 5.8. As such parameters were estimated for Equation (3.39)

which describes this type of inhibition, see Table 5.5. The confidence intervals on these estimates

are generally broader than those obtained fitting to Equation (4.62) especially for estimates of

ki. The estimated values of ki are significantly higher than the range of concentrations over

which data were collected; in order to obtain better estimates of ki a wider range would be

required. However the overall fit to the data is improved, the sum of the squared residuals is

reduced by a factor of 3.5. This suggests that a substrate inhibition model is more appropriate

for this enzyme.

The characterisations undertaken here were carried out at a lower pH than those by Sylvester

et al., [86]. The observed kcat is consequentally significantly lower than was determined by that

group. However the km values are also lower, suggesting that while a higher pH may yield a

faster overall reaction rate it may also hamper binding of the substrates.
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For NADPH For UDPPEE

Series Parameter Name Values Lower Upper Values Lower Upper

1 Vmax (AU min−1) 0.1125 0.0952 0.1329 0.1801 0.1090 0.2977

1 km (µM) 35.1 22.7 54.0 145 65.0 324

1 ki (µM) 4110 529 32000 775 209 2880

2 Vmax (AU min−1) 0.1394 0.0941 0.2064 0.1539 0.1330 0.1781

2 km (µM) 47.4 18.1 124 55.3 40.1 76.2

2 ki (µM) 715 237 2150 1200 705 2050

3 Vmax (AU min−1) 0.0903 0.0839 0.0972 0.1687 0.1398 0.2036

3 km (µM) 20.0 11.1 36.1 67.7 45.6 101

3 ki (µM) NFP - - 1050 571 1940

Combined Vmax (AU min−1) 0.1219 0.0926 0.1604 0.1601 0.1418 0.1808

Combined km (µM) 41.2 20.7 82.0 68.7 53.5 88.2

Combined ki (µM) 1110 384 3200 1070 718 1600

Table 5.5: Kinetic parameters for a substrate inhibited model of MurB for each series of assays
undertaken. Experiments are as described previously, Table 5.4. NFP indicates that it
was impossible to obtain a statistically significant estimate of the parameter in question.

5.4.1 Direct parameter estimation from MurB progress curves

The structural identifiability analysis of the ping-pong model conducted previously, Section

4.3.1, suggests that estimation of kinetic parameters from time course concentration measure-

ments may be feasible. Assuming that the MurB mechanism follows a ping-pong model, it is

possible to test this result practically. The results obtained in the previous section are compared

to those obtained using parameter estimation software.

It is possible that parameters cannot be estimated from MurB experimental data due to the

effects of noise, insufficient parameter sensitivity or inappropriate model choice. To determine

whether sensitivity would be a significant factor, parameters were estimated from data simulated

in COPASI using the parameters above for an uninhibited model, Figure 5.9. The initial

conditions, NADPH 190µM and UDPPEE 75µM, were chosen to correspond to an experiment

which had been undertaken. The overall fit was good, RMS error and standard deviation 0.0081,
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however the estimate for km,1, the km with respect to NADPH, was poor when compared to

the actual value. The Fisher information matrix, Ξ(p) in Figure 5.9, shows that the sensitivity

of this parameter is significantly lower than those of the other parameters. An investigation of

the sensitivities of the parameters with respect to the controllable experimental conditions was

undertaken.
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Figure 5.9: Results of parameter estimation for MurB using simulated data and the evolutionary
programming algorithm in COPASI. The fit is plotted in Graph (a). Table (b) compares
the actual and estimated values (AV and EV) of each of the parameters. The RMSE of
each estimate is also given. The correlation and Fisher information matrices are denoted
ρ(p) and Ξ(p) respectively. km,1 and km,2 refer to kms with respect to NADPH and
UDPPEE respectively.

The sensitivity of the product concentration to each kinetic parameter was expressed as a

differential equation thus:

∂

∂Vmax

dP

dt
=

dSENVmax

dt
=

S1S2

(S1S2 + km,1S2 + km,2S1)
,

∂

∂km,1

dP

dt
=

dSENkm,1

dt
=

S1S
2
2Vmax

(S1S2 + km,1S2 + km,2S1)
,

∂

∂km,s

dP

dt
=

dSENkm,2

dt
=

S2
1S2Vmax

(S1S2 + km,1S2 + km,2S1)
.

The terms SENVmax
, SENkm,1 and SENkm,2 denote the sensitivity of product concentration

to the parameters Vmax, km,1 and km,2 respectively. The equations above were numerically

solved with the system equations for a range of initial conditions, 10 and 200 µM for each

substrate, Figure 5.10. The expressions above are positive definite thus sensitivity is strictly
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increasing with respect to time. This is intuitive; the effect of a change in the parameters

increases with time. As such the maximal sensitivity to all parameters is reached when the

reaction stops due to complete consumption of one or both substrates. The effects of varying

the initial concentrations of the two substrates is shown below, Figure 5.10 (c)-(h). Sensitivity

to Vmax is maximised when both initial substrate concentrations are high; it is limited by the

lower substrate concentration, Figure 5.10 (c)-(d). The sensitivity of product concentration to

the km of a particular substrate is maximised when the concentration of the other substrate is

high, Figure 5.10 (f)-(g). For these parameters there is a critical concentration of the associated

substrate, which is dependent on the concentration of the other substrate, at which its sensitivity

is maximised, Figure 5.10 (e) and (h). The relationship between the substrate concentrations

was estimated by plotting the concentration of the associated substrate for which the maximal

sensitivity was observed against the concentration of the other substrate, Figure 5.10 (i)-(j).

Sensitivity km,1: log([NADPH ]max) = 1.89 + 0.0162[UDPPEE]

Sensitivity km,2: 0.0162[UDPPEE]max = log([NADPH ])− 2.18





(5.2)

The choice of an exponential relationship between the two substrates was based on the shapes

of the curves, however note that the gradient of these two fits are very similar. This suggests

that an appropriate relationship has been chosen.

This analysis confirms the earlier observation that the choice of initial concentrations used was

not optimal and further suggests that ideally the measurement duration should be sufficient

for the reaction to complete. Data were simulated from initial conditions informed by this

relationship and parameters were estimated, results shown in Figures 5.11 and 5.12. Parameters

were estimated using the Levenburg-Marquardt algorithm. This algorithm converged well for

these data where it had not for the first, relatively insensitive, simulated data set. It is not

possible to satisfy both of the expressions above, Equations 5.2. As such two experiments may
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Figure 5.10: Simulation of sensitivities for the MurB reaction using the stated parameters in CO-

PASI. Graphs (a) and (b) plot species concentration and sensitivity of the parame-
ters over time for initial concentrations: 200µM NADPH, 80µM UDPPEE and 0.1µM
MurB. Graphs (c) to (h) plot final sensitivity against varying initial concentration
of the two parameters. The legend of each indicates concentration of the unvaried
substrate: a range of 10-200µM, coloured coded from red to violet. Graph (i) plots
the concentration of NADPH at which maximum sensitivity to km,NADPH is observed
against UDPPEE concentration. Graph (j) plots the concentration of UDPPEE at
which maximum sensitivity to km,UDPPEE is observed against NADPH concentration.
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be required to achieve maximal sensitivity to the two km parameters.
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Figure 5.11: Results of parameter estimation for MurB from simulated data using the Levenburg-
Marquardt algorithm in COPASI. Initial conditions were 190 and 200 µM UDPPEE
and NADPH respectively. Graphs, tables and matrices are as those in Figure 5.9. km,1

and km,2 refer to kms with respect to NADPH and UDPPEE respectively.
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Figure 5.12: Results of parameter estimation for MurB from simulated data using the Levenburg-
Marquardt algorithm in COPASI. Initial conditions were 200 and 170 µM UDPPEE
and NADPH respectively. Graphs, tables and matrices are as those in Figure 5.9. km,1

and km,2 refer to kms with respect to NADPH and UDPPEE respectively.

Kinetic parameters and initial conditions were estimated from experimental data, Figure 5.13.

The estimated curves corresponded well to the experimental data. Results were somewhat

worse than those obtained using simulated data: RMS error increasing from 0.283 to 0.757

and standard deviation from 0.283 to 0.766. The first data set allowed the estimation of all

parameters except the km with respect to NADPH. This was expected given the preceding

sensitivity analysis. The estimated values of the other kinetic parameters were fixed and the

remaining parameter estimated from a second data set. This approach is somewhat suspect
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Figure 5.13: Results of parameter estimation for MurB using experimental data and the Levenburg-
Marquardt algorithm in COPASI. Parameters were initially estimated for the time
course plotted in Graph (a). Initial conditions were approximately 100µM UDPPEE,
200µM NADPH and 0.1µM MurB. Both kinetic parameters and initial substrate con-
centrations were estimated (EV), Table (b). The undetermined parameter, km,NADPH

and the initial concentration of NADPH were then estimated from the second time
course, Graph (c) and Table (d). Initial conditions were approximately 170µM
UDPPEE, 80µM NADPH and 0.1µM MurB. The other kinetic parameters were fixed
using the parameters estimated from the first data set.

given the high degree of correlation of the parameters observed, for example Figure 5.12(c).

However given the sparse data set available this expedient proved necessary.

The estimated value of the km with respect to UDPPEE corresponds well to that estimated

previously for an uninhibited model, Table 5.1. However those for kcat (4.12s−1) and the km

with respect to NADPH, correspond well to those estimated for a substrate inhibited model.

The parameter values obtained previously have fairly broad confidence intervals especially for

the substrate inhibited models. It is possible that the discrepancies observed results from

use of an uninhibited rather than substrate inhibited model. The discrepancy in kcat could

also arise from an inaccurate determination of the concentration or activity of MurB. Further

experimental data and theoretical analysis are required to determine precise causes of these

differences.
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5.5 MurC characterisation

MurC was characterised using the phosphate release assay described in Section 2.4.3. Reaction

mixtures were prepared as described and assays were monitored individually. Assays were

initiated with L-Ala to avoid addition of inorganic phosphate to the reaction mixture at this

step. Final concentration of MurC in the reaction mixture was 35nM. Three series of twenty

assays were undertaken in which the concentration of UMN was varied. For the remaining

substrates, ATP and L-Ala, only two series of fifteen assays each were used in order to preserve

stocks of UMN. The parameters derived from these experiments are presented in Table 5.6.

ATP, L-Ala and UMN concentrations ranged between 5-200µM, 40µM and 10mM, and 5-

400µM respectively. The constant ATP, L-Ala and UMN concentrations were 1mM, 10mM

and 600µM respectively. Graphs of these data are plotted in Figure 5.14. Kinetic parameters

were numerically estimated for Equation (3.38) from these data.
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Figure 5.14: Plots of the combined MurC assay data. Graphs (a), (b) and (c) correspond to varying
ATP, L-Ala and UMN respectively. Experimental data (Exp Data), the fitted curve,
and a 90% confidence interval (Conf Interval) are plotted.

Parameters from individual series of assays are consistent with those derived from combined

data. Confidence intervals for the km of L-Ala are wider than would be preferred. Some

data sets suggest that UMN may be a substrate inhibitor, however this observation was not
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For ATP For L-Ala For UMN

Series Parameter Name Values Lower Upper Values Lower Upper Values Lower Upper

1 Vmax (AU min−1) 0.1096 0.1055 0.1138 0.1070 0.1004 0.1140 0.1137 0.1037 0.1246

1 km (µM) 17.6 15.6 19.8 697 593 819 66.3 46.2 95.1

2 Vmax (AU min−1) 0.1149 0.1062 0.1243 0.0937 0.0880 0.0998 0.1136 0.1078 0.1198

2 km (µM) 29.7 23.5 37.4 999 835 1190 27.5 20.8 36.6

3 Vmax (AU min−1) - - - - - - 0.1193 0.1121 0.1270

3 km (µM) - - - - - - 31.7 22.7 44.4

Combined Vmax (AU min−1) 0.1113 0.1047 0.1184 0.0925 0.0852 0.1005 0.1139 0.1084 0.1198

Combined km (µM) 22.4 11.6 27.1 716 563 911 32.8 25.6 42.1

Table 5.6: Kinetic parameters obtained for MurC for each series of assays undertaken. For characterisations with respect to ATP and L-Ala fifteen
measurements were made for each series: concentrations ranged between 5 and 200µM for ATP and 40µM and 10mM for L-Ala. For
characterisations with respect to UMN twenty measurements were made for each series, concentrations ranged between 5-400µM. The
unvaried substrate concentrations were 1mM ATP,10mM L-Ala and 600µM UMN. The upper and lower bounds determine a 90% confidence
interval.
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sustained by additional assays at higher concentrations of UMN than are shown here. As such

an alternative explanation is required for this behaviour.

5.6 MurD characterisation

MurD was characterised using the phosphate release assay described in Section 2.4.3. Reaction

mixtures were prepared as described and monitored in pairs using the Varian cell changer

system. Either MurD or D-Glu was used to initiate the reaction thus avoiding the addition of

inorganic phosphate at this stage. The final concentration of MurD in the reaction mixture was

4.25nM. Three series of sixteen assays were undertaken for each varied substrate: ATP, D-Glu

and UDP-MurNAc-L-Ala (U1P). The parameters derived from these experiments are presented

in Table 5.7. The concentrations of ATP, D-Glu and U1P ranged between 1-400µM, 50µM

and 4mM, and 1-245µM respectively. The constant ATP, D-Glu and U1P concentrations were

1mM, 10mM and 245µM respectively. Kinetic parameters were estimated for Equation (3.38)

for these data.
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Figure 5.15: Plots of the combined MurD assay data. Graphs (a), (b) and (c) correspond to varying
ATP, D-Glu and U1P respectively. Experimental data (Exp Data), the fitted curve,
and a 90% confidence interval (Conf Interval) are plotted.

Estimated parameters are consistent with those estimated from combined data and the confi-
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For ATP For D-Glu For U1P

Series Parameter Name Values Lower Upper Values Lower Upper Values Lower Upper

1 Vmax (AU min−1) 0.0973 0.0855 0.1107 0.0985 0.0933 0.1040 0.1024 0.0942 0.1114

1 km (µM) 39.8 27.7 57.2 391 325 470 391 325 470

2 Vmax (AU min−1) 0.0881 0.0810 0.0958 0.0754 0.0721 0.0789 0.0980 0.0914 0.1050

2 km (µM) 35.8 27.6 46.4 251 208 303 22.6 17.4 29.4

3 Vmax (AU min−1) 0.0848 0.0796 0.0904 0.0769 0.0738 0.0801 0.1011 0.0926 0.1104

3 km (µM) 47.3 39.0 57.3 271 231 318 36.5 27.4 48.6

Combined Vmax (AU min−1) 0.0893 0.0841 0.0948 0.0836 0.0799 0.0875 0.1023 0.0963 0.1087

Combined km (µM) 38.2 31.5 46.4 293 243 353 26.3 21.5 32.1

Table 5.7: Kinetic parameters obtained for MurD for each series of assays undertaken. Each series used sixteen measurements, concentrations ranged
between 1 and 400µM for ATP, 50µM and 4mM for D-Glu and 1 and 245µM for U1P. The unvaried substrate concentrations were 1mM ATP,
10mM D-Glu and 245µM U1P. The upper and lower bounds determine a 90% confidence interval.
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dence intervals are tight relative to the size of the parameters. Slight curvature was observed at

the beginning of the some of the progress curves measured. While this can be an indicator of

substrate inhibition, discussed in Section 5.7.1, it was not the case in this instance. This can be

seen from the plots below Figure 5.15. Furthermore increasing the amount of coupling enzyme

present eliminated the curvature in this case.

5.7 MurF characterisation

MurF was characterised using the phosphate release assay described in Section 2.4.3. Reaction

mixtures were prepared as described and monitored individually. Reactions were initiated with

D-Ala-D-Ala to avoid adding inorganic phosphate at this stage. The final concentration of

MurF in the reaction mixture was 3.05nM. Three series of fifteen assays were completed for

each varied substrate: ATP, D-Ala-D-Ala and UDP-MurNAc-tripeptide (U3P). The estimated

parameters are presented in Table 5.8. The concentrations of ATP, D-Ala-D-Ala and U3P

ranged between 5-900µM, 5-1000µM, and 5-400µM respectively. The constant ATP, D-Glu

and U1P concentrations were 1mM, 10mM and 360µM respectively. Parameters were initially

estimated for Equation (3.38).

Parameter estimates for individual series are consistent with those for the combined data.

However plots of the data, Figure 5.16, strongly suggest that U3P is a substrate inhibitor. ATP

may also be a weak substrate inhibitor. Parameter estimates for a substrate inhibition model,

as in Section 5.4, are presented in Table 5.9. The fit is significantly improved for U3P, the root

mean standard error decreasing by a factor of 2, and the confidence interval for ki is tight. For

ATP the fit improves only slightly and the confidence interval for the ki estimate is very broad.

Since the estimated ki is beyond the range of the data it is likely this could be improved by

measuring additional rates.
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For ATP For D-Ala-D-Ala For U3P

Series Parameter Name Values Lower Upper Values Lower Upper Values Lower Upper

1 Vmax (AU min−1) 0.0682 0.0633 0.0735 0.0693 0.0623 0.0772 0.0574 0.0487 0.0676

1 km (µM) 21.5 16.6 28.0 26.4 18.0 38.6 3.25 1.00 10.5

2 Vmax (AU min−1) 0.0568 0.0545 0.0593 0.0812 0.0765 0.0862 0.0630 0.0541 0.0733

2 km (µM) 11.7 9.15 15.0 27.4 22.1 33.9 3.16 1.07 9.31

3 Vmax (AU min−1) 0.0494 0.0463 0.0527 0.0840 0.0788 0.0895 0.0545 0.0486 0.0610

3 km (µM) 18.1 13.1 25.0 36.9 29.8 45.8 4.49 2.32 8.69

Combined Vmax (AU min−1) 0.0537 0.0507 0.0568 0.0778 0.0723 0.0838 0.0587 0.0535 0.0646

Combined km (µM) 12.3 8.86 17.2 31.7 24.4 41.3 3.40 1.68 6.86

Table 5.8: Kinetic parameters for an uninhibited model of MurF for each series of assays undertaken. Each series used fifteen measurements, concentra-
tions ranged between 5 and 900µM for ATP, 5 and 1000µM for D-Ala-D-Ala and 5 and 400µM for U3P. The unvaried substrate concentrations
were 1mM ATP, 10mM D-Ala-D-Ala and 360µM U3P. The upper and lower bounds determine a 90% confidence interval.
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Figure 5.16: Plots of the combined MurF assay data. Graphs (a), (b) and (d) use standard Michaelis-
Menten kinetics and correspond to varying D-Ala-D-Ala, ATP and U3P respectively.
Graphs (c) and (e) use a substrate inhibition model and correspond to varying ATP
and U3P respectively.

5.7.1 Substrate inhibition and progress curve curvature

While undertaking the MurF assays atypical progress curves were observed. For low concen-

trations of ATP and U3P the progress curve was typically shaped, the rate started at some

maximum and then decreased as substrate was exhausted. For high concentrations of these

substrates however, the rate increased over the time course measured, see Figure 5.17. It was

demonstrated that this behaviour occurred even at significantly greater concentrations of the

coupling enzyme PNP. Thus this behaviour was not caused by lack of coupling enzyme.

To investigate this behaviour a substrate inhibited model was simulated for a range of ini-

tial substrate concentrations, Figure 5.18, using Maple [158]. The reaction mechanism for a
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For ATP For U3P

Series Parameter Name Values Lower Upper Values Lower Upper

1 Vmax (AU min−1) 0.0975 0.0761 0.1250 0.1449 0.1131 0.1856

1 km (µM) 40.8 26.9 62.1 26.7 17.7 40.4

1 ki (µM) 348 158 771 99.0 65.3 150

2 Vmax (AU min−1) 0.0633 0.0568 0.0706 0.1257 0.1020 0.1550

2 km (µM) 16.1 11.5 22.6 17.1 11.3 25.8

2 ki (µM) 2200 823 5870 161 106 246

3 Vmax (AU min−1) 0.0548 0.0475 0.0631 0.0875 0.0723 0.1059

3 km (µM) 23.6 15.3 36.2 14.7 9.72 22.2

3 ki (µM) 4600 1250 16900 246 150 403

Combined Vmax (AU min−1) 0.0642 0.0572 0.0721 0.1101 0.0911 0.1331

Combined km (µM) 20.8 14.6 29.6 17.4 11.9 25.5

Combined ki (µM) 1810 949 3460 175 117 263

Table 5.9: Kinetic parameters for a substrate inhibited model of MurF for each series of assays
undertaken. Experiments are as described in Table 5.8. The upper and lower bounds
determine a 90% confidence interval.

substrate inhibited single substrate reaction is as follows:

E + S
k1−⇀↽−
r1

ES

ES −→
k2

E + P

ES + S
ki1−−⇀↽−−
ri1

ESS





(5.3)

Thus a transient model describing substrate inhibition is given by the following differential
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equations:

E(1)(t) = −k1E(t)S(t) + (r1 + k2)ES(t) (5.4a)

S(1)(t) = −k1E(t)S(t) + r1ES(t)− ki1S(t)ES(t) + ri1ESS(t) (5.4b)

ES(1)(t) = (k1E(t)− ki1ES(t))S(t)− (r1 + k2)ES(t) + ri1ESS(t) (5.4c)

ESS(1)(t) = ki1S(t)ES(t)− ri1ESS(t) (5.4d)

P (1)(t) = k2ES(t) (5.4e)

Typical experimental initial conditions, only substrate and enzyme concentrations greater than

zero, were used in these simulations. The parameters, p = (k1, r1, ki1, ri1, k2), of Equations

(5.4a)-(5.4e) are related to the steady state parameters as follows:

Vmax = k2E0, km =
r1 + k2

k1
, ki =

ri1
ki1

.

Consequently transient parameters could be partially derived from the kinetic parameters al-

ready obtained, Table 5.1. It was necessary to choose a value for two parameters since only

three relations exist between the transient and steady state parameters; as such the denomina-

tors k1 and ki1 were assigned arbitrary values. The relations above were then used to obtain

the following parameters for use in the simulations, psim,U3P = (10, 106.5, 0.5, 87.5, 43.5) and

psim,ATP = (10, 21.1, 0.5, 905, 186.9).

Simulations show that after a critical initial substrate concentration, rates of product release

increase over a period of at least five minutes, Figure 5.18 (a) and (b); an observable time

scale for the technique used. This trend matches that observed in the experimental data.

Simulations predict that rates should become positive at concentrations around 80µM U3P and

200µM ATP again observed in the experimental data, Table 5.10. The simulations were also

used to construct simulated experimental data, Figure 5.18 (c) - (f), which are comparable
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Figure 5.17: Plots of sample MurF progress curves and estimated gradients. Gradients (∆abs)
were estimated using the LINEST function in Microsoft Excel for contiguous 100 point
subsets of the raw data. A second linear regression was performed to a subset of the
estimated gradients. This fit, to the section of the curve after the reaction was initiated,
is shown by the black line. Graphs (a) and (b) are time courses from the third ATP
characterisation, ATP concentrations 136 and 340µM respectively. Graphs (c) and (d)
are time courses from the third U3P characterisation, U3P concentrations 10.32 and
108µM respectively.

[U3P] (µM) rate change [ATP] (µM) rate change

3.44 decreasing 8.5 decreasing
6.88 decreasing 17 decreasing
10.32 decreasing 26 decreasing
13.76 decreasing 34 decreasing
17.2 decreasing 43 decreasing
20.69 increasing∗ 52 decreasing
24.08 decreasing 61 decreasing
27.52 decreasing 68 decreasing

36† decreasing 136 decreasing
72† increasing 204† decreasing

108 increasing 272† increasing
144 increasing 340 increasing
216 increasing 595 increasing
288 increasing 765 increasing
360 decreasing∗ 850 increasing

Table 5.10: Table showing the qualitative effect of increasing substrate concentration on the rate of
reaction of MurF. Two unexpected results are indicated by ∗; the rates measured at these
two concentrations were inconsistent with the rest of the data. Rates switch between
decreasing and increasing between the concentrations indicated by † these ranges are
consistent with those predicted in simulations.
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Figure 5.18: Simulations of Equations (5.4a)-(5.4e) using parameters deriving from MurF quasi-
steady state parameters in Maple [158]. Graphs (a) and (b) plot the release of product
and the rate of product release over time, given a range of initial U3P concentrations
10-400µM coloured red to violet. Graphs (c)-(f) plot simulated experimental data,
plotting rate of product release against initial substrate concentration. Plots (c) and
(d) use rates calculated at specific times indicated by the keys inset. Graphs (e) and (f)
use rates calculated at the time when 10% of the initial substrate had been consumed.
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with experimental data, Figure 5.16. It is clear from these plots that the shape of the plot is

insensitive to the time when the measurement was made.

Note that similar behaviour was not observed for MurB catalysed reactions. However the max-

imal concentrations of UDPPEE and NADPH used were much lower for those characterisations

as such the critical concentration may not have been reached. Furthermore, since NADPH

based assays require a high starting concentration of the absorbing compound, the increased

noise level may have obscured any small changes in rate. The lower extinction coefficient of

NADPH relative to MTG may also have reduced the chance of observing this effect.

5.8 Summary

The kinetic characterisations of the S. pneumoniae MurA-F enzymes under consistent condi-

tions provides a fundamental building block in the construction of a model to describe the

behaviour of the overall pathway. Using these data it is possible to predict the concentrations

of pathway intermediates as is shown in Chapter 7.

It was observed that MurA is strongly product inhibited by UDPPEE. This necessitated the

development of an alternative assay of MurA activity to permit parameter estimation. A well

determined estimate of the kcat for MurA was obtained using data produced using this alterna-

tive coupled assay system. However this estimate differed significantly from those obtained using

the phosphate release assay, as such no deconvolution of parameters could be attempted. It is

hypothesised that this difference in kcat arises from the effects of product inhibition. Further

work is required to confirm this.

The kinetic parameters of MurB were estimated using two data sets as predicted by the sensitiv-

ity analysis undertaken. Fits to the experimental data used were good and confidence intervals

for the parameters estimated were tight. However of the three parameters estimated only one

was close to the value estimated for an uninhibited model. The other parameters were close to
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the values expected for a substrate inhibited model. Further experimental work is needed to

determine which is the most appropriate model. This may be informed by an indistinguisha-

bility analysis of the two models. Nonetheless the results obtained are encouraging evidence

that the use of direct parameter estimation may be a viable approach for the characterisation

of enzymes.

The effect of substrate inhibition on MurF time courses provides a new tool for the detection

of substrate inhibition. Where substrate inhibition occurs increasing substrate concentration

should lead to a change in geometry of the progress curve, converting from a parabolic to

sigmoidal shape. It should be noted that this change is only observed in simulation when

transient model equations are used. The quasi-steady state form of the model does not exhibit

this behaviour. However the effect of this apparently transient phenomenon is observable on

quasi-steady state time scales.



6. ANALYSIS OF AND PARAMETER ESTIMATION USING TRANSIENT

MODELS OF ENZYME REACTIONS

6.1 Introduction

A more complete understanding of the kinetics of a given enzyme can be obtained by consid-

ering an unsimplified, transient, model of the expected mechanism. However the experiments

previously described in Chapter 5 only collect data over a steady state time scale. In order

to collect data over a pre-steady state time frame more advanced mixing techniques, such as

stopped flow, are required [179]. Furthermore if reliable parameter estimates are required based

on such data, structural identifiability analyses of the possible models should be undertaken

prior to experimental design.

In this chapter structural identifiability analyses of the two substrate reaction mechanisms

introduced in Section 4.2.1 are presented. A range of possible measurements and product

release mechanism are considered in the course of these analyses. In the subsequent section

pre-steady state time courses of reactions catalysed by Lactate dehydrogenase and MurB are

used for parameter estimation.

6.2 Structural identifiability analysis

Transient models for the two substrate enzyme catalysed mechanisms have been introduced

previously (Section 4.2.1). These models can be modified to take into account the effect of

reversible product release stages. Structural identifiability analyses of the resulting models
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are described in the following sections. For each model all single species measurements were

analyzed as were two experimentally relevant sets of initial conditions. Pohjanpalo’s Rank Test,

the Taylor series approach and the input-output relationship approach were used in each case.

Detailed analyses of the models are presented in the following sections. Ping-pong models are

considered first. The simple ordered models are then considered in two groups: simultaneous

and sequential release of products. For each model a Taylor series based analysis is presented

which encompasses all mechanisms of product release considered. Any successful input-output

relationship analyses are then presented.

6.2.1 Ping-pong model

The two substrate transient ping-pong model previously described in Section 4.2.1 is considered

first. Three product release processes were considered; irreversible product release (a), reversible

release of the second product (b), and fully reversible product release (c). A reaction scheme

for Mechanism (c) is presented below:

E + S1
k1−⇀↽−
r1

ES1

ES1
k2−⇀↽−
r2

E∗ +Q

E∗ + S2
k3−⇀↽−
r3

E∗S2

E∗S2
k4−⇀↽−
r4

E + P





(6.1)

Mechanism (b) is obtained by setting r2 = 0 in Equations (6.1). It will be shown later that for

this mechanism can also be applied if the first product release stage is reversible, i.e. r4 = 0,

r2 6= 0 in Equations (6.1). Mechanism (a) is obtained by setting r2 = r4 = 0 in Equations (6.1).

A Taylor series analysis of each of these mechanisms is presented below.
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The state vector and initial conditions used were the same for all three models:

x(t,p) =

= (E(t,p), S1(t,p), ES1(t,p), Q(t,p), E∗(t,p), S2(t,p), E
∗S2(t,p), P (t,p))T ,

x(0,p) = x0 = (E0, S10, 0, 0, 0, S20, 0, 0)
T .





(6.2)

Each mechanism gives rise to a different derivative of the state vector. For irreversible product

release, Mechanism (a), the derivative was as previously stated, Equations (4.2) in Section

4.2.1. Reversible release of the second product, Mechanism (b), requires the following changes

to Equations (4.2):

dE(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p) + k4E

∗S2(t,p)− r4E(t,p)P (t,p), (6.3a)

dE∗S2(t,p)

dt
= k3E

∗(t,p)S2(t,p)− (r3 + k4)E
∗S2(t,p) + r4E(t,p)P (t,p), (6.3b)

dP (t,p)

dt
= k4E

∗S2(t,p)− r4E(t,p)P (t,p). (6.3c)

For Mechanism (c), fully reversible product release, the following additional changes to Mech-

anism (b) were made:

dES1(t,p)

dt
= k1E(t,p)S1(t,p)− (r1 + k2)ES1(t,p) + r2E(t,p)Q(t,p), (6.4a)

dQ(t,p)

dt
= k2ES1(t,p)− r2E(t,p)Q(t,p), (6.4b)

dE∗(t,p)

dt
= k2ES1(t,p)− r2E

∗(t,p)Q(t,p)− k3E
∗(t,p)S2(t,p) + r3E

∗S2(t,p). (6.4c)
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Thus each reaction mechanism requires a different unknown parameter vector, given below:

pa = (k1, k2, k3, k4, r1, r3), (6.5)

pb = (k1, k2, k3, k4, r1, r3, r4), (6.6)

pc = (k1, k2, k3, k4, r1, r2, r3, r4), (6.7)

the subscript indicating to which mechanism the vector corresponds. Eight output functions,

corresponding to individual measurement of each reaction species, were analyzed:

y1(t,p) = E(t,p), y2(t,p) = S1(t,p), y3(t,p) = ES1(t,p), y4(t,p) = Q(t,p),

y5(t,p) = E∗(t,p), y6(t,p) = S2(t,p), y7(t,p) = E∗S2(t,p), y8(t,p) = P (t,p).





(6.8)

In order to use Pohjanpalo’s Rank Test (PRT) at least as many non-zero Taylor series coeffi-

cients as there are unknown parameters must be calculated (Section 3.2.2). For Mechanisms

(a) and (b) this was possible for all output functions. For Mechanism (c) eight non-zero Taylor

series coefficients were calculated for y1 to y3; however this proved computationally intractable

for output functions y4 to y8, as such the PRT could not be applied for these five observa-

tions. For each of the remaining combinations of mechanism and output function the rank of

the Jacobian matrix of the Taylor series coefficients with respect to the unknown parameters

was calculated. For Mechanism (b) the Jacobian matrix for the expansion of y8 proved com-

putationally intractable. In each of the remaining cases the rank was equal to the number of

unknown parameters present. As such all observations considered for Mechanism (a) are at

least locally identifiable. For Mechanism (b) models arising for all observations, except that of

P , are at least locally identifiable. Mechanism (c) is at least locally identifiable if concentration

of enzyme, first substrate, or the complex of these species is measured.

A full Taylor series analysis for output functions y5 to y8 proved computationally intractable for
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Mechanisms (a) and (b); moreover it was not possible to show that any individual parameters

were globally identifiable for these models. For Mechanism (c) a full Taylor series analysis was

computationally intractable for all output functions. However for output functions y1 to y4 it

was possible to show that k1, k2 and r1 are globally identifiable. The first four Taylor series

coefficients used in this analysis were the same as those given below, Equations (6.9)-(6.12).

For observation of species in the first half of the reaction y1 to y4, full Taylor series analyses

were completed for Mechanisms (a) and (b). The first four Taylor series coefficients for the

expansions of these output functions at t=0 are:

y1(0) = E0, y2(0) = S10, y3(0) = 0, y4(0) = 0, (6.9)

y
(1)
1 (0) = y

(1)
2 (0) = −y

(1)
3 (0) = −k1E0S10, y

(1)
4 (0) = 0, (6.10)

y
(2)
1 (0) = y

(2)
2 (0) = −y

(2)
3 (0) = k1E0S10(k1(E0 + S10) + r1),

y4
(2)(0) = k1k2E0S10,





(6.11)

y
(3)
1 (0) = y

(3)
2 (0) = −y

(3)
3 (0) + k1k2E0S10(k1(E0 + S10) + r1 + k2) =

= −k1E0S10((k1(E0 + S10) + r1)
2 + 2k21E0S10 + k2r1),

y
(3)
4 (0) = −k1k2E0S10(k1(E0 + S10) + k2 + r1),





(6.12)

for all three mechanisms considered. The alternative parameter vectors used are given by:

pa = (k1, k2, k3, k4, r1, r3)
T , (6.13)

pb = (k1, k2, k3, k4, r1, r3)
T , (6.14)

pc = (k1, k2, k3, k4, r1, r3)
T . (6.15)

These vectors were used to create simultaneous equations in the unknown parameters from the

Taylor series coefficients as described in Section 3.2.1. These equations were then solved in
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Maple for the alternative parameters [158]. For Mechanisms (a) and (b) it was shown that

p = p. Hence measurement of the concentration of these species results in structurally globally

identifiable (SGI) models for these two mechanisms.

The two halves of Mechanism (a) are equivalent up to relabelling as follows:

E ↔ E∗, S1 ↔ S2, ES1 ↔ E∗S2, Q ↔ P,

k1 ↔ k3, r1 ↔ r3, k2 ↔ k4.





(6.16)

Consequently it is possible to choose an alternative set of initial conditions, corresponding to

a different experimental setup, for which the parameter vector is SGI for y5 to y8. Specifically

the initial concentrations of E∗ and E must be swapped as follows:

x0 = (0, S10, 0, 0, E0, S20, 0, 0)
T . (6.17)

This may be experimentally viable if the enzyme can be isolated in the required form.

Mechanism (c) also consists of two halves equivalent up to a relabelling described by Equations

(6.16) and r2 ↔ r4. Thus using the alternative set of initial conditions above, Equations (6.17),

k3, k4 and r1 are globally identifiable for output functions y5 to y8.

The alternative initial conditions, Equation (6.17), were also considered for Mechanism (b),

which is changed by any non-trivial relabelling. For all output functions at least seven non-zero

Taylor series coefficients were found. In each case the Jacobian matrix was found to have a

rank of seven, equal to the number of unknown parameters, as such all observations produce

models which are at least locally identifiable.

For the output functions y1 to y4 and y7 a full Taylor series analysis proved computationally

intractable. However for y7 it was possible to show that k3, k4 and r3 are SGI.

A full Taylor series analysis was completed for each of the models corresponding to measurement
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Ping-pong model Reversible product release stages

Measurement None First Second Both

E SGI SGI SGI ASLI, {k1, r1, k2}

S1 SGI SGI SGI ASLI, {k1, r1, k2}

ES1 SGI ASLI, {k1, r1, k2} SGI ASLI, {k1, r1, k2}

Q SGI‡ SGI SGI‡ CI, {k1, r1, k2}

E∗ SGI† SGI† SGI† ASLI†, {k3, r3, k4}
†

S2 SGI† SGI† SGI† ASLI†, {k3, r3, k4}
†

E∗S2 SGI† SGI† ASLI, {k3, r3, k4}
† ASLI†, {k3, r3, k4}

†

P SGI‡ SGI‡ SGI† CI, {k3, r3, k4}
†

Table 6.1: Summary of the structural identifiability analysis results for the two substrate transient
ping-pong models. Results are either: SGI, structurally globally identifiable; ASLI, at
least structurally locally identifiable; or CI, analysis was computationally intractable.
In addition a subset of globally identifiable parameters are stated in some cases. Results
marked by a † were obtained for the alternative initial conditions, Equation (6.17). Results
marked by a ‡ can be obtained using the input-output relationship approach, and require
only that enzyme and substrate concentrations be initially non-zero.

of E∗, S2 and P . The first four Taylor series coefficients of these expansions are:

y5(0) = E0, y6(0) = S20, y8(0) = 0, (6.18)

y
(1)
5 (0) = y

(1)
6 (0) = −k3E0S20, y

(2)
8 (0) = 0, (6.19)

y
(2)
5 (0) = y

(2)
6 (0) = k3E0S20(k3(E0 + S20) + r3), y

(2)
8 (0) = k3k4E0S20, (6.20)

y
(3)
5 (0) = y

(3)
6 (0) = −k3E0S20((k3(E0 + S20) + r3)

2 + 2k3E0S20 + k4r3),

y
(3)
8 (0) = −k3k4E0S20(k3(E0 + S20) + (r3 + k4)).





(6.21)

The Taylor series coefficients were analyzed using the alternative parameter vector, Equation

(6.14), as previously described. For each expansion a single solution for the alternative param-

eter vector was obtained, p = p. Thus the models arising from these three observations are

SGI.

Under the relabelling previously defined, Equation (6.16), an alternative model is created de-



6.2. STRUCTURAL IDENTIFIABILITY ANALYSIS 155

scribing reversible release of Q and irreversible release of P , see below.

E + S1
k1−⇀↽−
r1

ES1

ES1
k2−→ E∗ +Q

E∗ + S2
k3−⇀↽−
r3

E∗S2

E∗S2
k4−⇀↽−
r4

E + P





Relabelling
−−−−−−−⇀↽−−−−−−−

E∗ + S2
k3−⇀↽−
r3

E∗S2

E∗S2
k4−→ E + P

E + S1
k1−⇀↽−
r1

ES1

ES1
k2−⇀↽−
r2

E∗ +Q





(6.22)

For consistency of notation r4 is relabelled r2. Thus the results obtained above apply to this

model as follows. For the initial conditions, Equation (6.2), the models arising from measure-

ment of E, S1 and Q are SGI. For the initial conditions, Equations (6.17), the models arising

from measurement of E∗, S2, E
∗S2 and P are SGI. All other measurements can be shown to

be at least locally identifiable using one of the two sets of initial conditions.

The results of this Taylor series analysis are summarised in Table 6.1. These models were also

analyzed using the input-output relationship approach. The results of such an analysis, being

less dependent on initial conditions, can be applied more flexibly than those obtained using the

Taylor series approach. In addition use of both approaches allows comparisons to be drawn

regarding their relative effectiveness for these and similar models. The analysis of Mechanism

(c) proved computationally intractable for all output functions considered. The results for

Mechanisms (a) and (b) are presented in the following sections.

6.2.1.1 Differential algebra analysis of Mechanism (a) for the ping-pong model

The following expressions are the generators of a differential ideal equivalent to Mechanism (a),

explicit dependence on p is omitted for notational convenience:

dE(t)

dt
+ k1E(t)S1(t)− r1ES1(t)− k4E

∗S2(t) = 0, (6.23a)

dS1(t)

dt
+ k1E(t)S1(t)− r1ES1(t) = 0, (6.23b)
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dES1(t)

dt
− k1E(t)S1(t) + (r1 + k2)ES1(t) = 0, (6.23c)

dQ(t)

dt
− k2ES1(t) = 0, (6.23d)

dE∗(t)

dt
− k2ES1(t) + k3E

∗(t)S2(t)− r3E
∗S2(t) = 0, (6.23e)

dS2(t)

dt
+ k3E

∗(t)S2(t)− r3E
∗S2(t) = 0, (6.23f)

dE∗S2(t)

dt
− k3E

∗(t)S2(t) + (r3 + k4)E
∗S2(t) = 0, (6.23g)

dP (t)

dt
− k4E

∗S2(t) = 0, (6.23h)

E0 − E(t)− ES1(t)− E∗(t)− E∗S2(t) = 0, (6.23i)

S10 − S1(t)− ES1(t)−Q(t) = 0, (6.23j)

S10 − S1(t)− ES1(t)− E∗(t)− E∗S2(t)− P (t) = 0, (6.23k)

S20 − S2(t)− E∗S2(t)− P (t) = 0, (6.23l)

S20 − S2(t)− E∗S2(t)− E(t)− ES1(t)−Q(t) = 0. (6.23m)

Derivation of output relations for y1 to y3 and y5 to y7 proved computationally intractable.

For y4 and y8 the differential ideal was successfully decomposed into two ideals using the

Rosenfeld_Groebner algorithm in Maple. The subset of the generators, Equations (6.23c)-

(6.23e), (6.23g)-(6.23i) and (6.23k)-(6.23l), can be made (by appropriate substitutions from

the equilibrium relations) orthonomic and autoreduced with respect to any ranking for which

the members of the following set, {E, S1, S2, y8}, are ranked above the remaining variables,

{ES1, E∗, E∗S2, Q, P}. This subset of the generators was successfully decomposed into the

same two ideals as obtained for the full set of generators above. The left hand sides of the
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generators of the first ideal are given by:

S2(t), E∗S2(t), P (t)− S20, y8(t)− S20, k2ES1(t)− E∗(1)(t), Q(1)(t)− E∗(1)(t),

k2(E(t) + E∗(t)− E0) + E∗(1)(t)), k2(S1(t) + E∗(t) + (S20 − S10)) + E∗(1)(t),

k2E
∗(2)(t) + k1k

2
2(E0(S20 − S10) + E∗(t)(E0 + S10 − S20)− E∗2(t)) −

− k1(E
∗(1)(t))2 + k1k2E

∗(1)(t)((E0 + S10 − S20)− 2E∗(t)) + k2E
∗(1)(t)(k2 + r1),





(6.24)

(the right hand sides being zero). The first generator above indicates that this is a reaction

state in which S2 has been exhausted. The fifth to ninth generators describe the ongoing first

half of the reaction which can continue until the available concentration of E or S1 is exhausted.

This ideal does not describe the required reaction state and can be eliminated where it is known

that S2(t) is non-zero.

Presenting the generators of the second ideal on paper is not feasible due to their size1. Several

generators contain the denominator:

k2k3k
2
4(y

(1)
8 (t) + k4(y8(t)− S20))

3, (6.25)

If this denominator were zero it could be included as one of the generators of the differential

ideal. However in this case the ideal decomposes to a single ideal, Equations (6.24), which does

not describe the required reaction state. Thus this denominator can be considered non-zero.

Thus the leader of the function, y(4), can be eliminated as described in Section 3.2.3. A second

output relation is created by replacing p with the alternative parameter vector and subtracted

from the first output relation, this process is analogous to that presented in Section 4.3.1. Since

the denominator of both relations is non-zero, the denominator of the difference of these relations

is also non-zero and can be eliminated to yield a differential polynomial. Since the generators

1 These generators and the following analysis are available on request (and at the following URL) in an
electronic Maple file: http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.
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are orthonomic and autoreduced the ideal is prime. Thus, by the argument presented in Section

3.2.3.1, the 265 monomials of this expression are linearly independent. Since the polynomial

equals zero its coefficients must all equal zero and these equations can be solved to determine

relationships between the unknown parameter vectors. These six coefficients of the polynomial

are sufficient to establish that the model is SGI:

k24k4
2
(k2k3k1 − k1k2k3), (6.26a)

3k24k4
2
(k2k3k

2
4k1 − k1k2k3k4

2
), (6.26b)

k3k3(k2k
2
4k1k3 − k1k3k2k4

2
), (6.26c)

k2k3k
5
4k2k3k4

5
(k1k3 − k1k3), (6.26d)

k3k
4
4k3k4

4




7S20(k1k3k2k4 − k2k4k1k3) + 2(k1k4k2k3 − k2k3k1k4) +

+ 2(k1r3k2k4 − k4k2k1r3) + (k1k2k2k4 − k2k4k1k2)




, (6.26e)

k2k3k
5
4k2k3k4

5
S6
20




(E0 + S10)(k1 − k1) + (k2 − k2) + S20(k3 − k3) +

+ (k4 − k4) + (r1 − r1) + (r3 − r3)




. (6.26f)

They were solved for the alternative parameters in Maple to obtain the five solutions below:

{k1 = 0, k2 = 0}, {k1 = 0, k3 = 0}, (6.27a)

{k1 = 0, k4 = 0}, {k3 = 0, k4 = 0}, (6.27b)

{k1 = k1, k2 = k2, k3 = k3, k4 = k4, r1 = r1, r3 = r3}. (6.27c)

Note that the same solutions are obtained when all coefficients of the polynomial are solved.

The first four solutions above do not lie in the set of feasible parameter values and thus can be

eliminated. The only remaining solution (6.27c) indicates that p = p and thus that the model

arising from measurement of P is SGI.
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For measurement of Q a different subset of the generators was required. The subset of the

generators, Equations (6.23a), (6.23c)-(6.23d), (6.23g)-(6.23j) and (6.23m), can be made (by

appropriate substitutions from the equilibrium relations) orthonomic and autoreduced with

respect to any ranking for which {E∗, S1, S2, y4} > {ES1, E, E∗S2, Q, P}. This subset

of the generators was successfully decomposed into three ideals. The left hand sides of the

generators of the first of these ideals are:

S1(t), ES1(t), E∗S2(t), Q(t)− S10, y4(t)− S10, E(t) + S2(t) + (S10 − S20),

E∗(t)− S2(t)− (E0 + S10 − S20), S2
2(t) + S2(t)(E0 + S10 − S20), P (1).





(6.28)

Again this ideal corresponds to a situation where substrate exhaustion, in this case S1, has

occurred. The second ideal also corresponds to such a state but, due to the length of some of

the generators this ideal is not presented here2. Neither ideal describes the required reaction

state, as such they are eliminated.

Presenting the generators of the third ideal on paper is not feasible due to their size3. The

output relation contains the following denominator:

k1k
2
2k4(k2y4(t)− S10k2 + y(1)(t))3. (6.29)

If this expression is added to the set of generators the only ideals obtained are the two described

above corresponding to an inappropriate reaction state. As such this expression can be con-

sidered non-zero. As previously argued the 265 monomials of this differential polynomial were

2 These generators are available on request (and at the following URL) in an electronic Maple file:
http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.

3 These generators and the following analysis are available on request (and at the following URL) in an
electronic Maple file: http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.
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linearly independent. Its coefficients were solved yielding the following five solutions:

{k1 = 0, k2 = 0}, {k1 = 0, k3 = 0}, (6.30a)

{k2 = 0, k3 = 0}, {k3 = 0, k4 = 0}, (6.30b)

{k1 = k1, k2 = k2, k3 = k3, k4 = k4, r1 = r1, r3 = r3} (6.30c)

The first four solutions are not in the set of feasible parameter values and thus can be eliminated.

The final solution is equivalent to p = p and thus the model corresponding to measurement of

Q is SGI.

The input-output relationship approach shows that measurement of either product is SGI. This

result is independent of the initial conditions used, as long as both initial substrate concentra-

tions and the total concentration of enzyme are non-zero; conditions which can be guaranteed

experimentally.

6.2.1.2 Differential algebra analysis of Mechanism (b) for the ping-pong model

The generators of the differential ideal equivalent to Mechanism (b) are Equations (6.23b)-

(6.23f), (6.23i)-(6.23j) and (6.23l) and the following expressions:

dE(t)

dt
+ k1E(t)S1(t)− r1ES1(t)− k4E

∗S2(t) + r4E(t)P (t) = 0, (6.31a)

dE∗S2(t)

dt
− k3E

∗(t)S2(t) + (r3 + k4)E
∗S2(t)− r4E(t)P (t) = 0, (6.31b)

dP (t)

dt
− k4E

∗S2(t) + r4E(t)P (t) = 0, (6.31c)

E∗(t) + E∗S2(t) + P (t)−Q(t) = 0. (6.31d)

Derivation of output relations for y1 to y3 and y5 to y8 proved computationally intractable. For

y4 the differential ideal was successfully decomposed into two ideals using the Rosenfeld_Groebner

algorithm in Maple. The subset of the generators, Equations (6.31a), (6.23c)-(6.23d), (6.31b),
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(6.23i)-(6.23k) and (6.31d), can be made (by appropriate substitutions) orthonomic and autore-

duced with respect to any ranking for which {E∗, S1, S2, y4} > {P} > {ES1, E, E∗S2, Q}.

This subset of the generators was successfully decomposed into two ideals obtained using the

full set described above. A subset of the left hand sides of the generators of the first of these

ideals is:

S1(t), ES1(t), Q(t)− S10, y4(t)− S10, E(t)− P (t) + (S10 − E0),

k4(E
∗(t) + S10 + P (t)) + P (1)(t) + r4P (t)(S10 − E0 − P (t)),

k4(S2(t)− S20 + P (t)) + P (1)(t) + r4P (t)(E0 − S10 + P (t)),

k4E
∗S2(t)− P (1)(t) + r4P (t)(S10 − E0 − P (t)).





(6.32)

The final generator, which has the leader P (2)(t), is not presented here due to its length4. The

generators above are sufficient to show that this ideal does not describe the required reaction

state. From the first four generators, S1 has been exhausted thus only the second half of the

reaction is dynamic.

Presenting the generators of the second ideal on paper is not feasible due to their size5. The

output relation contains the following denominator:

k22k4(k1(k2(y(t)− S10) + y
(1)
4 (t)))3. (6.33)

If this expression is added to the set of generators the only ideals obtained are the two described

above corresponding to an inappropriate reaction state. As such this expression can be con-

sidered non-zero. With this constraint the output relation can be manipulated as previously

described to eliminate the leader, y
(4)
4 (t). The result is a differential polynomial. Since the gen-

4 This generator is available on request (and at the following URL) in an electronic Maple file:
http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.

5 These generators and the following analysis are available on request (and at the following URL) in an
electronic Maple file: http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.
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erators are orthonomic and autoreduced the ideal is prime. Thus, by the argument presented in

Section 3.2.3.1, the 266 monomials of the differential polynomial are linearly independent and

their coefficients can be analyzed as previously described. The seven coefficients listed below

are sufficient to show this observation is SGI:

k21k
2
2k1

2
k2

2
(k1k4k3 − k3k1k4), (6.34a)

k21k
4
2k1

2
k2

4
(k1k2k4k3 − k3k1k2k4), (6.34b)

k31k
5
2k4k1

3
k2

5
k4E0(k1k2k3k4 − k1k2k3k4), (6.34c)

2k21k2k1
2
k2(k1k2k4k3(r4 − k1)− k3k1k2k4(k1 − r4)), (6.34d)

2k1k
3
2k1k2

3
(k3k1

2
k2

2
k4(k1k

2
2 + r4)− k21k

2
2k4k3(k1 + k3r4)), (6.34e)

k31k
4
2k1

3
k2

4




4(k2(k1 − r4) + k2(r4 − k1)) + 5k4(k3k2 − k2k3) +

+ 2(k2k2(k3 − k3) + k2k1
2
k3r4(r1 + k2)− k2k3k

2
1r4(r1 + k2)) +

+ 3(k2(k3 − r4) + k2(r4 − k3) + (k1k2 − k1k2))




, (6.34f)

k31k
5
2k4k1

3
k2

5
k4




(2E0 + 7S10 + S20)(k1k3 − k1k3) + (k1k2 − k1k2) +

+ (3E0 + S20 + 6S10)(k3r4 − k3r4) + (r4r1 − r4r1) +

+ (k2k3 − k2k3) + (r3r4 − r3r4) + (k1k4 − k1k4) +

+ (k1r3 − k1r3) + (k3k4 − k3k4) + (k3r1 − k3r1) +

+ (k2r4 − k2r4)




. (6.34g)

These coefficients were solved for the alternative unknown parameters yielding the following

seven solutions:

{k1 = 0, k2 = 0}, {k1 = 0, k3 = 0}, {k1 = 0, r4 = 0}, (6.35a)

{k2 = 0, k3 = 0}, {k3 = 0, k4 = 0}, {k1 = r4, k2 = 0, k4 = r1}, (6.35b)

{k1 = k1, k2 = k2, k3 = k3, k4 = k4, r1 = r1, r3 = r3, r4 = r4}. (6.35c)
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Note that the same solutions are obtained when all coefficients of the polynomial are solved.

The first six solutions do not lie in the set of feasible parameter values and thus are rejected.

The remaining solution (6.35c), p = p, indicates that the model corresponding to measurement

of Q alone is SGI. This analysis is not affected by the relabelling, Equation (6.16), although

some changes may need to be made to the ranking chosen. Thus when release of Q is reversible,

the model corresponding to measurement of P is SGI. Note that these results are independent

of initial substrate concentrations; as long as the substrate and enzyme concentrations are

non-zero. These conditions can be guaranteed experimentally.

6.2.2 Simple ordered model with simultaneous product release

The two substrate transient simple ordered model is now considered. Two product release

mechanisms were considered: irreversible product release (a), as previously described in Section

4.2.1, and reversible product release (b). A reaction scheme for Mechanism (b) is given by:

E + S1
k1−⇀↽−
r1

ES1

ES1 + S2
k2−⇀↽−
r2

ES1S2

ES1S2
k3−⇀↽−
r3

E + P





(6.36)

Setting r3 equal to zero in Equations (6.36) yields Mechanism (a). A Taylor series analysis of

these two mechanisms is presented below.

The state vector and initial conditions used were the same for both models:

x(t,p) = (E(t,p), S1(t,p), S2(t,p), ES1(t,p), ES1S2(t,p), P (t,p))T ,

x(0,p) = x0 = (E0, S10, S20, 0, 0, 0)
T .





(6.37)

Each mechanism gives rise to a different derivative of the state vector. For irreversible product
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release, Mechanism (a), the derivative was as previously stated, Equations (4.9) in Section 4.2.1.

Reversible product release requires the following modifications to these equations:

dE(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p) + k3ES1S2(t,p)− r3E(t,p)P (t,p), (6.38a)

dES1S2(t,p)

dt
= k2ES1(t,p)S2(t,p)− (k3 + r2)ES1S2(t,p) + r3E(t,p)P (t,p), (6.38b)

P (t,p)

dt
= k3ES1S2(t,p)− r3E(t,p)P (t,p). (6.38c)

Thus each reaction mechanism requires a different unknown parameter vector, given below:

pa = (k1, k2, k3, r1, r2)
T , (6.39)

pb = (k1, k2, k3, r1, r2, r3)
T , (6.40)

the subscript indicating to which mechanism the vector corresponds. Six output functions,

corresponding to individual measurement of each reaction species, were analyzed:

y1(t,p) = E(t,p), y2(t,p) = S1(t,p), y3(t,p) = S2(t,p),

y4(t,p) = ES1(t,p), y5(t,p) = ES1S2(t,p), y6(t,p) = P (t,p).





(6.41)

At least six non-zero Taylor series coefficients were calculated for each output function and

mechanism. For Mechanisms (a) and (b) the Jacobian matrices calculated were rank five and

six respectively for each observation; equal to the number of unknown parameters for each mech-

anism. As such by PRT both mechanisms are at least locally identifiable for the observations

considered.

Full Taylor series analyses of output functions y4 to y6 proved computationally intractable

for Mechanism (a); it was not possible to show that any individual parameters were globally

identifiable. For Mechanism (b) full analyses proved computationally intractable for y1 and y4
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to y6. However if enzyme concentration was observed it was possible to show that k1 and r1

are globally identifiable from the Taylor series coefficients below, Equations (6.42)-(6.45).

A full Taylor series analysis of each of the remaining observations, y1 to y3 for Mechanism

(a) and y2 to y3 for Mechanism (b), was completed. The first coefficient of the Taylor series

expansions of y2 and the first four of y1 and y4 at t = 0 are:

y1(0) = E0, y2(0) = S10, y4(0) = 0 (6.42)

y
(1)
1 (0) = −y

(1)
4 (0) = −k1E0S10 (6.43)

y
(2)
1 (0) = −y

(2)
4 (0)− k1k2E0S10S20 = k1E0S10(k1(E0 + S10) + r1) (6.44)

y
(3)
1 (0)− k1k2k3E0S10S20 = −y

(3)
4 (0) + k1k2E0S10S20(k1(E0 + S10) + k2S20 + r1 + r2) =

= −k1E0S10((k1(E0 + 2k1E0S10 + S10) + r1)(k1(E0 + S10) + r1) + k2r1S20) (6.45)

The second, third and fourth Taylor series coefficients for y2 are equivalent to those listed

above for y1. These coefficients were the same for both mechanisms. The following alternative

parameter vectors:

pa = (k1, k2, k3, r1, r2)
T , (6.46)

pb = (k1, k2, k3, r1, r2, r3)
T , (6.47)

were used as previously described in Section 3.2.1 to create simultaneous equations in the two

sets of parameters from the Taylor series coefficients derived. These equations were then solved

in Maple for the alternative parameters; showing that p = p. Thus these observations give rise

to SGI models.

Where a reaction is known to be reversible it is natural to study the reverse reaction by choosing

initial non-zero product concentrations. A structural identifiability analysis of this case was
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conducted. The new initial conditions used are:

x0 = (E0, 0, 0, 0, 0, P0)
T . (6.48)

An experiment where substrate concentrations were also non-zero could also be considered but

has not been in this work. For Mechanism (a) the computable Taylor series expansion at t = 0

had only one non-zero coefficient, which contained none of the unknown parameters. As such it

was not possible to complete a Taylor series analysis using these initial conditions. However for

Mechanism (b) it was possible to complete a Taylor series analysis; the first four Taylor series

coefficients at t = 0 are:

y6(0) = P0, (6.49)

y
(1)
6 = −r3E0P0, (6.50)

y
(2)
6 = r3E0P0(r3(E0 + P0) + k3), (6.51)

y
(3)
6 = −k3r3E0P0(k3 + r2 + r3(E0 + P0))− r23E0P0(k3 + r3(E0 + P0)) −

− 2r33E
2
0P

2
0 − r23E

2
0P0(k3 + r3(E0 + P0)). (6.52)

Note the similarity between the coefficients above and those found for measurement of S1 under

the other set of initial conditions when P0, r3, k3 and r2 are relabelled as S1, k1, r1 and k2

respectively. The coefficients were analysed as previously described and it was shown that

p = p. As such measurement of product concentration gives rise to a model which is SGI for

the initial conditions used for Mechanism (b).

The results of this analysis are summarised in Table 6.2. It was not possible to complete a

Taylor series analysis for several output functions, most significantly y6 for Mechanism (a);

measurement of P being a common experimental procedure. As such the input-output rela-

tionship approach was attempted for these two mechanisms. Derivation of the output relations
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Simple ordered model 1 Reversible product release stages

Measurement None One

E SGI ASLI, {k1, r1}

S1 SGI SGI

ES1 SGI SGI

S2 ASLI ASLI

ES2 ASLI ASLI

P SGI‡ SGI†

Table 6.2: Summary of the structural identifiability analysis results for the two substrate transient
simple ordered model with simultaneous product release. Results are either: SGI, struc-
turally globally identifiable; ASLI, at least structurally locally identifiable; or CI, analysis
was computationally intractable. In addition a subset of globally identifiable parameters
are stated in some cases. Results marked by a † were obtained for the alternative initial
conditions, Equation (6.48). Results marked by a ‡ can be obtained using the input-
output relationship approach, and require only that enzyme and substrate concentrations
be initially non-zero.

proved computationally intractable for Mechanism (b); the results for Mechanism (a) in the

following section.

6.2.2.1 Differential algebra analysis for Mechanism (a) for the first simple ordered model

The following expressions are the generators of a differential ideal equivalent to Mechanism (a):

dE(t,p)

dt
+ k1E(t,p)S1(t,p)− r1ES1(t,p)− k3EP (t,p) = 0, (6.53a)

dS1(t,p)

dt
+ k1E(t,p)S1(t,p)− r1ES1(t,p) = 0, (6.53b)

dES1(t,p)

dt
− k1E(t,p)S1 + r1ES1 + k2ES1(t,p)S2(t,p)− r2ES1S2(t,p) = 0, (6.53c)

dS2(t,p)

dt
+ k2ES1(t,p)S2(t,p)− r2ES1S2(t,p) = 0, (6.53d)

dES1S2(t,p)

dt
− k2ES1(t,p)S2(t,p) + (r2 + k3)ES1S2(t,p) = 0, (6.53e)

dP (t,p)

dt
− k3EP (t,p) = 0, (6.53f)

E0− E(t,p)− ES1(t,p)− ES1S2(t,p) = 0, (6.53g)

S10 − S1(t,p)− ES1(t,p)− ES1S2(t,p)− P (t,p) = 0, (6.53h)
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S20 − S2(t,p)− ES1S2(t,p)− P (t,p) = 0. (6.53i)

Derivation of an output relation for y1 to y5 proved computationally intractable. For y6, cor-

responding to measurement of product, the differential ideal was successfully decomposed into

two ideals using the Rosenfeld_Groebner algorithm in Maple. The subset of the generators,

Equations (6.53c) and (6.53e)-(6.53i), can be made orthonomic and autoreduced with respect

to any ranking for which {E, S1, S2, y6} > {ES1, ES1S2, P}. This subset of the generators

was successfully decomposed into two ideals equivalent to those previously found. The left hand

side of the generators of the first ideal are:

E + ES1 − E0, S1 + ES1 − (S10 − S20), S2, ES1S2, y6 − S20,

ES
(1)
1 + k1(ES1(E0 + (S10 − S20)− ES1)− E0(S10 − S20)) + r1ES1.





(6.54)

From the fourth and fifth elements of this ideal the concentration of S2 and ES1S2 must be

zero. The sixth and seventh elements indicate that the concentration of product is always equal

to that of the initial concentration of S2. Based on these observations this ideal describes a

model state in which the second substrate has been consumed while some of the first substrate

remains. The reversible association and dissociation of the first substrate to and from the

enzyme is described by the first, second and seventh elements of the ideal. This ideal does not

describe the required reaction state and can be eliminated practically if it is known that the

concentration of the second substrate is non-zero. This can be guaranteed experimentally.

Presenting the generators of the second ideal on paper is not feasible due to their size6. Several

generators contain a denominator:

y
(1)
6 − k3(S20 − y6) or equivalently P (1) = k3(S20 − P ), (6.55)

6 These generators and the following analysis are available on request (and at the following URL) in an
electronic Maple file: http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.
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which, if equal to zero, implies that the reaction state is described by the ideal above. As such

this denominator can be considered non-zero. With this constraint it is possible to eliminate

the leader of the output relation, y
(3)
6 , by substitution of the alternative unknown parameter

vector, Equation (6.46), and obtain a differential polynomial as described in Section 6.2.1.1.

Since the generators are orthonomic and autoreduced the ideal is prime. Thus, by the argument

presented in Section 3.2.3.1, the 34 monomials of this differential polynomial can be considered

linearly independent. These five coefficients of the polynomial are sufficient to establish that

the model is SGI:

k23k3
2
(k2k1 − k2k1), (6.56a)

k23k3
2
(k2k3(k2 − k1) + k2k3(k1 − k2)), (6.56b)

k2k3k2k3((k2k3 − k3k2) + 2(k3k1 − k3k1)), (6.56c)

k2k3
3
k2k

3
3S

2
20((k3 − k3) + E0S10(k1 − k1) + S20(k2 − k2) + (r1 − r1) + (r2 − r2)), (6.56d)

k2k2




S20(k3
3
k1k2 − k33k1k2)− k23k1k3(k2(E0 + S10) + 2(k2S20 + r2)) +

+ k3k3
2
(k3(2(k1 − k1) + (k2 − k2)) + k1(k2(E0 + S10) + 2(k2S20 + r2)))




. (6.56e)

These coefficients were solved for the alternative parameter vector using Maple to obtain the

following four solutions:

{k1 = 0, k2 = 0}, {k2 = 0, k3 = 0}, {k1 = 0, k3 = 0}, (6.57)

{k1 = k1, k2 = k2, k3 = k3, r1 = r1, r2 = r2}. (6.58)

Note that the same solutions are obtained when all coefficients of the polynomial are solved

simultaneously. The first three solutions do not lie within the set of feasible parameter values,

as such they are rejected. Thus a single solution remains, p = p, showing that with this

observation the model is SGI. These results are independent of initial substrate concentrations;
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as long as initial concentrations of substrate and enzyme concentrations are non-zero. These

conditions can be guaranteed experimentally.

6.2.3 Simple ordered model with sequential product release

The release of products from the ternary complex is not necessarily simultaneous. In this section

models for sequential product release are analysed. The models used are created by extending

the model used previously, described by Equations (4.9) in Section 4.2.1. Four product release

mechanisms are considered: fully irreversible (a), reversible for the first product (b), reversible

for the second product(c), and fully reversible (d). A reaction scheme for Mechanism (d) is

given by:

E + S1
k1−⇀↽−
r1

ES1

ES1 + S2
k2−⇀↽−
r2

ES1S2

ES1S2
k3−⇀↽−
r3

EP +Q

EP
k4−⇀↽−
r4

E + P





(6.59)

Mechanisms (c), (b) and (a) can then be obtained from Equations (6.59) by setting r3, r4 or

both equal to zero respectively. A Taylor series analysis of each of these mechanisms is presented

below.

The state vector and initial conditions are the same for all models:

x(t,p) =

= (E(t,p), S1(t,p), S2(t,p), ES1(t,p), ES1S2(t,p), Q(t,p), EP (t,p), P (t,p))T ,

x(0,p) = x0 = (E0, S10, S20, 0, 0, 0, 0, 0)
T .





(6.60)

However each mechanism gives rise to a different derivative of the state vector. For irreversible

product release, Mechanism (a), this derivative is as stated previously, Equations (4.9), with
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the following additions and exceptions:

dE(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p) + k4EP (t,p), (6.61a)

dEP (t,p)

dt
= k3ES1S2(t,p)− k4EP (t,p), (6.61b)

dQ(t,p)

dt
= k3ES1S2(t,p), (6.61c)

dP (t,p)

dt
= k4EP (t,p). (6.61d)

If the first product release stage is reversible, Mechanism (b), the following additional changes

were made:

dES1S2(t,p)

dt
= k2ES1(t)S2(t)− (r2 + k3)ES1S2(t) + r3EP (t)(t)Q(t), (6.62a)

dEP (t,p)

dt
= k3ES1S2(t,p)− k4EP (t,p)− r3EP (t)Q(t), (6.62b)

dQ(t,p)

dt
= k3ES1S2(t,p)− r3EP (t)S2(t)Q(t). (6.62c)

Similarly if the second product release state is reversible, Mechanism (c), Mechanism (a) was

modified as follows:

dE(t,p)

dt
= −k1E(t,p)S1(t,p) + r1ES1(t,p) + k4EP (t,p)− r4E(t)P (t), (6.63a)

dEP (t,p)

dt
= k3ES1S2(t,p)− k4EP (t,p) + r4E(t)P (t), (6.63b)

dP (t,p)

dt
= k4EP (t,p)− r4E(t)P (t). (6.63c)

Finally for a fully reversible model, Mechanism (d), the following modifications to Mechanism

(a) were used:

E′(t,p) = −k1E(t,p)S1(t,p) + r1ES1(t,p) + k4EP (t,p)− r4E(t)P (t), (6.64a)

ES1S
′
2(t,p) = k2ES1(t)S2(t)− (r2 + k3)ES1S2(t) + r3EP (t,p)Q(t,p), (6.64b)
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EP ′(t,p) = k3ES1S2(t,p)− r3EP (t,p)Q(t,p)− k4EP (t,p) + r4E(t)P (t), (6.64c)

Q′(t,p) = k3ES1S2(t,p)− r3EP (t,p)Q(t,p), (6.64d)

P ′(t,p) = k4EP (t,p)− r4E(t)P (t). (6.64e)

Each reaction mechanism had a different unknown parameter vector:

pa = (k1, k2, k3, k4, r1, r2)
T , (6.65)

pb = (k1, k2, k3, k4, r1, r2, r3)
T , (6.66)

pc = (k1, k2, k3, k4, r1, r2, r4)
T , (6.67)

pd = (k1, k2, k3, k4, r1, r2, r3, r4)
T , (6.68)

the subscripts indicating to which mechanism the vector corresponds. Eight output functions

corresponding to individual measurement of each reaction species, were analysed:

y1(t,p) = E(t,p), y2(t,p) = S1(t,p), y3(t,p) = S2(t,p),

y4(t,p) = ES1(t,p), y5(t,p) = ES1S2(t,p), y6(t,p) = Q(t,p),

y7(t,p) = EP (t,p), y8(t,p) = P (t,p).





(6.69)

For Mechanisms (a) and (b) all of these observations were shown to be at least locally identifiable

by PRT. This test proved computationally intractable for y7 to y8 for Mechanism (c) and y6 to

y8 for Mechanism (d). The remaining observations were shown to be at least locally identifiable

by PRT.

Full Taylor series analyses proved computationally intractable for y3 to y8 for Mechanisms (a)

and (b) and all output functions except y2 for Mechanisms (c) and (d). For all mechanisms

k1 was shown to be globally identifiable for observation of ES1 from the first non-zero Taylor
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series coefficient of this expansion, equivalent up to a change of sign to Equation (6.71) below.

In addition for Mechanisms (c) and (d) it was possible to show that k1, r1 and k2 are globally

identifiable for observation of E, using three of the Taylor series coefficients, Equations (6.71)-

(6.73), below.

For y1 to y2 for Mechanisms (a) and (b) and y2 for Mechanisms (c) and (d) it was possible to

complete a full Taylor series analysis. The first four Taylor series coefficients for each mechanism

are:

y1(0) = E0, y2(0) = S10, (6.70)

y
(1)
1 (0) = y

(1)
2 (0) = −k1E0S10, (6.71)

y
(2)
1 (0) = y

(2)
2 (0) = k1E0S10(k1(E0 + S10) + r1), (6.72)

y
(3)
1 (0) = y

(3)
2 (0) =

= −k1E0S10((k1(E0 + S10) + r1)(k1(E0 + S10) + r1) + 2k21E0S10 + k2r1S20). (6.73)

The Taylor series coefficients were analysed as previously described using the alternative un-

known parameter vectors:

pa = (k1, k2, k3, k4, r1, r2)
T , (6.74)

pb = (k1, k2, k3, k4, r1, r2, r3)
T , (6.75)

pc = (k1, k2, k3, k4, r1, r2, r4)
T , (6.76)

pd = (k1, k2, k3, k4, r1, r2, r3, r4)
T , (6.77)

showing that in these cases p = p. As such these observations are SGI.

As for the previous model it is possible to consider an alternative experimental setup designed
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to study the reverse reaction. Appropriate initial conditions are as follows:

x0 = (E0, 0, 0, 0, 0, Q0, 0, P0). (6.78)

For Mechanisms (a) and (b) the expansions of y6 to y8 yielded at most one non-zero Taylor

series coefficient, which contained no unknown parameters. As such no further analysis was

possible for these initial conditions. For Mechanism (c) two parameters, k4 and r4 were shown

to be globally identifiable for observation of EP and P . The Taylor series coefficients used were

equivalent up to a change of sign to those below, Equations (6.80)-(6.81). Measurement of Q

yielded a single non-zero Taylor series coefficient which contained no unknown parameters. For

Mechanism (d) the observations y6 to y8 were shown to be at least locally identifiable using

PRT. Further analysis proved computationally intractable for y6. The parameter r4 was shown

to be SGI for y7 using the second Taylor series coefficient of its expansion, which is equivalent

to Equation (6.80).

For measurement of P a full Taylor series analysis was completed. The first four Taylor series

coefficients are below:

y8(0) = P0, (6.79)

y
(1)
8 = −r4E0P0, (6.80)

y
(2)
8 = r4E0P0(r4(E0 + P0) + k4), (6.81)

y
(3)
8 (0) = −r4E0P0(r4(E0 + P0) + k4)(r4(E0 + P0) + k4 + 2r24E0P0 + k4r3Q0). (6.82)

Note that these coefficients are equivalent to those found for measurement of enzyme and first

substrate, Equations (6.70)-(6.73), when relabelled as follows:

r4 ↔ k1, k4 ↔ r1, r3 ↔ k2, P0 ↔ S10, Q0 ↔ S20. (6.83)
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The Taylor series coefficients were analysed using the alternative parameter vector defined

above, Equation (6.77), as previously described. It was found that p = p; thus with the

observation of P this model is SGI.

Simple ordered model 2 Reversible product release stages

Measurement None First Second Both

E SGI SGI ASLI, {k1, r1, k2} ASLI, {k1, r1, k2}

S1 SGI SGI SGI SGI

ES1 ASLI, {k1} ASLI, {k1} ASLI, {k1} ASLI, {k1}

S2 ASLI ASLI ASLI ASLI

ES2 ASLI ASLI ASLI ASLI

Q SGI‡ ASLI ASLI ASLI†

EP ASLI ASLI CI, {k4, r4}
† ASLI†, {r4}

†

P SGI‡ SGI‡ CI, {k4, r4}
† SGI†

Table 6.3: Summary of the structural identifiability analysis results for the two substrate transient
simple ordered model with sequential product release. Results are either: SGI, structurally
globally identifiable; ASLI, at least structurally locally identifiable; or CI, analysis was
computationally intractable. In addition a subset of globally identifiable parameters are
stated in some cases. Results marked by a † were obtained for the alternative initial
conditions, Equation (6.78). Results marked by a ‡ can be obtained using the input-
output relationship approach, and require only that enzyme and substrate concentrations
be initially non-zero.

The results of this analysis are summarised in Table 6.3. It was not possible to determine

whether with observation of either product the model was SGI for Mechanisms (a)-(c), as

such an input-output relationship analysis was attempted. Mechanism (d) was also analysed

to provide basis for comparison. However derivation of the necessary output functions for

Mechanisms (c) and (d) proved computationally intractable. The results for Mechanisms (a)

and (b) are presented in the following sections.
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6.2.3.1 Differential algebra analysis for Mechanism (a) of the second simple ordered model

The following expressions are the generators of a differential ideal equivalent to Mechanism (a),

dependence on p is not explicitly noted for notational convenience:

dE(t)

dt
+ k1E(t)S1(t)− r1ES1(t)− k4EP (t) = 0, (6.84a)

dS1(t)

dt
+ k1E(t)S1(t)− r1ES1(t) = 0, (6.84b)

dES1(t)

dt
− k1E(t)S1 + r1ES1 + k2ES1(t)S2(t)− r2ES1S2(t) = 0, (6.84c)

dS2(t)

dt
+ k2ES1(t)S2(t)− r2ES1S2(t) = 0, (6.84d)

dES1S2(t)

dt
− k2ES1(t)S2(t) + (r2 + k3)ES1S2(t) = 0, (6.84e)

dEP (t)

dt
− k3ES1S2(t) = 0, (6.84f)

dQ(t)

dt
− k3ES1S2(t) = 0, (6.84g)

dP (t)

dt
− k4EP (t) = 0, (6.84h)

E0 − E(t)− ES1(t)− ES1S2(t)− EP (t) = 0, (6.84i)

S10 − S1(t)− ES1(t)− ES1S2(t)− EP (t)− P (t) = 0, (6.84j)

S20 − S2(t)− ES1S2(t)− EP (t)− P (t) = 0, (6.84k)

Q(t)− EP (t)− P (t) = 0. (6.84l)

Derivation of an output relation for y1 to y4 proved computationally intractable. For y5 and y8,

the differential ideal was successfully decomposed into two ideals using the Rosenfeld_Groebner

algorithm in Maple. However, for y5 and y6, no autoreduced subset of these generators could

be decomposed using the algorithm. As such these measurements must also be considered

computationally intractable. For y8 the subset, Equations (6.84c) and (6.84e)-(6.84k), was

used. It can be made orthonomic and autoreduced with respect to any ranking such that

{E, S1, S2, y8}> {ES1, ES1S2, EP, P, Q}. The Rosenfeld_Groebneralgorithm decomposes

it into two ideals equivalent to those previously obtained. The left hand side of the generators
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of the first of these ideals are:

ES1S2(t), Q(1)(t), EP (t)− (S20 − y8(t)), P (t)− y8(t),

y
(1)
8 (t)− k4(S20 − y8(t)),

ES
(1)
1 (t)− k1ES1(t)

2 − ES1(t)(k1(2S20 − E0 − S10 − y8(t))− r1)−

− k1(S20 − E0 − y8(t))(S20 − S10).





(6.85)

This ideal, as that found in Section 6.2.2.1, describes an end stage in the reaction mechanism.

From Equation (6.84k) and the first and second expressions above, the concentrations of S2 and

ES1S2 are always zero. Thus the ideal corresponds to a situation where S2 has been exhausted

to create EP leaving two dynamic sub-reactions: one in which enzyme and the first substrate

combine and dissociate; and another in which EP breaks down to form P . Thus this ideal does

not describe the required reaction state and can be eliminated as a possibility where it is known

that the concentration of the second substrate is non-zero.

Presenting the generators of the second ideal on paper is not feasible due to their size7. Several

generators contain the denominator:

y(2)(t) + (k3 + k4)y
(1)(t) + k3k4(y(t)− S20). (6.86)

If this equation equals zero then the reaction state is described by the ideal above, Equa-

tion (6.85). This was shown by incorporating it into the set of generators and reapplying

the Rosenfeld_Groebner algorithm. The single resulting ideal was that above. As such this

denominator can be considered non-zero. With this constraint it is possible to eliminate the

leader of the output relation, y
(4)
8 , by substitution of the unknown parameter vector, Equation

(6.74), and obtain a differential polynomial as described in Section 6.2.1.1. Since the genera-

7 These generators and the following analysis are available on request (and at the following URL) in an
electronic Maple file: http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.
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tors are orthonomic and autoreduced the ideal is prime. Thus, by the argument presented in

Section 3.2.3.1, the 79 monomials of this differential polynomial are linearly independent. The

six coefficients of this polynomial below are sufficient to show that the observation is SGI:

k2k2(k
2
3k

2
4k2k1 − k1k2k3

2
k4

2
), (6.87a)

k23k
2
4k3

2
k4

2
(k2k1 − k1k2), (6.87b)

k2k
3
3k

3
4k2k3

3
k4

3
(k1k2 − k1k2), (6.87c)

k2 ∗ k
3
3 ∗ k

3
4k2k3

3
k4

3
(k1k2(k3 + k4)− k1k2(k3 + k4)), (6.87d)

k2k
3
3k

3
4k2k3

3
k4

3
S2
20




(k1 − k1)(E0 + S10) + (k2 − k2)S20 + (k3 − k3) +

+ (k4 − k4) + (r1 − r1) + (r2 − r2)


 , (6.87e)

k2k3k4k2k3k4




k2k3k4(k1(E0 + S10 + 2S20) + k3 + k4) + 2k1k3k4(k3 + k4 + r2)−

− k3k4k2(k1(E0 + S10 + 2S20) + k3 + k4)− 2k3k4k1(k3 + k4 + r2)


+

+ k2k2S20(k1k2k3
3
k4

3
− k1k2k

3
3k

3
4). (6.87f)

These coefficients were solved for the alternative parameter vector using Maple to obtain the

following six solutions:

{k1 = 0, k2 = 0}, {k1 = 0, k3 = 0}, {k1 = 0, k4 = 0}, (6.88a)

{k2 = 0, k3 = 0}, {k2 = 0, k4 = 0}, (6.88b)

{k1 = k1, k2 = k2, k3 = k3, k4 = k4, r1 = r1, r2 = r2}. (6.88c)

Note that the same solutions are obtained when all coefficients of the polynomial are solved

simultaneously. The first five solutions do not lie within the set of feasible parameter values,

as such they are rejected. Thus a single solution remains, p = p, showing that with this

measurement the model is SGI.
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For y7, denoted y7, the subset, Equations (6.84c), (6.84e)-(6.84g) and (6.84i)-(6.84l), were used.

They can be made orthonomic and autoreduced with respect to any ranking such that

{E, S1, S2, P, y8} > {ES1, ES1S2, EP, Q} since −EP (t)−P (t) can be replaced with Q(t)

in Equations (6.84j) and (6.84k). The Rosenfeld_Groebner algorithm decomposes this subset

into three ideals. The left hand sides of the generators of the first two ideals are:

ES1(t), ES1S2(t), k4EP (t)− P (1)(t), Q(t)− S10,

P (2)(t) + k4P
(1)(t), y7(t)− S10





(6.89)

ES1S2(t), k4EP (t)− P (1)(t), Q(t)− S20, P (2)(t) + k4P
(1)(t), y7(t)− S20,

k4ES
(1)
1 (t)− k1ES2

1(t) + k1(k4E0S20 + P (1)(t)(S10 − S20)) +

+ S20ES1(t)(k1(k4(E0 + S10 − S20 − E0S10)− k1P
(1)(t)) + r1k4).





(6.90)

These ideals, as that above, describe possible end stages in the reaction mechanism. The first

relation in both cases requires that the concentration of enzyme substrate complex is always

zero. As such these ideals do not describe the required reaction state and can be eliminated as

previously observed.

Presenting the generators of the third ideal on paper is not feasible due to their size8. The

output relation contains a factorisable denominator; the two components of which are below:

y
(1)
7 (t) + k3(y7(t)− S20), (6.91)

k1k2k3




S10S20k2k
2
3 − k2k

2
3y7(t)(S10 + S20) + k23k2y7(t)

2 + 2k2k3y7(t)y
(1)
7 (t) +

+ k2(y
(1)
7 )2 − k3y

(1)
7 (t)(k2(S10 + S20) + k3 + r2)− k3y

(2)
7


 . (6.92)

When one or both of these expressions equal zero the reaction state is described by one of the

8 These generators and the following analysis are available on request (and at the following URL) in an
electronic Maple file: http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.
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ideals above. This was shown by incorporating each into the set of generators and reapplying

the Rosenfeld_Groebner algorithm resulting in one or both of the ideals above being obtained.

As such these factors of the denominator can be considered non-zero. With this constraint

it is possible to eliminate the leader of the output relation, y
(4)
7 (t), as described in Section

6.2.1.1. Since the generators are orthonomic and autoreduced the ideal is prime. Thus, by the

argument presented in Section 3.2.3.1, the such the 387 monomials of the output relation are

linearly independent. The coefficients of the polynomial were solved to obtain the following

four solutions for the alternative parameters:

{k1 = 0, k2 = 0}, {k1 = 0, k3 = 0}, {k2 = 0, k3 = 0}, (6.93a)

{k1 = k1, k2 = k2, k3 = k3, k4 = k4, r1 = r1, r2 = r2} (6.93b)

The first three solutions do not lie on the set of feasible parameter values, as such they are

rejected. Thus a single solution remains, p = p, showing that with this observation the model

is SGI.

Thus using the input-output relationship approach it is possible to show that observation of

either product is SGI. This result is independent of initial conditions, as long as enzyme and

substrate concentrations are non-zero. This can be guaranteed experimentally.

6.2.3.2 Differential algebra analysis of Mechanism (b) for the second simple ordered model

The generators of the differential ideal corresponding to Mechanism (b) are Equations (6.84a)-

(6.84d), (6.84h)-(6.84l) and the following:

ES12(t)

dt
− k2ES1(t)S2(t) + (r2 + k3)ES1S2(t)− r3EP (t)Q(t) = 0, (6.94a)

P (t)

dt
− k3ES1S2(t) + r3EP (t)Q(t) = 0, (6.94b)

dQ(t)

dt
− k3ES12(t) + r3EP (t)Q(t) = 0. (6.94c)
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Derivation of an output relation for y1 to y7 proved computationally intractable. For y8, the

differential ideal was successfully decomposed into two ideals using the Rosenfeld_Groebner

algorithm in Maple. For y8 the subset, Equations (6.84c), (6.94a)-(6.94b) and (6.84h)-(6.84l),

was used. It can be made orthonomic and autoreduced with respect to any ranking such

that {E, S1, S2, Q, y8} > {ES1, ES1S2, EP, P}. The Rosenfeld_Groebner algorithm

decomposes it into two ideals equivalent to those previously obtained. The left hand side of the

generators of the first of these ideals are:

E(t) + ES1(t)− E0, S1(t) + ES1(t) + (S20 − S10), S2(t), ES1S2(t), EP (t),

Q(t)− S20, P (t)− S20, y8(t)− S20,

ES
(1)
1 (t) + k1E0(S20 − S10) + ES1(t)(k1(E0 + S10 − S20) + r1 − k1ES1(t)),





(6.95)

From the third generator above, this ideal corresponds to a reaction state where the second

substrate has been exhausted. The non-constant generators above indicate association and

dissociation of the first substrate from the enzyme. As such this ideal does not describe the

required reaction state and can be eliminated as previously observed in Section 6.2.2.1.

Presenting the generators of the third ideal on paper is not feasible due to their size9. Several

generators have the following denominator:

k2k3k
2
4(k4y

(2)
8 (t) + k4y

(1)
8 (t)(k3(1− S20) + k4 + r3y8(t)) + r3(y

(1)
8 (t))2 + k3k

2
4y8(t)) (6.96)

When this equation was included as one of the generators of the differential ideal the

Rosenfeld_Groebner algorithm generated only one ideal, that shown above Equations (6.95).

As such this equation can be considered non-zero. With this constraint it is possible to eliminate

the leader of the output relation, y
(4)
8 , as described in Section 6.2.1.1. Since the generators are

9 These generators and the following analysis are available on request (and at the following URL) in an
electronic Maple file: http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2005/daniel bearup.
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orthonomic and autoreduced the ideal is prime. Thus, by the argument presented in Section

3.2.3.1, the 171 coefficients of the differential polynomial are linearly independent. The seven

coefficients of the polynomial listed below are sufficient to show that with this observation the

model is SGI:

k3k
6
4k3

2
k4

6
(k2k1 − k2k1), (6.97a)

k2k
4
4k2k4

4
(k23k

2
4k1k2 − k1k2k3

2
k4

2
), (6.97b)

k2r3k2r3(k
2
3k

5
4k1k2r3

3 − k1k2r
3
3k3

2
k4

5
), (6.97c)

k2k
3
3k

7
4k2k3

3
k4

7
E0(k1k2k3k4 − k1k2k3k4), (6.97d)

k2k
4
4r3k2k4

4
r3(k

2
3k

2
4k1k2r3

3 − k1k2r
3
3k3

2
k4

2
), (6.97e)

k2k3k
7
4k2k3

3
k4

7
S2
20




(E0 + S10)(k1 − k1) + S20(k2 − k2) + (k3 − k3) +

+ (k4 − k4) + (r1 − r1) + (r2 − r2)


 , (6.97f)

k2k
7
4k

3
3k2k4

7
k3

3




(k1r2r3 − k1r2r3) + (3(E0 + S20) + S10)(k1k2r3 − k1k2r3) +

+ (k1k2k3 − k1k2k3) + (k1k2k4 − k1k2k4)


+

+ k2k
2
3k

6
4k2k3

2
k4

6
E0(k1k2k

2
3k

2
4r3 − r3k1k2k3

2
k4

2
). (6.97g)

These coefficients were solved for the alternative parameter vector in Maple to obtain the

following seven solutions:

{k1 = 0, k2 = 0}, {k1 = 0, k3 = 0}, {k1 = 0, k4 = 0}, (6.98a)

{k2 = 0, k3 = 0}, {k2 = 0, k4 = 0}, {k4 = 0, r3 = 0}, (6.98b)

{k1 = k1, k2 = k2, k3 = k3, k4 = k4, r1 = r1, r2 = r2, r3 = r3}. (6.98c)

Note that the same solutions are obtained when all coefficients of the polynomial are solved.

The first six solutions do not lie in the set of feasible parameter values and are rejected. The
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sole remaining solution is p = p showing that with observation of P the model is SGI. The

result is independent of initial conditions under the conditions stated in the previous section.

6.3 Parameter estimation using pre-steady state data

In Sections 5.3.1 and 5.4.1 parameters were estimated from time course data collected over a

steady state time frame. The analysis above considers transient models and as such is most

applicable to parameter estimation based on data collected over a pre-steady state time scale.

Using rapid mixing of reaction components specifically stopped-flow (Section 2.4.7) such time

courses were collected for the reactions catalysed by MurB and Lactate dehydrogenase (LDH).

It was not feasible to collect similar data for the reactions catalysed by MurA and MurC-F

since they are monitored using coupled assays (Sections 5.3 and 5.5-5.7) and the MurE work of

Anne Blewett [110]. Deconvolution of the required reaction kinetics from those of the coupled

assays may be possible, but was not considered in this project. The reactions catalysed by MurB

(Figure 2.4) and LDH (Figure 2.1) were monitored by measurement of the change of absorbance

due to oxidation of NADPH or NADH respectively. Since these species are substrates of their

respective enzymes no deconvolution was required in this case.

The kinetics of LDH are not directly relevant to the overarching problems investigated in this

project. It is however available in large amounts and as such was used to test the viability of the

proposed techniques. The results of this work are presented in the next section. The results of

experiments using MurB are then presented. These results are not comprehensive. The scarcity

of MurB limited the range of initial conditions which could be considered. Furthermore the

absorbance change in the LDH reaction is not ideally placed for application of this technique.
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6.3.1 Lactate dehydrogenase

Lactate dehydrogenase has been extensively studied and is fully kinetically characterised [180].

As such it is an ideal test-bed for development of direct parameter estimation from stopped

flow data, since the mechanism is already well understood and results can be compared to those

previously obtained.

LDH catalyses the conversion of NADH and pyruvate to lactate and NAD+ via an ordered bi

bi mechanism [181] given by:

E+NADH ⇌ ENADH+Pyruvate ⇌ ENADH
Pyr ⇌ ENAD+

Lac ⇌ ENAD+

+Lactate ⇌ E+NAD+

This mechanism is slightly more complex than any that have been modelled here however

the simple ordered mechanism with sequential reversible product release is a reasonably close

approximation. The primary characterisation techniques used were stopped flow absorbance

and fluorescence spectroscopy [180], although a number of other techniques including isothermal

calorimetry were also used [182]. Characterisation proceeded by dissection of the mechanism,

that is experimental conditions were chosen so as to limit which reaction steps would influence

the measured data [183, 184].

Lactate dehydrogenase was obtained from Sigma-Aldrich (Sigma-Aldrich, St Louis, USA). Three

sets of initial conditions were used: 15µM NADH, pyruvate and LDH (1); 20µM NADH and

pyruvate, 2.5µM LDH (2); and 140µM NADH and pyruvate, 2.5µM LDH(3). For each set of

initial conditions between eight and fifteen individual time courses were collected; the mean

concentration at each time point was calculated from these sets. Reactions were monitored by

following change of absorbance due to NADH oxidation. Initially data collection was undertaken

at 37◦C. However, under these conditions, measurements indicated that all NADH had been

oxidised within the 2.5ms dead time of the instrument. The temperature was reduced to 20◦C

and viable time courses were obtained. Parameter estimation using these time courses and the
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Levenburg-Marquardt algorithm, in Copasi [159], was attempted as described in Section 3.4.

Typical results are presented in Figure 6.1.

It is known that the absorbance change associated with NADH occurs at the central step of the

reaction mechanism [180]. This corresponds to measurement of the concentration of free NADH

and all enzyme-NADH complexes. This is not one of the measurement possibilities which has

been analysed. Consequently parameter estimation was undertaken assuming that substrate

concentration could be directly measured for the model with sequential product release. Since

this model is SGI, parameter estimation can be expected to yield meaningful results.

However the results indicate that none of the time courses measured reliable estimation of a

significant number of the parameters (Figure 6.1). In all cases the standard errors associated

with most of the parameter estimates is greater than the estimated value of the parameter.

Which parameters can be estimated to a reasonable degree of accuracy appears to be partially

dependent on the initial conditions used. The early parameters being best determined when

similar concentrations of enzyme and substrate are used, for example.

Time courses simulated using parameters obtained from the available literature did not corre-

spond well to the experimental data obtained [180, 184, 185]. Simulations of parameters based

on the fits obtained in this work suffered from a similar problem. As such this discrepancy is

most likely the result of assuming that the absorbance change occurs at the first step of the

mechanism. Consequently it would be useful to construct a model corresponding to the exper-

imental case, where the concentration of NADH and all complexes containing it are monitored

as one value. This has not, as yet, been attempted.

The model used here assumes that concentration of free NADH can be measured. Given that

a fluorescence change occurs on binding of NADH to LDH this is viable [180]. As such this

case was studied further using simulated data. Time courses were simulated using the following

parameter vector p = (k1, r1, k2, r2, k3, r3, k4, r4)
T =
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k1 (µM−1s−1) 2.23 0.060 RMSE

r1 (s−1) 403 2700 0.336

k2 (µM−1s−1) 10000 29000 SD

r2 (s−1) 344 2700 0.336

k3 (s−1) 64.5 450

r3 (µM−1s−1) 4.26 5.2

k4 (s−1) 69.1 490
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Parameter EV RMSE Fit Stats

k1 (µM−1s−1) 125 100 RMSE

r1 (s−1) 321 675 0.199

k2 (µM−1s−1) 10000 8800 SD

r2 (s−1) 75.3 137 0.199

k3 (s−1) 58.5 2.26

r3 (µM−1s−1) 37.7 17

k4 (s−1) 536 270

r4 (µM−1s−1) 39.1 32
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Parameter EV RMSE Fit Stats

k1 (µM−1s−1) 1000 1400 RMSE

r1 (s−1) 3660 9300 1.00

k2 (µM−1s−1) 1160 1700 SD

r2 (s−1) 91.4 640 1.00

k3 (s−1) 264 9.5

r3 (µM−1s−1) 0.1 0.52

k4 (s−1) 2580 861

r4 (µM−1s−1) 632 920

Figure 6.1: Results of numerical fitting to pre-steady state time courses of the LDH catalysed reac-
tion. The graphs (a), (c), and (e) plot experimental data (Exp Data), the fitted curve
(Est Fit) and the associated error for the three sets of initial conditions used. The ini-
tial concentrations (1), (2) and (3) correspond to Graphs (a), (c) and (e) respectively.
Tables (b), (d), and (f) correspond to Graphs (a), (c), and (e) respectively. The root
mean square error, RMSE, and estimated standard deviation (SD) of the overall fit, the
estimated parameter values (EV) and the RMSEs associated with these estimates are
presented.
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Parameter EV RMSE Fit Stats

k1 (µM−1s−1) 281 8.9 RMSE

r1 (s−1) 95.5 1.3 4.37×10−3

k2 (µM−1s−1) 1760 47 SD

r2 (s−1) 605 20 4.56×10−3

k3 (s−1) 834 25

r3 (µM−1s−1) 37 0.38

k4 (s−1) 555 11

r4 (µM−1s−1) 28.0 0.92

Figure 6.2: Results of numerical fitting to simulated time courses of the LDH catalysed reaction. The
graph (a) plots simulated data (Sim Data), the fitted curve (Est Fit) and the associated
error. Initial conditions (3) were used. The RMSE and estimated standard deviation
(SD) of the overall fit, the estimated parameter values (EV) and the RMSEs associated
with these estimates are presented in Table (b).

(400, 400, 1000, 75, 1000, 40, 500, 40)T and the initial conditions above. The resulting data were

used for parameter estimation, an example of the results is presented in Figure 6.2. The

results show a marked improvement in the reliability of the parameters estimated. However the

estimated parameters differ, in some cases significantly, from the parameters used to generate

the time course. This suggests that the time courses obtained may be insensitive to variations

in some of the parameters.

The results presented here support no clear conclusions regarding the applicability of direct

parameter estimation in the study of LDH. It is possible that if the correct model can be used

absorbance data would provide sufficient information to characterise the enzyme. Further it is

possible that appropriate initial conditions would improve the sensitivity of the model param-

eters to fluorescence time courses. Further work with this enzyme, and model, would provide

further insight into the potential problems arising from using direct parameter estimation in

the analysis of pre-steady state data.
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6.4 MurB

MurB was over-expressed in E. coli and purified as previously described (Sections 2.3 and 5.2).

Initial concentrations of NADPH and UDPPEE were both 90µM, that of MurB was 10µM, time

courses were collected at 37◦C of the change in absorbance due to NADPH. Four individual time

courses were collected and a mean concentration was calculated for each time point. Parameter

estimation using this time course and the Levenburg-Marquardt algorithm, in Copasi [159],

was attempted. It is believed that a ping-pong model is the most appropriate for modelling

MurB [85]. As such the ping-pong model with irreversible product release was used and it was

assumed that NADPH is bound first. Since this model is SGI parameter estimation can be

expected to yield meaningful results. The results are presented below (Figure 6.3).
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(b)

Parameter EV RMSE Fit Stats

k1 (µM−1s−1) 1.86 0.654 RMSE

r1 (s−1) 61.7 27.4 1.33

k2 (s−1) 9.16 1.08 SD

k3 (µM−1s−1) 6.65 33.8 1.33

r3 (s−1) 0.135 0.814

k4 (s−1) 10.7 1.15

Figure 6.3: Results of numerical fitting to pre-steady state time courses of the MurB catalysed
reaction. Graph (a) plots experimental data (Exp Data), the fitted curve (Est Fit) and
the associated error. Table (b) contains the RMSE and estimated standard deviation
(SD) of the overall fit, the estimated parameter values (EV) and the RMSEs associated
with these estimates.

The RMSEs associated with two of the parameters, k3 and r3, exceed the estimated values of

these parameters; as such these estimates are unreliable. The estimates for k1 and r1 are better,

although lower relative RMSEs, such as those for k2 and k4 would be preferred. The steady

state parameters kcat, km,NADPH and km,UDPPEE can be estimated from these parameters

using Equations (4.6) from Section 4.2.1. The resulting values of kcat and km,NADPH (4.94s−1

and 20.5µM respectively) are close to those estimated for the uninhibited model of MurB in

Section 5.1. The estimated value of km,UDPPEE (0.75µM) does not correspond well to these
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results. However given that this parameter is dependent on k3 and r3, the two parameters

which least well determined, this discrepancy is to be expected.
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Parameter EV RMSE Fit Stats

k1 (µM−1s−1) 2.01 1.55x10−4 RMSE

r1 (s−1) 61.1 6.47x10−3 7.40x10−3

k2 (s−1) 9.10 9.69x10−4 SD

k3 (µM−1s−1) 21.6 3.38x10−2 7.40x10−3

r3 (s−1) 22.4 4.48x10−2

k4 (s−1) 10.9 1.16x10−3
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Parameter EV RMSE Fit Stats

k1 (µM−1s−1) 2.00 2.90x10−6 RMSE

r1 (s−1) 60.0 1.40x10−4 5.34x10−5

k2 (s−1) 9.00 1.37x10−5 SD

k3 (µM−1s−1) 7.04 1.18x10−3 5.35x10−5

r3 (s−1) 0.863 5.37x10−4

k4 (s−1) 11.0 3.49x10−4

Figure 6.4: Results of numerical fitting to simulated time courses of the MurB catalysed reaction.
Graphs (a) and (c) plot simulated data (Sim Data), the fitted curve (Est Fit) and the
associated error for two sets of initial conditions. For Graph (a) initial concentrations
of substrates and enzyme were 90µM and 10µM respectively. For Graph (b) the con-
centration of enzyme was increased to 45µM. Tables (b) and (d) correspond to Graphs
(a) and (c) respectively and contain the RMSE and SD of the overall fits, the estimated
parameter values (EV) and the RMSEs associated with these estimates.

Time courses were simulated using the parameter vector p = (k1, r1, k2, k3, r3, k4)
T =

(2, 60, 9, 7, 1, 11)T . This parameter vector was obtained from the quasi-steady state estimates

using Equations (4.6). Two sets of initial conditions were used, one as previously described, the

other with initial enzyme concentration increased to 45µM. The parameter estimates based on

these data are summarised in Figure 6.4. For both sets of initial conditions the RMSEs of the

estimated values are low. For the initial conditions used experimentally the estimated values of

k3 and r3 are not close to the expected values although the remaining parameters are (Figure

6.4(b)). Note that these parameters are also poorly determined from the experimental data.
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For the time course corresponding to increased enzyme concentration all parameters are close

to their expected values. Thus further experiments, using a similar substrate to enzyme ratio,

may allow the estimation of these parameters.

6.5 Summary

In this chapter structural identifiability analyses of several transient two substrate models were

presented. The models used were derived from those previously introduced in Section 4.2.1 by

modification of the product release stages. All single species measurements were considered. In

general the input-output relationship approach, Section 3.2.3, was ineffective with these models.

The exceptions, where an input-output relationship analysis could be completed, occurred when

the species measured was irreversibly released from the reaction. In all other cases it was

impossible to derive an output relation using the differential algebra package in Maple.

By contrast the Taylor series approach produced solutions for a number of measurements.

Successful analyses were typically obtained where the measured species either had a non-zero

initial concentration or was one reaction step from species with this property. In addition

for more complex reaction schemes the first derivative of the output function was relatively

simple. The first of these observations informed the choice of alternative initial conditions

used in a number of cases where analysis proved otherwise intractable. Use of non-zero initial

concentrations of species in the proximity of the measurement allowed additional progress in

some cases. It may be possible, with further study, to create a rigorous scheme using these

considerations to predict which combinations of measurement functions and initial conditions

are likely to prove computationally intractable.

Pre-steady state time courses for MurB and LDH were measured using absorbance spectroscopy

and stopped flow techniques. Parameter estimation based on these time courses yielded some

success, although additional work is necessary in both cases. The MurB results are especially



6.5. SUMMARY 191

encouraging as some of the parameters estimated correspond well to the steady state parameters

previously determined in Chapter 5. In both cases simulated data were used to investigate which

initial conditions were more likely to allow estimation of all reaction parameters. In MurB it was

found that similar concentrations of MurB and substrates yielded the best parameter estimation

results. This is supported by typical approaches to this sort of analysis.

The work undertaken using LDH highlights the potential problems faced in using the direct

parameter estimation approach in this sort of analysis. Parameter estimates are likely to be

inaccurate if the modelling of the measurement is not correct. Furthermore in more complex

models the sensitivity of the time course to some parameters may be low for certain initial

conditions. As such it is necessary to determine time course sensitivity to estimated parameters

to ensure that these estimates are meaningful.

Analysis of the reactions catalysed by MurA and MurC-F is not currently possible due to

obfuscating effects of the coupling reactions needed to monitor these reactions. However with

further work it may be possible to analyze such measurements. The transient reaction kinetics

of the coupling enzymes could be determined in isolation using the techniques described. These

results could then be used, in conjunction with numerical integration software, to deconvolute

the contributions of the coupling system from the kinetics of the enzyme under investigation.

As yet no indistinguishability analysis of the two substrate models has been attempted. Such

an analysis is ultimately necessary if the techniques above are to be used more widely since it is

necessary to know which model to use when undertaking parameter estimation. At present it

is necessary to determine which model to use by additional experiments or consultation of the

literature. It would be preferable to choose the model based on the experimental data used to

estimate parameters. Thus investigation of this problem would be an interesting area for future

work.



7. EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF THE

STEADY STATE PATHWAY FLUXES

7.1 Introduction

An understanding of the dynamics of the whole peptidoglycan biosynthesis pathway would

be an invaluable tool in the development of antibiotics targeting this pathway. Measuring

the concentrations of every species within the pathway would likely prove impractical, given

the number of measurements required and, in the case of most species, the lack of a direct

continuous assay. Instead it is preferable to develop an in silico model which accurately predicts

the concentrations of species that can be more easily measured directly. Such a model could

then be used to identify reactions in the pathway as targets for antibiotics and to predict the

effects or combinations of inhibitors on the pathway.

In this chapter a model is developed of the first six steps of the peptidoglycan biosynthesis

pathway. An uninhibited model is developed first and its predictions are compared to experi-

mental data obtained using S. pneumoniae enzymes. It is also used to compare the dynamics

of E. coli and S. pneumoniae pathways. Then two inhibitors of enzymes in the pathway are

kinetically characterised. The model is then adapted to take these inhibitors into account and

its predictions compared to experimental data. It is then used to investigate the effects of

inhibition on concentrations of intermediates within the pathway and the interactions between

the inhibitors.
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7.2 Modelling of the uninhibited peptidoglycan biosynthesis pathway

The section of the peptidoglycan biosynthesis pathway investigated consists of six reactions

catalysed by the enzymes MurA to MurF (Figure 7.1). Each of the reactions catalysed by a

Mur enzyme was assumed to reach a quasi-steady state by the same reasoning as was presented

in Section 4.2. Furthermore each reaction is approximated by a ping-pong mechanism since

kinetic constants for more complex mechanisms have yet to be obtained. Note that the ping-

pong model can be considered an upper bound for the behaviour of more complex mechanisms

since the additional terms all act to slow the reaction rate. Certain cybernetic components

were also incorporated, specifically the recycling of NADP+ to NADPH and ADP to ATP. The

resulting system of differential equations is given below:

d[UGP]

dt
=

d[PEP]

dt
= −fA

1 ([PEP], [UGP]), (7.1a)

d[UDPPEE]

dt
= fA

1 ([PEP], [UGP])− fB
1 ([NADPH], [UDPPEE]), (7.1b)

d[NADPH]

dt
= −

d[NADP+]

dt
= vIDH[NADP+]− fB

1 ([NADPH], [UDPPEE]), (7.1c)

d[UMN]

dt
= fB

1 ([NADPH], [UDPPEE])− fC
3 ([ATP], [L-Ala], [UMN]), (7.1d)

d[L-Ala]

dt
= −fC

3 ([ATP], [L-Ala], [UMN]), (7.1e)

d[U1P]

dt
= fC

3 ([ATP], [L-Ala], [UMN])− fD
3 ([ATP], [D-Glu], [U1P]), (7.1f)

d[D-Glu]

dt
= −fD

3 ([ATP], [D-Glu], [U1P]), (7.1g)

d[U2P]

dt
= fD

3 ([ATP], [D-Glu], [U1P])− fE
3 ([ATP], [L-DA], [U2P]), (7.1h)

d[L-DA]

dt
= −fE

3 ([ATP], [L-DA], [U2P]), (7.1i)

d[U3P]

dt
= fE

3 ([ATP], [L-DA], [U2P])− fF
3 ([ATP], [D-Ala-D-Ala], [U3P]), (7.1j)

d[U5P]

dt
= −

d[D-Ala-D-Ala]

dt
= fF

3 ([ATP], [D-Ala-D-Ala], [U3P]), (7.1k)

d[ATP]

dt
= −

d[ADP]

dt
= vPK/LDH[ADP]−

∑

X∈{C,D,E,F}

fX
3 (YX), (7.1l)
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d[P+]

dt
= fA

1 ([PEP], [UGP]) +
∑

X∈{C,D,E,F}

fX
3 (YX). (7.1m)

The subscript associated with each f denotes the form of the expression used, while the

superscript denotes which kinetic parameters are used, for example fA
1 indicates that expression

f1 (from Section 4.2) is used in conjunction with kinetic parameters for MurA. The parameter

Vmax was determined by multiplying the enzyme concentration by the kcat for each enzyme.

Each of the four amino-acid ligases has a slightly different combination of substrates; this

combination is denoted YX in the last two equations for brevity. Abbreviations for substrates

and products are defined as stated in the List of Abbreviations. The rates vPK/LDH and vIDH

are used instead of mechanistic models of these enzymes. Values were chosen to ensure the

recycling reactions are sufficiently fast. Initial conditions were chosen to correspond to those

used experimentally.

Kinetic constants for MurE were obtained previously by Anne Blewett and are presented in

Table 7.1 [110].

Enzyme Parameter name Value
MurE kcat (s

−1) 73.5
km (ATP) (µM) 191.2
km (L-Lys) (µM) 498.6
km (U2P) (µM) 13.4

Table 7.1: Kinetic data for S. pneumoniae MurE. These data were obtained from the thesis submitted
by Anne Blewett [110].

The pathway can also be reconstructed in vitro using the purified enzymes used in Chapter 5

and monitored using the assays described in Section 2.4. In the following section experimental

and simulated data are compared. Simulations using the constants found in Tables 5.1 and

7.1 did not correspond well to the experimental data obtained. Alternative kcats for MurA to

MurF were estimated directly from time courses obtained at the enzyme concentrations used in

the pathway reconstruction. The results for MurC to MurF are presented in the next section,

those for MurA and MurB were presented in Sections 5.3.1 and 5.4.1. In the subsequent section
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A B C D E F

UGP EPUG UMN U1P U2P U3P U5P

PEP NADPH ATP

L-Ala D-Glu
L-Lys/
mDAP

D-Ala-

D-Ala

NADPn

IDH

ADP
PK/
LDH

P+

Figure 7.1: Schematic diagram of cytoplasmic phase of peptidoglycan biosynthesis. Enzyme catal-
ysed reactions are denoted by circles, substrates and products are denoted by squares.
Black arrows connect substrates to processes, red arrows connect processes to products.
Green circles and arrows indicate a recycling process.

the results of simulations using these kcats are presented. They were found to compare well

with experimental data. Finally using constants derived from the literature the dynamics of

the E. coli pathway were simulated and compared to those obtained using the S. pneumoniae

parameters.

7.2.1 Comparison of data simulated using parameters from Chapter 5 to experimental results

The peptidoglycan biosynthesis pathway was reconstructed in vitro using S. pneumoniae en-

zymes and monitored using an ADP release assay as described in Section 2.4.2. The concen-

tration of UGP used was 50µM, so the full pathway would be expected to produce 200µM of

ADP. The concentration of NADH used was increased to 300µM to ensure that it would remain

in excess throughout the reaction. Each of the four amino acids were added to a concentration

of 10mM. Initial concentrations of PEP, ATP and NADPH were 1.23mM, 200µM and 100µM

respectively. Isocitrate and isocitrate dehydrogenase (IDH) were added to concentrations of

10mM and 0.18 units/ml respectively to ensure that NADPH oxidation was not measured.
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Potassium chloride was also added to a final concentration of 100mM to provide the necessary

cation to MurB [86].

Four in vitro pathways were constructed by truncating the natural pathway (Figure 1.2) at each

of the amino-acid ligase steps. Thus the pathways used included each of the S. pneumoniae

enzymes from MurA to MurC, MurA to MurD, MurA to MurE, and MurA to MurF. Initial

enzyme concentrations were 0.1µM. MurA was added after an initial baseline had been recorded

initiating the reaction pathway; a time course of approximately 40 minutes was then measured.

The absorbance at 340nm of each reaction mixture was monitored in a Caryr 100 spectrometer.

Three time courses were recorded for each pathway, the results were in close agreement.
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Figure 7.2: Production of NAD+ by the reconstructed S. pneumoniae pathways. Concentration of
NAD+ produced (Conc) is plotted against time in minutes. In each graph four curves
corresponding to the pathways MurA to MurC, MurA to MurD, MurA to MurE and
MurA to MurF are plotted; they are colour coded according to the keys given. Graph
(a) plots the raw data obtained. NAD+ concentration was adjusted to account for base
rate production using three models, single exponential, double exponential and linear.
The results are plotted in Graphs (b)-(d) respectively.

It was observed that final NAD+ concentration exceeded expected production, 50µM×(number

of amino acid ligases), for each pathway suggesting that some NAD+ production occurs inde-

pendent of the reaction pathway (Figure 7.2(a)). This supposition is reinforced by the non-zero

rate of NAD+ production observed before addition of MurA and after apparent exhaustion of
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(e)

RMS Error (µM)

Adjust type A-C A-D A-E A-F

Single Exponential (1 Exp adj) 9.02 19.5 34.9 46.0

Double Exponential (2 Exp adj) 11.2 21.0 35.9 46.7

Linear (Linear adj) 8.54 21.1 32.3 39.4

Figure 7.3: Comparison of experimental time courses to those simulated using Model 7.2.1.1. Graphs
(a)-(d) plot concentration of NAD+ produced (Conc) against time in minutes. Graphs
(a), (b), (c) and (d) correspond to the pathways A to C, A to D, A to E and A to F
respectively. The adjusted experimental time courses are plotted in colour according to
the keys provided. The simulated time course is plotted in black the grey curves indicat-
ing a confidence interval based on the confidence intervals of the individual parameters.
Table (e) presents the root mean square error (RMS Error) for each of the pathways and
adjustment functions used.

the UDP-intermediates. Three models of this additional NAD+ production were considered,

single exponential, double exponential and linear. These models are described in more detail

in Appendix A. NAD+ production predicted by these models was subtracted from the raw

data (Figure 7.2(b)-(d)). Note that the apparent final NAD+ concentration still exceeds ex-

pected production. However a jump in absorbance is observed in each time course during the

interval where MurA was added which is not accounted for in the models of NAD+ production

used. This most likely results from mechanical error, i.e. movement of the cuvette resulting in a

slightly modified absorbance profile, and was eliminated manually. The resulting time courses
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are compared to simulated time courses in Figure 7.3.

Time courses were simulated in COPASI using differential equations above, Equations (7.1),

and the parameters and initial conditions given in Table C.1, Appendix C. This is referred

to as Model 7.2.1.1. Subpathways were modelled by the simple expedient of setting terms in

Equations 7.1 corresponding to enzymes that were not in the subpathway to zero. Time courses

were also simulated using the upper bounds of the kcats and lower bounds of kms and vice versa

to form a confidence interval for the simulated time course.

The graphs presented in Figure 7.3(a)-(d) show that experimental NAD+ production is sig-

nificantly quicker than would be expected based on the simulated data. The RMSEs of these

comparisons reflect this discrepancy (Figure 7.3(e)). They do not indicate that any particular

model of background NAD+ production should be preferred.

Since the structure of the mathematical model used, Equations (7.1), is a one to one represen-

tation of the processes known to be happening biologically, it is unlikely that this discrepancy

arises from an issue in the model structure. The discrepancy can thus reasonably be attributed

to the parameters used. A sensitivity analysis was undertaken for Model 7.2.1.1 in COPASI.

The effect of a change to a single parameter on the concentrations of all reaction intermediates

was determined numerically.

Since only [NAD+] is measured it is natural to focus its sensitivity, Table 7.2. Note it is most

sensitive to changes in the Vmaxs of the various enzymes, especially to those in the early stages

of the pathway. Sensitivity to km values tends to be relatively low although they become more

significant in the later stages of the pathway where concentrations of the UDP intermediates

are likely to be lower. Guided by these results new kcat values were estimated for each of the

enzymes used. The results are presented in Sections 5.3.1, 5.4.1 and 7.2.2.
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V A
max kAm,UGP kAm,PEP vIDH

1 8.6×10−4 4.6×10−2 5.5×10−6

V B
max kBm,UDPPEE kBm,NADPH vPK/LDH

0.64 4.4×10−4 1.3×10−3 4.9×10−5

V C
max kCm,UMN kCm,ATP kCm,L-Ala

0.31 1.5×10−3 0.020 3.5×10−4

V D
max kDm,U1P kDm,ATP kDm,D-Glu

0.14 0.023 0.013 4.7×10−4

V E
max kEm,U2P kEm,ATP kEm,L-Lys

0.018 0.022 2.1×10−3 7.2×10−4

V F
max kFm,U3P kFm,ATP kFm,D-Ala-D-Ala

0.018 0.058 0.044 6.6×10−3

Table 7.2: Local sensitivity of NAD+ concentration to model parameters calculated for Model 7.2.1.1.
Sensitivities were calculated in COPASI. Absolute values were then taken and normalised
relative to the highest value. The resulting values are presented below the parameter
varied.

7.2.2 Estimation of kcats for MurC to MurF from progress curves

The discrepancies between experimental and simulated pathway dynamics necessitate new es-

timates for the kinetic parameters of the enzymes used. The principal observable error is one

of overall rate and as such the discrepancy is most likely to be due to differences in the kcats.

These parameters are estimated for MurC to MurF by numerical fitting at the concentrations

of the enzymes used for the pathway assays described above. Estimates of this type for MurA

and MurB are described in Sections 5.3 and 5.4. The experimental time courses used for these

estimates were collected concurrently with the work described here.

Reaction mixtures were prepared containing the coupling components previously described, Sec-

tion 2.4.2, for each of the enzymes MurC to MurF. The concentrations of UDP intermediates

used were as follows: 105, 75, 80 and 65µM of UMN, U1P, U2P and U3P respectively. Concen-

trations of ATP and enzyme were 1mM and 0.1µM respectively. Reactions were initiated by

addition of the required amino acid to a concentration of 10mM. Time courses were recorded

as described in Section 2.4.2.

As previously noted the reactions were modelled using the quasi-steady state form of the three

substrate ping-pong model, Equations 4.20. This is the same model as was used for the kinetic
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characterisations undertaken previously in Chapter 5. The initial concentration of the relevant

UDP intermediate and kcat of the reaction were estimated using the Levenburg-Marquardt al-

gorithm in COPASI [159]. The remaining kinetic parameters, the kms with respect to the three

substrates, were fixed to the values stated in Table 5.1 and Table 7.1. The structural identi-

fiability analysis presented previously, Section 4.3.4, indicates that this model is structurally

globally identifiable. As such parameter estimation can be expected to yield meaningful results.

The results are presented below in Figure 7.4.

For MurC and MurF the fitted curves closely match the shape of the experimental data (Figure

7.4(a) and (g)), this is reflected by the low R2 values for these fits. Thus the model used describes

these reactions despite the lack of a complete kinetic characterisation. However the fits for MurD

and MurE are less close (Figure 7.4(c) and (e)). For these two enzymes the kms used do not

fully describe the dynamics of the reactions catalysed at the substrate concentrations used. A

complete kinetic characterisation as outlined in Dixon [144] should allow these discrepancies

to be eliminated. However, for the purposes of this analysis, the data and models will be as

previously described.

The kcats estimated for MurD, MurE and MurF are lower than those previously obtained,

Tables 5.1 and 7.1. The overall loss of activity is relatively small and probably results from

time in storage. The effects of these, relatively minor, changes on pathway dynamics are noted

in the following section. They cause an overall reduction in rate and as such are not responsible

for the discrepancies observed in the previous section.

The estimated kcat for MurC is a factor of four greater than that previously obtained. The

enzyme solutions used here and in the initial characterisation, described in Section 5.5, were

derived from the same stock, as such no immediate explanation for this discrepancy is forth-

coming. It is possible that the initial characterisation was flawed; for example by loss of activity

after dilution of the stock solution due to enzyme instability. Regardless this change is incor-

porated into the pathway model in the following section. It partially explains the observed
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Figure 7.4: Results of numerical fitting to time courses for the amino acid ligases. Graphs (a), (c),
(e) and (g) plot the experimental data (Exp Data), the fitted curve (Est Fit) and the
difference between these curves (Error) for MurC, MurD, MurE and MurF respectively.
Tables (b), (d), (f) and (h) contain the overall fit statistics: root mean square error
(RMSE) and estimated standard deviation (SD) for each fit, the estimated parameter
values (EV), and the RMSE associated with these estimates.
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Enzyme kcat (Chapter 5) (s
−1) kcat (Direct PE) (s−1)

MurA 8.07 28.8

MurB 3.17 4.12

MurC 7.58 26.6

MurD 36.5 21.5

MurE 73.5 63.1

MurF 29.2 23.9

Table 7.3: Table of kcats obtained either using initial rate data, as described in Chapter 5, or by
numerical parameter estimation from time course data (Direct PE).

discrepancy between experimental and simulated pathway dynamics.

7.2.3 Comparison of data simulated using new kcats to experimental results

A series of simulations were undertaken using COPASI using differential equations (7.1) and a

combination of parameters from Tables 5.1, 7.1, and 7.3. Three cases were considered where

kcats of the following subsets of enzymes: MurA and MurB; MurA to MurC; and MurA to

MurF, were changed to the values found by direct parameter estimation, Models 7.2.3.1, 7.2.3.2,

and 7.2.3.3 respectively. The km values used were unchanged from those used in the previous

section. A fourth case, Model 7.2.3.4, was created from Model 7.2.3.3 by using the substrate

inhibited parameters for MurB from Table 5.1. No change to the form of the equations given

was necessary since the levels of substrate present were insufficient to create any significant

inhibitory effect. The parameters used are presented in Tables C.2-C.5 in Appendix C. A

comparison between simulated and experimental time courses for the full pathway, MurA to

MurF, is presented below in Figure 7.5.

Simulated NAD+ production in Model 7.2.3.1 remains slower than the experimental time course

(Figure 7.5(a)). This model is however much closer than Model 7.2.1.1 as seen by the signif-

icantly reduced root mean square error and Figure 7.3. Once the kcat of MurC is changed

(Model 7.2.3.2) the rate of simulated NAD+ production exceeds that of the experimental time
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Figure 7.5: Comparison of experimental time courses to those simulated using Models 7.2.3.1-4.
Graphs (a)-(d) plot concentration of NAD+ produced (Conc) against time in minutes
for the pathway A to F. The adjusted experimental time courses are plotted in colour ac-
cording to the keys provided. Graphs (a)-(d) correspond to Models 7.2.3.1-4 respectively.
Table (e) presents the best root mean square errors for each of the graphs.

course (Figure 7.5(b)). While one might expect lower kcats for MurD to MurF (Model 7.2.3.3)

to correct for this, they in fact make little difference (Figure 7.5(c)). The overall NAD+ pro-

duction is slightly reduced but the difference between these two cases is minimal, see Appendix

B. The difference in RMS error between these two cases highlights the problem with manual

elimination of the observed absorbance jump (Figure 7.5(e)). The simulated curve for Model

7.2.3.3 should lie slightly closer to the data, however it seems to produce a slightly higher RMS

error. It would be preferable to minimise the RMS error computationally when comparing

experimental and simulated data. The final case, where MurB is modelled using the substrate
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inhibited kms and kcat (Model 7.2.3.4) however compares very well to the experimental data

(Figure 7.5(d)). Thus these are the parameters used for the remainder of this analysis (Table

C.5). A more detailed comparison of the various cases considered can be found in Appendix B.
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Figure 7.6: Comparison of experimental time courses to those simulated using Model 7.2.3.4. Graphs
(a)-(d) and Table (e) are as those found in Figure 7.3; the confidence interval is omitted.

Comparisons of the simulation time courses for Model 7.2.3.4 to experimental time courses

are presented in Figure 7.6. The RMS error values are consistently low (Figure 7.6(e)) and

the simulated data are a close visual match to the experimental data. The adjustment of the

experimental data for the A-D pathway require some modification, towards the end of the

time course the concentration of NAD+ drops suggesting that the predicted background NAD+

production is too high. A similar issue exists for the single exponential and linear adjustments

for the A-C pathway. The remaining adjustments seem to produce reasonable results. The

double exponential adjustment seems to give the most consistent fit, given that it either has
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the lowest or is close to the lowest RMS error.

Although ADP is only released by the last four reactions in the pathway the analysis presented

here suggests that the dynamics of release are strongly influenced by the earlier MurA, MurB

and MurC reactions. This is indicated by the relatively small effect observed by adjustment of

the kcats of MurD to MurF compared to that observed when the kcats of MurA to MurC were

altered. This difference is however partially explained by the relative size of these changes of

kcat.

Further note the relatively large change in NAD+ production produced by changing the pa-

rameters used for MurB. While the kcat used increased, the increases of km significantly slowed

the turnover of that reaction, slowing the pathway as a whole. Both substrate concentrations

for this reaction were low allowing the kms to have a much larger effect on pathway dynamics

than might be expected.

Correctly accounting for background production of NAD+ is a significant problem and requires

further study. Ideally the use of additional assay techniques to measure release of alternative

species within the reaction mixture should also be developed. Similar measurements were

attempted using the phosphate release assay, however phosphate contamination of the isocitrate

dehydrogenase used precluded accurate measurement.

7.2.4 Comparison of E. coli and S. pneumoniae pathway dynamics

The dynamics of E. coli and S. pneumoniae pathways are now compared based on time courses

simulated in COPASI. Model 7.2.3.4, Table C.5, being the closest to experimental data under

the conditions considered, was used in the following analysis. The E. coli pathway has the same

form as S. pneumoniae pathway and so was described by differential equations (7.1). However

the dynamics of each enzyme is different thus an alternative set of parameters, Table 7.4, was

derived from the available literature. These parameters were not all obtained under the same
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conditions. As such the results of this analysis must be treated with some caution.

Enzyme Parameter Value Enzyme Parameter Value

MurA kcat (s
−1) 4.75 MurB kcat (s

−1) 21.7

[81, 91] km (PEP) (µM) 0.400 [85] km (NADPH) (µM) 19.9

km (UGP) (µM) 15.0 km (UDPPEE) (µM) 12.5

MurC kcat (s
−1) 16.3 MurD kcat (s

−1) 15.5

[98, 99] km (ATP) (µM) 130 [100] km (ATP) (µM) 138

km (L-Ala) (µM) 48.0 km (D-Glu) (µM) 55.0

km (UMN) (µM) 44.0 km (U1P) (µM) 19.4

MurE kcat (s
−1) 11.7 MurF kcat (s

−1) 19.4

[101] km (ATP) (µM) 620 [102] km (ATP) (µM) 164

km (mDAP) (µM) 36 km (D-Ala-D-Ala) (µM) 208

km (U2P) (µM) 76.0 km (U3P) (µM) 78

Table 7.4: Table of kinetic parameters describing the reactions in the E. coli pathway. References
below the enzyme abbreviations indicate the source of these data.

Both pathways were simulated in COPASI under the initial conditions described in Section

7.2.1. The concentrations of UGP and U5P and their rates of change are presented in Figure

7.7. Based on the parameters obtained the E. coli pathway completes turnover of UGP to

U5P more quickly under the conditions used than the S. pneumoniae pathway. Initial rates

of production of U5P are higher for the S. pneumoniae pathway, due to its generally faster

amino acid ligases which rapidly turnover any UDP-intermediates which reach them. However

the faster early stages of the E. coli pathway allow it to attain a higher maximum rate of U5P

production, resulting in faster production overall.

The concentrations of UDPPEE, UMN and U2P and their rates of change are presented in

Figure 7.8. The S. pneumoniae pathway accumulates a very high concentration of UDPPEE,

almost half initial concentration of UGP, which is then slowly turned over to UMN (Figure

7.8(a)-(b)). This is due to the high ratio between the MurA and MurB kcats. This ratio is

reversed in the E. coli pathway resulting in a very low accumulation of UDPPEE which is
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Figure 7.7: Comparison of simulated time courses for E. coli and S. pneumoniae pathways. Graphs
(a) and (c) plot the concentrations of UGP and U5P respectively against time. Graphs
(b) and (d) plot the rates of change of these species against time.

quickly turned over to UMN.

The concentrations of the remaining intermediates in the E. coli pathway follow a consistent

pattern (Figure 7.8(c)-(f)). The concentration of intermediate peaks rapidly and then equally

quickly is turned over. Comparing Figure 7.8(c) and (e), the peak concentration of U2P is

reached only when UMN has been nearly completely depleted. This is reflected in the rates of

change of these species which have quite large maxima and minima (Figure 7.8(d) and (f)). The

reactions come close to operating in stages, the following reaction only reaching high effective

rates when the previous reaction has nearly stopped. The S. pneumoniae pathway forms a clear

contrast. Here the later UDP intermediates, U1P, U2P and U3P, do not accumulate in high

concentrations; instead the high kcats of the enzymes using these substrates ensure that they

are rapidly turned over.

The shapes of concentration curves of UMN, U1P, U2P and U3P tend to mirror the shape of

the UDPPEE curve; further emphasizing the influence of the MurB reaction on the pathway

dynamics. This reaction seems to act as a bottleneck and as such seems critical to the control of



7.2. MODELLING OF THE UNINHIBITED PEPTIDOGLYCAN BIOSYNTHESIS PATHWAY 208

(a)

0

25

0 25
Time (min)

C
on

c 
(µ

M
) Sim E. coli

Sim S. pneumo

(b)

-5

25

0 25
Time (min)

F
lu

x 
(µ

M
 m

in
-1
) Sim E. coli

Sim S. pneumo

(c)

0

12

0 25
Time (min)

C
on

c 
(µ

M
) Sim E. coli

Sim S. pneumo

(d)

-7

14

0 25
Time (min)

F
lu

x 
(µ

M
 m

in
-1
) Sim E. coli

Sim S. pneumo

(e)

0

20

0 25
Time (min)

C
on

c 
(µ

M
) Sim E. coli

Sim S. pneumo

(f)

-7

0

7

0 25
Time (min)

F
lu

x 
(µ

M
 m

in
-1
) Sim E. coli

Sim S. pneumo

Figure 7.8: Comparison of simulated time courses for E. coli and S. pneumoniae pathways. Graphs
(a), (c), and (e) plot the concentrations of UDPPEE, UMN and U2P respectively against
time. Graphs (b), (d), and (f) plot the rates of change of these species against time.

the pathway. By contrast no single reaction in the E. coli pathway has such a strong influence

on the pathway dynamics. The latter stage intermediates accumulate at high concentrations,

like UDPPEE, but then are rapidly depleted.

Both types of behaviour suggest possible antibiotic strategies. The S. pneumoniae pathway

may be susceptible to inhibition of the MurB and MurC catalysed reactions, especially since

UDPPEE and UMN act as inhibitors of MurA. This possibility will be investigated further

later in the chapter. The quick accumulation of intermediate concentrations in the E. coli

pathway would overwhelm inhibitors which compete with the UDP intermediates. As such an

uncompetitive inhibitor would be preferable as suggested in [67]; given the speed of the pathway

such an inhibitor might rapidly drive the affected UDP-intermediate to toxic concentrations.



7.3. CHARACTERISATION OF TWO INHIBITORS OF THE ... PATHWAY 209

Note however that the pathway simulations undertaken here are unlikely to correspond to

conditions in vivo. For example it is unlikely that all enzyme concentrations are static and equal,

or that a small finite initial concentration of UGP is provided. Issues of compartmentalisation

of enzymes and the effects of enzyme crowding on kinetics have not even been considered. More

work is required to model the in vivo pathways, first simply to determine in vivo concentrations

of enzymes and then possibly to consider the more complex problems of compartmentalisation

and crowding which are hard to duplicate in vivo.

7.3 Characterisation of two inhibitors of the peptidoglycan biosynthesis

pathway

The analysis presented in the previous section assumes an unchallenged pathway. It can be

extended by incorporating the known internal inhibitors of the pathway, UDPPEE and UMN,

and by incorporating inhibitors of other enzymes. First however any inhibitors used must

be characterised. In this section two inhibitors of enzymes in the peptidoglycan biosynthesis

pathway are characterised. The first, UDP-MurNAc a product of the reaction catalysed by

MurB and a substrate of MurC, is an inhibitor of MurA[186]. As such it is not appropriate

for use as an antibiotic; but may enhance the effects of inhibitors challenging reactions further

along the pathway. The second, C-1, is an inhibitor of MurC, and is a potential antibiotic

(Figure 7.9) [63]. Kinetic parameters describing the inhibitory effect of these compounds on S.

pneumoniae enzymes were determined experimentally. They are used in pathway simulations

presented in Section 7.4.

N

N
NH

2

O

CH
3

Figure 7.9: Chemical structure of C-1 [63].
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7.3.1 Inhibition of MurA

It is known that UDP-MurNAc (UMN) had an inhibitory effect on the reaction catalysed by

MurA [186]. The km of MurA with respect to PEP is very low relative to that of UDP-

GlcNAc (UGP), Section 5.1. As such the inhibitory effect is likely to be most pronounced with

respect to UGP. It was characterised using the phosphate release assay as previously described

in Sections 2.4.3 and 5.3. Reaction mixtures contained the components listed in Section 2.4.3

with the addition of PEP to a final concentration of 480µM. For each of five concentrations of

UMN, 0, 50, 100, 200 and 400µM, five initial rates were determined dependent on the following

concentrations of UGP, 50, 100, 200, 400 and 800µM. Reactions were initiated by the addition

of MurA to a final concentration of 28.5nM.
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Figure 7.10: Primary and secondary plots used to characterise the inhibitory effect of UMN on MurA
with respect to UGP. Graph (a) plots inverted initial rates (1/v) against inverted UGP
concentrations (1/[UGP]) and lines of best fit for the five UMN concentrations used.
Graphs (b) and (c) plot the gradients of these lines (grad) against concentration of
UMN ([UMN]) and a line of best fit. Error bars indicate a 90% confidence interval
for each gradient. Graph (c) omits the points corresponding to 200 and 400µM UMN.
Table (d) contains the RMSE of the fits, the estimated parameter values, EV, and
associated RMSE, for gradient (m) and y-intercept (y0) for Graphs (b) and (c).

The data were linearised and plotted using the Lineweaver-Burke plot (Figure 7.10(a)) [144].

Two data points were omitted from this plot due to the very low rates observed. Low rates are
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poorly determined due to the low signal measured. Furthermore since the linearisation used

requires these values to be inverted any errors in these readings are magnified disproportionately

to those arising at higher rates. For low concentrations of UMN, 0-100µM, the lines plotted

appear to intersect on the 1/v axis; suggesting competitive inhibition with respect to UGP

[144]. For higher concentrations of UMN this convergence does not appear to be preserved.

This could suggest that an alternative mode of inhibition is more appropriate. However given

the quality of these data no definitive statement can be made. The analysis proceeds on the

assumption of competitive inhibition with respect to UGP.

The gradients of the lines plotted in Figure 7.10(a) were plotted against concentration of UMN

in Figure 7.10(b). Error bars were estimated as described in Section 3.4 for a Student’s t-

distribution to constitute a 90% confidence interval. For concentrations of UMN exceeding

100µM the confidence intervals are so large as to render the corresponding estimates meaning-

less. As such the remaining three data points were replotted separately as Figure 7.10(c).

Lines of best fit were estimated in each case; the results are summarised in Figure 7.10(d).

The best fit is obtained for the second plot, omitting the two concentrations of UMN exceeding

100µM, however in both cases the intercept with the y axis is poorly determined. The ki with

respect to UGP is estimated by taking y0

m
, where y0 is the y-intercept and m the gradient, for

this graph [144]. The estimated values are 45.0 and 19.1µM for Graphs (b) and (c) respectively.

However given the high error associated with the estimated values of b these values cannot

be regarded with any great confidence. Extending the series of assays to encompass a greater

range of initial concentrations should allow this parameter to be determined more accurately.

Furthermore better results will be achieved if the initial rates measured are higher; since the

linearisation used is poorly behaved for low rates. It may also be necessary to eliminate any

confounding effect caused by product inhibition due to the presence of UDPPEE, Section 5.3.

The second value of 19.1µM is used for ki for the remainder of this chapter. MurA is product

inhibited by UDPPEE. It will be assumed that the inhibitory effects of UDPPEE and UMN
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on MurA are the same unless otherwise stated. This assumption is justifiable given the high

degree of similarity between the two species; however it would be preferable to determine the

real value of this parameter.

7.3.2 Inhibition of MurC

The compound C-1 has been shown to inhibit the reaction catalysed by E. coli MurC [63]. This

inhibition is thought to be competitive with respect to ATP. It was shown, using phosphate

release assays, to also have an inhibitory effect on S. pneumoniae MurC. The effect with respect

to ATP was characterised using ADP release assays, Section 2.4.2; C-1 having been shown not to

affect this assay system. Reaction mixtures contained the components detailed in Section 2.4.2

with the addition of UMN and MurC to final concentrations of 550µM and 35nM respectively.

For each of five concentrations of C-1: 0, 25, 50, 100, 150µM, five initial rates were determined

dependent on the following respective concentrations of ATP: 1.25, 2.5, 5, 10, 20µM. At the

required concentration for a stock solution C-1 was found to be insoluble in water, but dissolved

in DMSO. All reaction mixtures were made up to 3% DMSO to eliminate any effect of DMSO

concentration on the characterisation. Reactions were initiated by the addition of L-Ala to a

final concentration of 10mM.

The data were linearised and plotted using the Lineweaver-Burke plot (Figure 7.11(a)). The

lines plotted do not intersect perfectly on the 1/v axis, however they are close to doing so. As

such, informed by the results for E. coli MurC [63], it is reasonable to assume that competitive

inhibition with respect to ATP. The gradients of the lines plotted in Figure 7.11(a) were plotted

against concentration of C-1 (Figure 7.11(b)). Error bars were estimated as described in Section

7.3.1; all gradients estimated were determined to a reasonable degree of accuracy. A line of best

fit was estimated for these data; the results are summarised in Figure 7.11(c). A good fit was

obtained although the estimated value of the y-intercept is poorly determined. Note however

that this value is within the 90% confidence interval of the corresponding point plotted. As such
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Figure 7.11: Primary and secondary plots used to characterise the inhibitory effect of C-1 on MurC
with respect to ATP. Graph (a) plots inverted initial rates (1/v) against inverted ATP
concentrations (1/[ATP]) and lines of best fit for the five C-1 concentrations used.
Graph (b) plots the gradients of these lines (grad) against concentration of C-1 ([C1])
and a line of best fit. Error bars indicate a 90% confidence interval for each gradient.
Table (c) contains the RMSE of the fit, the estimated parameter values (EV) and
associated RMSEs for gradient (m) and y-intercept (y0) for Graph (b).

this estimate can be treated more confidently than initial statistics suggest. The ki estimated,

using the formula in Section 7.3.1, was 15.3±6.00µM. This value is used for the remainder of

the chapter.

7.4 Modelling of the inhibited peptidoglycan biosynthesis pathway

Having obtained characterisations of pathway inhibitors in the previous section it is now possible

to model and simulate the effects of these inhibitors on the pathway. In addition it is possible

to measure time courses of pathways challenged by these inhibitors experimentally. In the

next section experimental and simulated data are compared. Initially the models used consider

only the inhibitors internal to the pathway, UDPPEE and UMN. The models are compared to

the experimental data introduced in Section 7.2.1. The models are then expanded to consider

inhibition by C-1. Experiments were conducted for the subpathway starting with MurA and

terminating at MurC, the results were compared to simulated data. In the subsequent section

the effects of inhibition are examined in more detail using simulated data. The interaction
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between inhibition by C-1 and the internal pathway inhibitors is examined in the context of

antibiotic development.

7.4.1 Comparison of simulated inhibited pathway dynamics to experimental data

Two sources of internal pathway inhibition are considered, Figure 7.12; inhibition of MurA by

UDPPEE or by UMN. Three models were used: MurA was inhibited either competitively or

uncompetitively by UMN (Models 7.4.1.1 and 7.4.1.2) or competitively by both UDPPEE and

UMN (Model 7.4.1.3). The quasi-steady state equations to describe these models of inhibition

are as follows:

f6(S1, S2, I) =
VmaxS1S2

S1S2 + km,1S2(1 +
I
ki
) + km,2S1

, (7.2)

f7(S1, S2, I) =
VmaxS1S2

(1 + I
ki
)(S1S2 + km,1S2 + km,2S1)

, (7.3)

f8(S1, S2, I1, I2) =
VmaxS1S2

S1S2 + km,1S2(1 +
I1
ki,1

)(1 + I2
ki,2

) + km,2S1

(7.4)

where f6, f7 and f8 replace f1 in Equations (4.5) for competitive, uncompetitive or two com-

petitive inhibitors respectively. These expressions are well-known [144]. The inhibitory terms,

(1 + I
ki
), decrease the rate of reaction by increasing the denominator as the concentration of I

increases. For competitive inhibition inhibition directly increases the effective km of a particular

substrate. Uncompetitive inhibition by contrast increases the entire denominator.

To model these changes fA
1 ([UGP], [PEP]) was replaced in Equations (7.1) by fA

6 ([UGP], [PEP], [UMN]),

fA
7 ([UGP], [PEP], [UMN]) or fA

8 ([UGP], [PEP], [UDPPEE], [UMN]). No other changes were

made to the structure of the model. The parameter values were initially unchanged from the

best case obtained in Section 7.5; those for the MurB reaction were returned to the uninhibited

values for the fourth simulation below (Model 7.4.1.4). Tables of the parameters used can be

found in Appendix C, Tables C.6-C.7. The results were compared to the experimental time
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Figure 7.12: Schematic diagram of cytoplasmic phase of peptidoglycan biosynthesis with inhibition
steps. Colours and shapes are as previously described, Figure 7.1. Blue lines connect
inhibitors to the process inhibited. Dashed lines indicate an inhibitory effect which is
not included in all models.

courses described in Section 7.2.1 (Figure 7.13).

The two modes of inhibition of MurA by UMN, competitive or uncompetitive, are practically

indistinguishable for the simulations undertaken, the RMS difference between the two pathway

models being 0.122µM. They also fit the experimental data, slightly better than the previous

best model (Figure 7.13(e)). Where inhibition from both UDPPEE and UMN was simulated

NAD+ production is clearly slower after the first five minutes (Figure 7.13(c)). However when

MurB was modelled using the uninhibited parameters the simulated curve corresponds well to

the experimental data (Figure 7.13(d)).

In order to investigate the effects of C-1 on the pathway further experimental time courses were

recorded for the subpathway containing the processes catalysed by MurA, MurB and MurC.

Two sets of assays were undertaken, in the first NAD+ release was measured as previously

described and in the second, NADPH oxidation was monitored using the MurB assay, Section

2.4.4. Reaction mixtures were unchanged from those stated in Section 7.2.1 with the following

exceptions: UGP concentration was 200µM; MurD to F and the corresponding amino acids
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Model Graph Best RMSE (µM)
7.2.3.4 Figure 7.6(d) 4.63
7.4.1.1 (a) 4.08
7.4.1.2 (b) 4.00
7.4.1.3 (c) 7.39
7.4.1.4 (d) 4.03

Figure 7.13: Comparison of experimental time courses to pathway simulations taking into account
inhibition by UDPPEE and UMN. Graphs (a)-(c) plot concentration of NAD+ (µM)
produced against time in minutes. The adjusted experimental curves are as described
in Section 7.2.1. Graphs (a)-(d) plot simulated pathway production for Models 7.4.1.1-
.4 respectively. Table (e) presents the lowest root mean square error for each simulated
time course.

were omitted; and C-1 or DMSO was added to each reaction mixture to a final concentration

of 200µM or 3% respectively. When using the MurB assay IDH and NADH were omitted

and NADPH concentration was increased to 300µM. This eliminates the absorbance change

caused by oxidation of NADH and allows the oxidation of NADPH to be monitored. Reactions

were initiated by the addition of MurA and allowed to continue for about 40 minutes; two

time courses were measured in each case and were found to agree well. Experimental time

courses were adjusted using a single exponential model, derived from the average of the initial

background rates of NAD+ production and the final rate observed in the uninhibited pathways.

These experiments were modelled as follows. MurA was modelled as being inhibited competi-

tively by either UMN or UMN and UDPPEE, i.e. fA
1 was replaced by fA

6 or fA
8 respectively in
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Figure 7.14: Comparison of experimental time courses to pathway simulations for NAD+ production
in the MurA to MurC pathway. Graph (a) plots simulated NAD+ concentration for
Model 7.4.1.5. Graphs (b)-(f) plot simulated and experimental concentration of NAD+

(µM) produced against time in minutes for Models 7.4.1.6-10 respectively.

Equations (7.1). When C-1 was modelled as a competitive inhibitor (Model 7.4.1.5) using the

following function in place of fC
3 ([UMN], [ATP], [L-Ala]) in Equations (7.1) [144]:

f9(S1, S2, S3, I) =
VmaxS1S2S3

S1S2S3 + km,1S2S3 + km,2S1S3(1 +
I
ki
) + km,3

, (7.5)

for S1 = [UMN], S2 = [ATP], S3 = [L-Ala] and I = [C-1] and appropriate kinetic parameters,

no significant pathway inhibition is seen in the simulated data (Figure 7.14(a)). This does not

correspond well to experimental data which show a significant degree of inhibition under the

conditions used. The km with respect to ATP does not seem to significantly regulate the rate of

the MurC catalysed reaction in simulations; the reason for this remains unclear. It does however
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Figure 7.15: Comparison of experimental time courses to pathway simulations for NADP+ produc-
tion in the MurA to MurC pathway. Graphs (a)-(e) plot simulated and experimental
concentration of NADP+ (µM) produced against time in minutes. Graph (a)-(e) plot
the simulated results for Models 7.4.1.6-10 respectively.
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Figure 7.16: Comparison of experimental time courses to pathway simulations taking into account
inhibition by UDPPEE and UMN. Graphs (a) and (b) plot concentration of NAD+

(µM) produced against time in minutes. The adjusted experimental curves are as
described in Section 7.2.1. Simulations for Graphs (a) and (b) used Models 7.4.1.8 and
7.4.1.10.
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explain the apparent lack of sensitivity to competitive inhibition in this case. Since the ATP

concentration is constant, due to the recycling by pyruvate kinase and lactate dehydrogenase in

the models used and experiments undertaken it is reasonable to model C-1 as an uncompetitive

inhibitor. Thus the following function was used in place of f9 [144]:

f10(S1, S2, S3, I) =
VmaxS1S2S3

S1S2S3 + km,1S2S3 + km,2S1S3(1 +
I
ki
) + km,3

, (7.6)

with the same mapping of Sis and I to substrate or inhibitor concentrations as above. This did

result in pathway inhibition (Figures 7.14(b)-(f) and 7.15). Parameters for these models are

found in Appendix C, Table C.8. Initial conditions were chosen to correspond to those used in

the experiments described above.

When MurA was inhibited by only UMN (Model 7.4.1.6) simulations did not describe the

experimental data well (Figures 7.14(b) and 7.15(a)). The experimental NAD+ and NADP+

production whether inhibited or uninhibited is significantly slower than simulations predict.

Given that it is known that MurA is inhibited by both UDPPEE and UMN this was to be

expected.

Four simulations were undertaken where MurA was inhibited by both UMN and UDPPEE.

The first two used the substrate inhibited MurB parameters (Models 7.4.1.7-8) the second

two the uninhibited parameters (Models 7.4.1.9-10). For each pair two values of the ki with

respect to UDPPEE were used, 19.1 and 10µM. Parameters are presented in Appendix C,

Tables C.9 and C.10. Predicted NAD+ production, using Model 7.4.1.8, is a good match for

experimental NAD+ production (Figure 7.14(d)). However simulated NADP+ production is

slower than expected (Figure 7.15(c)). Similarly where simulated NADP+ production is close

to experimental data (Figure 7.15(b) and (e)), corresponding to Models 7.4.1.7 and 7.4.1.10,

the simulated NAD+ production is faster than experimental observations (Figure 7.14(c) and

(f)). This is indicative that the ratio between the rates of the reactions catalysed by MurB
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and MurC is not being accurately predicted by these models. Thus either the kinetic constants

used are incorrect or an additional, unidentified, interaction between pathway intermediates

and enzymes exists. The combination of uninhibited MurB and a ki of 19.1µM with respect to

UDPPEE (Model 7.4.1.9) is a poor match for both measurements (Figures 7.14(e) and 7.15(d)).

No combination of parameters logically arising from the data available fully describes the ob-

served dynamics of the pathway. As such further work is needed to determine the cause of these

discrepancies. The use of ping-pong models for all enzymes and the use of an uncompetitive

model of C-1 inhibition may be contributory factors. Substrate inhibition of MurB is unlikely

to be a factor given the relatively low concentrations of NADPH and UGP used.

Use of the lower ki results in a poor match to the uninhibited pathway data unless the unin-

hibited MurB parameters are used (Figure 7.16). As such the best compromise is to use Model

7.4.1.7, corresponding to Figures 7.13(c), 7.14(c) and 7.15(b). This is the model used in the

following section.

7.4.2 Simulated effects of inhibition on the pathway

In Section 7.2.4 the dynamics of simulated E. coli and S. pneumoniae pathways were simulated

and compared. In this section the same approach is used to investigate the effect of inhibition on

concentrations of the UDP-intermediates in the pathway using Model 7.4.1.7. In the presence

of 200µ C-1 the overall production of U5P is reduced about 25% over 40 minutes (Figure

7.17(e)). Note, however, that for the majority of the time course the concentration of the U5P

in the inhibited pathway lags significantly behind that of the uninhibited pathway; it catches

up due to exhaustion of UGP. In the presence of C-1 rates of U5P production are significantly

reduced resulting in a lower rate of production being maintained for a longer period (Figure

7.17(f)). Exhaustion of UGP is slightly slower and UDPPEE accumulation is slightly lower in

the inhibited time courses however the differences are fairly minimal (Figure 7.17(a)-(d)).
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Figure 7.17: Comparison of simulated C-1 inhibited and uninhibited time courses. Graphs (a), (c),
and (e) plot concentration of UGP, UDPPEE, and U5P (µM) respectively against time
in minutes. Graphs (b), (d), and (f) plot the corresponding rates of the change of
concentration of these species. Inhibited and uninhibited curves are colour coded.

Inhibition has a greater effect on the concentration of UMN (Figure 7.18(a)-(b)). The inhibition

caused by C-1 causes a large accumulation of UMN; which in turn causes the small changes

observed in the UGP and UDPPEE time courses. Exhaustion of this accumulation is not

achieved within the time course simulated. The UDP-intermediates downstream of MurC have

similar dynamics (Figure 7.18(c)-(d)). Under inhibition production and accumulation of these

intermediates is reduced forming flattened versions of the UMN curve. Thus it would appear

that, under inhibition, control of the reaction shifts from the MurB to the MurC reaction.

The potential synergy between C-1 and internal pathway inhibition is an area of some interest as

it may influence whether C-1 proves an effective antibiotic. However for limited concentrations

of UGP this interaction has little impact. The build up of UDPPEE and UMN is limited by
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Figure 7.18: Comparison of simulated C-1 inhibited and uninhibited time courses. Graphs (a) and
(c) plot concentration of UDPPEE, UMN and U1P (µM) respectively against time in
minutes. Graphs (b) and (d) plot the corresponding rates of the change of concentration
of these species. Inhibited and uninhibited curves are colour coded.

the availability of UGP. Where a low concentration of UGP is used inhibitory concentrations

of these species only form when UGP is mostly exhausted. However a high concentration of

UGP can overwhelm inhibition by these species. As such the more significant effects of this

interaction are likely to be less pronounced under typical experimental conditions than they

would be in vivo where UGP can be continuously provided to the pathway. An analysis of the

case where UGP is constantly provided to the pathway is presented below.

DIfferential equations (7.1) were modified as previously described to include inhibition of MurC

by C-1. Replacement of UGP was modelled in two ways. In the first case the MurA reac-

tion produced a molecule of UGP for every molecule used, i.e. d[UGP]
dt

= 0 in Equations 7.1.

This represents rapid replacement by a carefully controlled upstream pathway and was used for

Models 7.4.2.1 and 7.4.2.2. Alternatively a constant flow of UGP into the system was allowed,

i.e. d[UGP]
dt

= vUGPrep − fA
1,8, (Models 7.4.2.3 and 7.4.2.4); this flow was chosen so that in un-

inhibited conditions UGP concentration remained at approximately the initial value of 100µM.

In odd numbered models, MurA was modelled as inhibited by UDPPEE and UMN using the
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modifications to Equations (7.1) previously described, in even numbered models this inhibition

was not included. The kcat of MurA was reduced in the even numbered models so that, in

the absence of C-1, overall production by both pathways was approximately equivalent. Six

concentrations of C-1 were used 0, 50, 100, 200, 400, and 800µM and simulations of a two hour

time course were undertaken. The results are presented below in Figures 7.19 and 7.20. Model

7.4.1.7 was modified to form four new models, Models 7.4.2.1-4, parameters can be found in

Appendix C, Table C.11.
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Figure 7.19: Gross effect of interaction between MurC inhibition by C-1 and MurA inhibition by
UDPPEE and UMN. Graphs (a) and (c) plot the ratio of U5P produced in inhibited
and uninhibited pathways against time in seconds. Curves are colour coded according
to whether MurA was inhibited. Pairs of curves are associated with a letter which
indicates the concentration of C-1 used, Table (e). Graphs (b) and (d) plot the ratio of
inhibited to uninhibited U5P production after 7200 seconds against the concentration
of C-1 used (µM). Graphs (a) and (b) correspond to Models 7.4.2.1 and 7.4.2.2, Graphs
(c) and (d) to Models 7.4.2.3 and 7.4.2.4.

The graphs in Figure 7.19 plot the production of U5P at the non-zero concentrations of C-1
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Figure 7.20: Effect of the interaction between MurC inhibition by C-1 and MurA inhibition by
UDPPEE and UMN on pathway dynamics. Graphs (a) and (b) plot concentrations
of UDPPEE and UMN respectively for Models 7.4.2.1-2 against time. Graphs (c), (d)
and (e) concentrations of UDPPEE, UMN, and UGP respectively for Models 7.4.2.3-
4 against time. Curves are colour coded according to whether MurA was inhibited.
Concentration of C-1 was 50µM.

relative to corresponding production when C-1 is zero. Over the initial fifteen to twenty minutes

production of U5P is reduced due to the inhibition of MurC by C-1 (Figure 7.19(a) and (c)).

However the red and green curves are very similar indicating that inhibition of MurA is not

having a significant effect. Indeed at high concentrations of C-1, 800µM, this remains true for

the entire time course (see the curves marked “e” in Figure 7.19(a) and (c)). However for lower

concentrations of C-1, 50-200µM, inhibition of MurA starts to have a significant effect after the

first twenty minutes. The green curves, corresponding to models where MurA is inhibited by

UDPPEE and UMN, lag behind the red curves, where MurA is not inhibited.

The differences are most pronounced where UGP is replaced proportionate to use (Figure
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7.19(a) and (b)). Figure 7.19(b) plots the ratio of U5P production at a given concentration

of C-1 to that of an uninhibited pathway against concentration of C-1. Note the difference

between the curves; where MurA is uninhibited twice as much C-1 is required to achieve an

equivalent reduction in U5P production for concentrations of C-1 less than 400µM. The time

courses suggest that this effect may become more pronounced over longer time courses (Figure

7.19(a)). Compare the green curve for 50µM C-1 to the red curve for 200µM C-1; relative rates

of increase suggest that the red curve would intersect the green curve if the time course was

extended another two hours. Thus for a four hour time course it may take four times as much

C-1 to achieve equivalent reductions in U5P production if MurA is uninhibited.

Where UGP is provided to the system at a constant rate inhibition of MurA has a reduced

effect, green curves generally lie closer to red curves (Figure 7.19(c) and (d)). This can be

explained by comparing the concentrations of UGP, UDPPEE, and UMN within the pathways

for a given C-1 concentration, 50µM in this case (Figure 7.20(a)-(e)). If UGP is replaced rather

than being provided at a constant rate then inhibition of MurA by UDPPEE and UMN reduces

the rate of influx of UGP into the system. The concentrations of these three species then reach

constant levels (Figure 7.20(a) and (b)). If MurA is not inhibited by these substrates the rate

of influx of UGP into the system is constant allowing higher concentrations of UDPPEE and

UMN to be attained, thus allowing the pathway as a whole to produce more U5P. When UGP

is provided at a constant rate inhibition of MurA causes the accumulation of UGP (Figure

7.4.2(e)) eventually overcoming this competitive inhibition (Figure 7.4.2(c) and (d)). In these

graphs the green curves do not settle to steady states indicating that the rate of the MurA

reaction is increasing as the concentration of UGP increases. Thus the MurA-C subpathway

can attain higher rates of reaction when UGP is provided at a constant rate, increasing the rate

of production of U5P.

Note that accumulation of UMN does not overcome C-1 inhibition in the same way. The model

for C-1 inhibition used was uncompetitive which is not strictly correct since C-1 is competitive
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with ATP. However it is believed to be uncompetitive with UMN so this should not unduly

affect the results above. In addition ATP is unlikely to accumulate in vivo given its use in many

cellular processes, thus this inhibitor is unlikely to be overcome in vivo.

Further information is required to truly assess the effectiveness of C-1 in inhibiting the pepti-

doglycan biosynthesis pathway. As observed in previous sections, the enzyme concentrations

are not representative of in vivo conditions. In addition the in vivo fluxes into and out of

this pathway have yet to be determined and it is unknown what reductions in output can be

tolerated. However the analysis does suggest that the interaction between C-1 and internal

pathway inhibition would reduce the amount of C-1 required to attain any specific reduction in

overall output. Thus lower doses of C-1 would be required potentially increasing its efficacy as

an antibiotic. The magnitude of this reduction in dose is dependent in part on the way UGP is

provided to the pathway. Given that UGP is used in a number of bacterial processes [80], it is

unlikely that accumulations of the type observed in the second pair of models could occur. As

such the more optimistic predictions presented may hold more weight.

7.5 Summary

A model has been developed that accurately predicts the production of ADP by the pathway

when unchallenged by inhibitors for the experimental conditions used. Further validation of

this model would be beneficial, both for alternative initial conditions and for measurement of

other species especially since for the conditions used the later stages of the pathway seem to

influence NAD+ production relatively little. As yet it has not been possible to use the phosphate

release assay described in Section 2.4.3 to measure phosphate production of the pathway, due

to phosphate contamination of the recycling enzyme used to prevent exhaustion of NADPH.

A UDP-pentapeptide assay also exists [187]. However concentrations of the available coupling

enzymes proved insufficient for kinetic assays. Further work would allow either of these assays
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to be used to measure pathway products.

Use of higher initial concentrations of UGP proved difficult, since in the full pathway every

molecule of UGP produces four molecules of ADP. Providing sufficient NADH at high con-

centrations of UGP increases the background absorbance to levels at which the time courses

measured are too noisy to be useful. The use of alternative assays may allow this problem to

be circumvented.

The model was extended to include the effects of three inhibitors. The predicted time courses

match less well to experimental data as such the model needs to be refined to better account

for the discrepancies observed.

The E. coli and S.pneumoniae pathways were compared using simulations. The kinetic pa-

rameters used for the E. coli pathway were obtained from a number of different sources and

were not recorded under consistent conditions; an area of potential improvement. The analysis

highlights some differences between the two pathways which may provide insight into the dif-

ferences between Gram-positive and Gram-negative peptidoglycan biosynthesis. However given

the current lack of data concerning in vivo concentrations of the enzymes no strong conclusions

can be drawn at this time. The differences suggest distinct antibiotic strategies for the two

species.

The S. pneumoniae strategy, informed by the observed accumulations of UDPPEE and UMN

in the pathway, was targeting MurB and MurC. This strategy could be partially tested given

the availability of C-1, a MurC inhibitor. Simulations showed that inhibition of MurC would

cause further accumulation of UMN in the pathway. In addition the inhibition of MurA by

UMN and UDPPEE enhanced the effectiveness of this inhibitor.



8. WIDER DISCUSSION AND CONCLUSIONS

8.1 Introduction

The preceding results describe significant developments in two key areas: the direct estimation

of kinetic parameters from experimental time courses and the modelling of the cytoplasmic

phase of the peptidoglycan biosynthesis pathway. The tools developed for direct parameter

estimation are applicable to any kinetic characterisation and are discussed in the following

section. The limitations of the models constructed and their application in the development of

antibacterials is then discussed. Brief conclusions are presented in the final section.

8.2 Parameter identifiability and estimation

The normal approach to kinetic characterisations of enzymes, via the determination of initial

rates of reaction for a range of initial substrate concentrations, is time consuming due to the

large number of experiments required. If the enzymes characterised use multiple substrates

and a mechanism more complex than a ping-pong mechanism this problem is exacerbated.

Two and three substrate reactions are relatively common; for example around a fifth of E. coli

K-12 reactions use ATP and some other substrate [188]. As such modelling the majority of

metabolic pathways will require kinetic characterisations of such reactions. The estimation of

kinetic parameters from experimental time courses significantly reduces the experimental cost

of these characterisations.

While this approach has been proposed in the past [146, 147] it is underdeveloped. The impor-
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tance of ensuring that the parameters obtained are uniquely determined from the data was not

noted. As such the results obtained were unreliable it was possible that alternative parameters

would produce equally good experimental fits. It is essential to conduct a structural identi-

fiability analysis of the models used to determine whether parameter vectors can be uniquely

determined given the type of experiment conducted. In addition where a number of candi-

date reaction mechanisms exist indistinguishability analysis is necessary to determine which

experiments are need to determine which is appropriate.

Furthermore direct parameter estimation has yet to enter general usage as a tool for kinetic

characterisation. Where possible it has been used in the kinetic characterisations undertaken in

this work to demonstrate its potential. Thus while the individual characterisations may only be

of interest for those studying the peptidoglycan biosynthesis pathway, the modelling, analysis

and techniques presented here (Chapters 4-6), are more broadly applicable. In the following

sections the results obtained concerning this subject are briefly summarised and areas of further

work are suggested. Theoretical analysis is considered in the first three sections; the following

sections are concerned with analysis of experimental results.

8.2.1 Steady state identifiability and indistinguishability analysis

An analysis of the identifiability and indistinguishability of models of enzyme reactions had not

previously been undertaken for any significant subset of the potential two or three substrate

reaction models. Quasi-steady state forms of such models for two and three substrate ping-pong

reaction mechanisms were found to be structurally globally identifiable (SGI) for the measure-

ment of a single reaction species (Section 4.3). Equivalent analyses of quasi-steady state simple

ordered mechanisms demonstrated that these models are always unidentifiable; although their

Vmaxs are always SGI. The most significant results obtained from indistinguishability analysis

were the indistinguishability of the simple ordered mechanisms from ping-pong mechanisms

with the same number of substrates. Practically distinguishing between reactions with differing
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numbers of substrates is relatively easy (Section 4.5).

The expression describing the dynamics of the two substrate simple ordered mechanism (Equa-

tion (4.14)) is more generally applicable to all two substrate mechanisms where product release

is irreversible [144]. The ping-pong mechanism is the only special case; one of the parameters,

ks,12 being zero. As such it is the only SGI mechanism; all other mechanisms being uniden-

tifiable and indistinguishable from the ping-pong mechanism over the quasi-steady state time

scale. Consequently the two substrate reaction mechanisms that do not involve some inhibitory

steps can be considered fully analysed.

The general expression for three substrate mechanisms under the same constraints is [144]:

f11 =
VmaxS1S2S3

S1S2S3 +
∑3

i=1(km,i

∏
j 6=i Sj) + ks,12S3 + ks,13S2 + ks,23S1 + ks,123

. (8.1)

As such the analysis presented does not encompass all possibilities. Note however that the

input-output relationships derived for the ping-pong and simple ordered mechanisms are con-

structed from the same monomials (Sections 4.3.4 and 4.3.5); only the coefficients are affected

by the choice of mechanism. It is reasonable to suppose that this structure is inherent to the

input-output relation and thus that a maximum of seven unknown parameters can be SGI. Note

further that three of these coefficients seem to determine identifiability of the initial substrate

concentrations; demonstrated by the local identifiability of these parameters for the unidentifi-

able simple ordered model. Combining these observations it seems likely that only the ping-pong

mechanism is SGI, and that all other mechanisms are unidentifiable and indistinguishable from

it on the quasi-steady state time scale. This supposition, however, requires further analysis

before it can be confirmed.

A number of possible reaction mechanisms are yet to be analysed. In the context of pathway

modelling and development of antibacterials, mechanisms which describe inhibition, either by

reaction substrates and products or by species which are not active within the reaction pathway,
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are particularly important. The effects of reversible product release steps are also of interest.

This constitutes a significant area for further work.

8.2.2 Transient identifiability analysis

Identifiability analysis of the transient models of two substrate reactions proved significantly

more complex. Measurement of each individual reaction species was considered in conjunc-

tion with a number of possible product release mechanisms (Section 6.2). A number of SGI

outputs were identified which are experimentally reasonable. Typically showing that a model

corresponding to measurement of the first substrate to bind is SGI was relatively simple. The

other significant experimental output, product concentration, proved more intractable, typically

requiring the input-output relationship approach or atypical initial conditions be used.

An indistinguishability analysis of these models is needed to determine whether they can be

distinguished experimentally. There are also several other possible mechanisms describing two

substrate reactions which have yet to be analysed. Furthermore there are numerous inhibited

or three substrate reaction mechanisms which have yet to even be considered. The structural

identifiability and indistinguishability questions associated with transient reaction mechanisms

remain relatively unexplored.

Given that typically metabolic pathways would be studied over hours, it could be argued that

studying transient, pre-steady state, time scales is unnecessary. Note however the results pre-

sented in Section 5.7.1. Substrate inhibition was found to have an observable effect, on the

steady state time scale, which was not predicted by the quasi-steady state equations, but was

predicted by the transient model. The effect of accumulating inhibitors on pathway dynamics

may also be best described by transient models. As such studying transient models may not

be strictly necessary, but it does seem to provide additional understanding, even on relatively

long time scales.
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8.2.3 The input-output relationship approach

Concepts in differential algebra have been applied to the structural identifiability problem in

the past [189]. Indeed one of these techniques uses this relation in the identifiability analysis

[190]. However the problem of linear independence of the monomials has not previously been

considered. As such the conditions, presented in Section 3.2.3.1, constitute a significant step in

the development of this approach.

The input-output relationship approach proved highly effective in the analysis of the quasi-

steady state models. However in most cases it proved impossible to compute input-output

relationships if the measured species was involved in a reversible reaction; somewhat limiting

its utility. It is currently unclear whether this is a fundamental limitation of the approach or

simply of the algorithm used. However, when the input-output relationship could be derived,

this approach allowed the analysis of models that were computationally intractable using the

Taylor series approach. As such further development of this approach would seem worthwhile.

The application of the input-output relationship approach to indistinguishability analysis has

not been previously documented. If the combined relations of the two models produce a polyno-

mial, linear independence is easy to establish. However it is unclear how to do so if the result is

a differential polynomial. Each input-output relation is associated with a distinct prime ideal;

thus if the intersection of these ideals is non-trivial then it should also be prime. As such if the

combined input-output relation is a generator of the intersection of these ideals, then the argu-

ments advanced previously apply. However that this expression is necessarily such a generator

is not immediately apparent. This then remains an area for further work.

8.2.4 Identification of substrate inhibition

Atypically shaped progress curves were observed in the kinetic characterisation of MurF, in Sec-

tion 5.7.1. Such abnormalities are typically thought to arise from insufficient coupling enzymes
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[144]. However in this case they appear to be associated with substrate inhibition a connection

which appears not to have been noted previously. Curves simulated using transient, but not

quasi-steady state, models of such a reaction were similarly shaped. The transient model also

predicted that the change of shape would occur at a substrate concentration comparable to that

observed experimentally. This may prove a useful test for substrate inhibition, a phenomenon

which can be easily confused with assays containing insufficient coupling enzymes. Demon-

stration of this behaviour in other substrate inhibited enzymes would validate the explanation

proposed. Further modelling may allow a link between the substrate concentration at which

the curves change shape to the kinetic parameters of the reaction to be established. The dis-

crepancy between the predictions of transient and quasi-steady state models emphasises the

importance of transient models in developing a full understanding of pathway dynamics even

over quasi-steady state time scales.

8.2.5 Estimation of quasi-steady state parameters

The results of direct parameter estimation from time courses were mixed. On the quasi-steady

state time scale the majority of the enzymes considered catalyse unidentifiable reactions. As

such, using a single progress curve, it was possible to determine only a single parameter, kcat for

these enzymes. The reaction catalysed by MurB was SGI and estimates of all parameters were

obtained using direct parameter estimation. The parameters obtained corresponded reasonably

well to those obtained using initial rate data; although there is some question as to whether a

substrate inhibited model should be used for this reaction. It had been previously noted that

initial conditions play a significant role in determining whether km values could be estimated

[146]. This observation was substantiated by sensitivity analysis.

The two approaches also yield similar kcat estimates for MurD, MurE and MurF (Table 7.3)

the discrepancies observed being consistent with loss of enzyme activity due to time in storage.

However when these parameters were estimated for MurA and MurC the resulting values were
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significantly greater than obtained using the alternative approach. For MurA this discrepancy

would appear to arise from product inhibition by UDPPEE; in any case it prevents the proposed

deconvolution of MurA kinetic parameters (Section 4.3.3) from being tested. For MurC the

cause of this discrepancy is unclear.

The results for MurB demonstrate the potential effectiveness of this approach for reactions

which are believed to proceed by a ping-pong mechanism. Two time courses, rather than one,

were required in order to determine all kinetic parameters due to the sensitivities of each of the

kms. Estimates are improved by averaging several experimental time courses. In comparison

typically ten to twenty initial rates are required to determine the kcat and a single km; and

repeat measurements are also typically taken. As such direct parameter estimation should

consistently require significantly fewer experiments than methods using initial rates.

The simple ordered models are unidentifiable, however the results of the indistinguishability

analysis (Section 4.4.1) suggest a way to use direct parameter estimation regardless. A series of

time courses must be recorded using the same concentration of the first substrate to bind and

different concentrations of the remaining substrate. If a ping-pong model is fitted to each of these

time courses differing estimates for km,2 should be obtained. From Equations (4.75) plotting

km,2S against S = (S20−S10) should yield a line with y-intercept k̂s,12 and gradient k̂m,2; finally

k̂m,1 = km,1 + km,2 − k̂m,2. More data are required than would be for a ping-pong mechanism,

x+ 1 time courses, where x is the number of points desired in the line. However an equivalent

characterisation using initial rates would require x2 time courses, since a square matrix of

initial substrate concentrations would be used [144], see for example the characterisation of

inhibitors in Section 7.3. Thus direct parameter estimation would again require significantly

fewer experiments. A similar approach may be possible for the three substrate simple ordered

model, it is however not immediately obtainable by inspection of Equations (4.90). If initial

rates are used however, x3 time courses will be required [144], typically a minimum of 125, as

such it is certainly worth developing such an approach.
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8.2.6 Estimation of transient rate constants

Using a stopped flow spectrometer it was possible to record pre-steady state time courses for

two enzymes, MurB and LDH (Section 6.3.1). LDH has been extensively studied in the past.

It is not the intention of this work to further that analysis, but rather to use LDH in the

development of this direct parameter estimation approach. The MurB reaction was described

using a ping-pong mechanism [85] while LDH was described using a simple ordered model [180].

Studies with MurB found that four of the model parameters could be determined to some degree

of confidence using experimental data. Quasi-steady state parameters were calculated from the

transient parameters obtained; two of these parameters corresponded well to those determined

from quasi-steady state kinetics. For simulated time courses of this reaction all six parameters

could be estimated accurately for appropriate choices of initial conditions.

Studies using LDH demonstrated that this approach is highly sensitive to obtaining the cor-

rect model for the experiment undertaken. Furthermore they also suggest that for complex

models the initial conditions may have a strong influence over which of the parameters may be

successfully determined. This further substantiates the observations of Bates et al. [146] and

emphasises the importance of sensitivity analysis after parameter estimation is completed.

Enzyme availability is a significant limiting factor in the analysis of pre-steady state kinetics us-

ing traditional techniques due to the need to have similar substrate and enzyme concentrations

and sufficient substrate to observe a significant spectroscopic change. The results obtained sug-

gest that, for a mechanistic fitting technique, the ratio of enzyme and substrate concentrations

is less critical if the speed of the reaction is sufficiently low [145]. As such this technique has

the potential to make pre-steady state kinetics easier to investigate experimentally.

The majority of enzymes considered do not produce a directly observable spectroscopic change.

As such in order to study them using spectroscopic techniques a coupled assay is required. Using

such systems when collecting pre-steady state time courses complicates parameter estimation,
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since the coupling reactions may affect the time courses measured. A model could be developed

which would include all reaction steps, however structural identifiability analysis of such a model

is likely to prove computationally intractable. However each of the coupling reactions used is

enzyme catalysed and uses two substrates, as such individual structural identifiability analyses

should prove possible. Thus it may be possible to characterise these systems as follows. First

the reaction directly responsible for the measured absorbance change would be characterised in

the absence of the other reactions. Then this reaction would be used to allow time courses for

the immediately preceding reaction. It should be possible to eliminate the effect of the coupling

reaction using the rate constants obtained; allowing the next reaction to be characterised. In

this way it may be possible to characterise each reaction.

However the time courses obtained for the reaction of interest may be insufficiently sensitive

to the rate constants of this reaction to allow parameter estimation. As such an alternative

approach may be required. Modification of the enzyme, to incorporate a fluorescing amino

acid within the active site, might allow the binding of enzyme and substrate to be monitored

directly [191]. This method suffers from uncertainty as to which reaction species are measured

especially where there are multiple enzyme substrate complexes within the reaction mechanism.

The use of a fluorescent probe of phosphate concentration avoids this problem and has been

used for pre-steady state kinetic characterisations [192, 193].

It should also be noted that techniques like isothermal calorimetry [182], nuclear magnetic

resonance [194], and even HPLC (in conjunction with quenched flow techniques) [84] have also

been successfully applied to studying this sort of kinetic problem. Thus it may not be necessary

to use spectroscopic techniques at all. The focus on spectroscopic techniques in this work arises

principally from the particular suitability of the data produced by such techniques to direct

parameter estimation.
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8.3 Pathway modelling

An understanding of the dynamics of the fluxes through the peptidoglycan biosynthesis pathway

may provide insight valuable in the development of new antibacterials targeting this pathway.

Of particular interest are the interactions of inhibitors on this pathway since if an antibacterial

influences multiple reactions, natural metabolic resistance may be reduced. In addition in such

cases development of drug resistance by alteration of the target is more difficult, due to the

increased number of mutations necessary. Species specific differences between the pathway

dynamics may provide a similarly specific exploitable target. This may allow the development

of drugs which target pathogenic bacteria while leaving the majority of the bacterial population

unaffected. Such a drug would not create the opportunities for rapid proliferation of a newly

resistant bacteria which are a factor the development and spread of antibacterial resistance [7].

Experimental data are ultimately limited to describing the system under a specific set of con-

ditions, those used in the experiment. A more general understanding of the system requires a

mathematical model which describes the results of the individual experiments. Models of the

cytoplasmic phase of peptidoglycan biosynthesis have been developed for E. coli and S. pneu-

moniae. The results that can be obtained from these models and their limitations are discussed

below. The first two sections discuss ways to improve model validation. The results are applied

to the problem of antibacterial development in the third section. Ways to extend and improve

these models are discussed in the final section.

8.3.1 Model validation

Mathematical models of quasi-steady state enzyme kinetics are well developed [144]. An in silico

model of the cytoplasmic phase of the peptidoglycan biosynthesis pathway was constructed by

coupling steady state representations of the reactions catalysed by MurA-F (Chapter 7). This

model can be adjusted to represent the pathways arising in particular species by appropriate
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choice of parameters. The pathway was also reconstructed in vitro using purified enzymes from

S. pneumoniae; and monitored using the ADP release assay. There is nothing inherently novel

in either of these two techniques. However this is the first time they have been applied to the

study of this pathway. It should be further noted that while many of these reactions have been

separately characterised, Table 7.4, they have never been characterised under a consistent set

of experimental conditions. This is a vital requirement for parameters to be used in pathway

modelling, since it makes little sense to use parameters corresponding to different experimental

conditions in the same model.

The in silico model accurately predicted the ADP production of this in vitro pathway under

the conditions considered. The model was expanded to incorporate inhibition of MurA by

two pathway intermediates and MurC by an external inhibitor. The predictions of this model

corresponded less well to experimental data; although they remain similar. The results obtained

are encouraging; however it is clear that further validation is required. It would clearly be

beneficial to consider other outputs of the pathway, that is the concentrations of other species.

This would require the use of other assays and is discussed in detail in the following section. In

the remainder of this section a number of other issues in the validation process are considered.

The model developed considers only processes directly related to peptidoglycan biosynthesis.

The possibility of background processes, such as background ATPase activity or degradation of

substrates, is not considered. However data from the in vitro reconstruction show significantly

more NADH oxidation than can be accounted for by the available substrate. It is necessary to

either incorporate this background oxidation into the model or eliminate it from experimental

data. The latter option was used here; as this process seemed most likely to be an experimental

artifact. The model chosen was however rather crude based simply on exponential or linear

decay of the available NADH. A superior model could be developed if the cause of this oxidation

were to be isolated and then characterised. A similar analysis would be needed for each of the

alternative measurements described below.
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The production of adenosine tetraphosphate by MurD and MurE is unlikely to influence these

results, given the presence of an excess of the relevant amino-acids [109, 110]; it might however

have a confounding effect under alternative initial conditions. It would be advisable to determine

whether the amino-acid ligases and MurB have (other) background ATPase or NADPH oxidase

activity in the absence of other substrates. Similarly the possibility of enzyme degradation,

with resulting loss of activity, over time courses measured has not been considered. UDP-

intermediates can be produced using appropriately truncated in vitro pathways, which are

typically run overnight. As such it seems likely that no significant loss of activity would occur

over the time courses considered and that the reactions will proceed to completion. Nonetheless

it would be worth checking that these inferences are accurate.

The model constructed currently corresponds to an in vitro situation. Given that the in vivo

concentrations of the enzymes catalysing this pathway are as yet unknown it is not yet possible

to construct a model of the in vivo pathway. However for E. coli the in vivo steady state con-

centrations of several UDP-intermediates are known [116, 117, 118]. The ratio between any two

pathway adjacent intermediates is determined by the rates of turnover of these intermediates.

As such, given the relevant enzymes have been kinetically characterised, it should be possible

to infer ratios of the enzyme concentrations from these data.

8.3.2 Alternative measurements

Phosphate release can be measured for a reconstructed pathway using the assay described in

Section 2.4.3. This would provide additional data with which to validate the in silico model.

Phosphate and ADP are produced by the four amino-acid ligases in equal amounts; however

phosphate is also produced by MurA. Thus the difference between these two time courses should

be entirely due to the contribution of MurA. Thus the activity of MurA within the pathway

could be monitored directly if all background production of phosphate and ADP can be elimi-

nated. Unfortunately the enzyme used to recycle NADPH for MurB, isocitrate dehydrogenase,
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was found to be heavily contaminated with phosphate. This exhausted the available MESG,

preventing this assay from being used to record time courses for the reconstructed pathway. The

contaminating phosphate could be eliminated by FPLC using a size exclusion column (Section

2.3.5).

Direct monitoring of MurB is also possible if NADPH is not recycled (Section 2.4.4); this

would result in depletion of NADPH which would affect the pathway dynamics. Increasing the

concentration of NADPH so that this depletion has no significant effect may cause substrate

inhibition of MurB to become a significant factor. If MurB has a significant NADPH oxidase

activity it would have to be accounted for in the analysis of this assay.

An assay has been developed which uses a penicillin binding protein, DacB, to release D-Ala

from UDP-MurNAc-pentapeptide. The oxidative deamination of D-Ala is used to produce

hydrogen peroxide, which in turn is reduced using Amplex Red. Oxidation of Amplex Red

produces an absorbance peak at 563nm [187]. This assay would allow the activity of MurF

within the pathway to be monitored directly. However quite high concentrations of the relatively

unstable DacB are required to allow rapid coupling, such concentrations are hard to achieve.

In addition DTT, which is universally present in all assays undertaken in this work, will reduce

Amplex Red, interfering with measurement; as such DTT should not be used in conjunction

with this assay.

The Caryr 100 spectrometer can be used to record absorbance spectra over a time course

(Varian Medical Systems Inc, Palo Alto, USA). This approach reduces the number of data

points recorded at any given absorbance proportionally to the range of absorbances which must

be measured. However it also permits several reaction species to be monitored in a single time

course. The absorbances used by the phosphate, ADP and NADPH assays are very similar;

which could confuse readings made using this approach. However NADH analogues, which

absorb at a higher wavelength, could be substituted in the ADP assay, to allow the phosphate,

ADP and UDP-MurNAc-pentapeptide assays to be combined in this way (Sigma-Aldrich, St
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Louis, USA).

The techniques described above make use of real-time continuous assays. Such assays produce

very dense time courses for a relatively small number of reaction species. It is possible to

produce time courses with complementary characteristics, relatively sparse but for a majority

of the reaction species, using stopped assays. Ongoing reactions are quenched at different time

points by rapid denaturation of the enzymes or introduction of potent inhibitors. The reaction

mixture can then be analysed using FPLC or mass spectrometry to determine the concentrations

of most, if not all, of the reaction species.

These techniques can also be applied to analysis of in vivo concentrations of reaction species.

Samples are taken from a culture of bacteria, lysed and the reactions quenched. The cell

contents are then analysed as before. The dynamics of in vivo pathways could be investigated

by challenging the culture with a potent antibacterial targeting the beginning of the pathway,

fosfomycin for example [26]. Samples could then be taken at suitable intervals and analysed as

described above; allowing the depletion of substrates within the pathway to be followed.

8.3.3 Comparison of pathway dynamics as a tool in antibacterial development

In silico models were used to compare the dynamics of the E. coli and S. pneumoniae path-

ways (Section 7.2.4). Since the enzyme concentrations used are not representative of in vivo

concentrations, these results only allow the relative efficiencies of the enzymes to be compared.

Nonetheless they highlight some differences between the two pathways which could be exploited

in the design of antibacterials, notably that the early stage of the S. pneumoniae pathway may

be particularly vulnerable to inhibitors.

Competitive inhibitors increase the apparent km with respect to the substrate with which the

inhibitor competes [67]. Thus if this substrate accumulates to a sufficient degree normal rates

of reaction will be restored. This provides a form of metabolic resistance to an inhibitor. As
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such the effectiveness of a competitive inhibitor is maximised if the substrate with which it

competes cannot accumulate; either because it is used by other reactions or due to feedback

control within the pathway. A substrate like ATP, which is used by many reactions within

the cell is thus a good target for a competitive inhibitor. Similarly the inhibition of MurA by

UDPPEE and UDP-MurNAc provides an example of an exploitable feedback loop. A recently

developed inhibitor of MurC, C-1 [63], was investigated in this context (Section 7.4.2). The

interaction was shown to potentially reduce the concentration of C-1 needed to achieve a lethal

reduction in overall production of UDP-MurNAc-pentapeptide.

8.3.4 Possible extensions to the models developed

The models developed in Section 7 describe an in vitro reconstruction of the cytoplasmic phase

of the biosynthesis pathway. The E. coli model could be significantly improved by conducting

kinetic characterisations of the enzymes under a consistent set of initial conditions. As alluded

to throughout the previous sections both models could be modified to describe in vivo dynam-

ics by incorporating in vivo enzyme concentrations. Clearly this requires the determination

of these concentrations. Model predictions could then be compared to in vivo intermediate

concentrations.

The model could then be extended in two directions. Given that enzyme concentrations have

been incorporated it is perhaps natural to consider the mechanisms by which those enzyme

concentrations are achieved. It is thought that the genes encoding the enzymes associated

with the cytoplasmic phase are expressed constitutively, that is continuously, and that protein

concentrations are insensitive to growth conditions [195, 186]. However these conclusions were

drawn from studies which only considered E. coli. Gram-positive bacteria express two distinct

MurA proteins [82]. This suggests potential for additional regulation of protein expression in

this pathway. Furthermore in resistant S. aureus regulation of cell wall synthesis steps has

been identified [196]. As such there may be, as yet unidentified, regulatory networks affecting
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these genes which are not connected to growth conditions. Thus a model of the cytoplasmic

phase in which enzyme concentrations are constant is not unrepresentative of in vivo conditions.

However investigation of regulation on the transcriptional level seems apposite, especially for

Gram-positive bacteria.

The alternative to modelling protein expression is to extend the pathway to later and earlier

steps. The majority of the reaction steps in both directions are known [80, 119]; so such an

extension may be relatively simple. Certainly the side reactions, providing the amino acids,

and earlier stages of the hexosamine biosynthesis pathway could be incorporated with ease.

The membrane bound phases may prove more challenging. These reactions can be kinetically

characterised [125, 126, 127, 128, 124]; however the models used do not take into account

the motion restrictions imposed by the cell membrane. Given that enzyme and at least one

substrate are constrained to move only within two dimensions it is necessary to modify even

the most general assumptions of mass action kinetics [130]. As such extension of this model to

the membrane bound phases is a non-trivial problem. Finally it is worth noting that, as in the

majority of such studies, the issues of crowding and compartmentalisation have been ignored.

The theory necessary to handle these problems is under development [197, 198, 199]. Practical

investigation of such problems is however experimentally challenging. Some effects of crowding

can be reproduced using inert polymers [200]. However the more general problem, the increased

efficiency inherent in a pathway composed of closely associated enzymes, is less tractable in

vitro. Furthermore intracellular arrangement, and hence the degree of compartmentalisation,

of the peptidoglycan biosynthesis enzymes is as yet uninvestigated. These issues constitute a

significant area for further work assuming appropriate tools can be developed with which to

investigate them.
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8.4 Conclusions

A model of the cytoplasmic phase of the S. pneumoniae peptidoglycan biosynthesis pathway has

been developed and validated. A similar unvalidated model has been constructed for the equiva-

lent E. coli pathway using kinetic parameters taken from the available literature. Comparison of

these models suggests different antibacterial strategies for each species. An inhibitory feedback

loop was identified and modelled in the S. pneumoniae pathway. Experimental and simulated

data were used to show that this process could be exploited to enhance the effectiveness of an

inhibitor of the pathway.

The models constructed provide a basis from which more detailed models of these pathways

can be developed. The results obtained illustrate the potential of pathway models to inform

the development of antibacterials.

Direct parameter estimation from progress curves has been shown to be a viable alternative

to typical approaches to kinetic characterisation of enzymes. The essential a priori analysis

necessary before use of such techniques has been undertaken for a significant subset of biolog-

ically relevant reaction mechanisms. The input-output relationship approach to identifiability

and indistinguishability proved highly effective in the study of quasi-steady state models, but

less effective using the more complex, and reversible, transient models, where the Taylor series

approach was generally more effective.

Nonetheless a structurally identifiable model is not guaranteed to yield high quality parameter

estimates. The sensitivity of parameters to the time courses considered must also be assessed.

It was found that estimation of the parameters for quasi-steady state ping-pong models required

at least two time courses for optimal parameter sensitivity. The investigation of these issues,

through parameter estimation to simulated time courses and local sensitivity analysis of each

parameter, is just as important as the structural identifiability in the parameter estimation

process.
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APPENDIX



A. DETERMINATION OF BACKGROUND NAD+ PRODUCTION

The raw data presented in Section 7.2.1 were affected by background production of NAD+.

Measurements were made for approximately 2 minutes prior to the addition of MurA in which

base rates were observed for each of the four reaction mixtures. (Given the sampling rates de-

scribed in Section 2.4.2 this corresponds to between twelve and thirty measurements dependent

on the number of time courses being measured.) In addition as the reactions reached completion

the rate of NAD+ production did not converge to zero but rather to a positive non-zero rate.

These start and end background rates differed by factors of between five and ten and as such

it was insufficient merely to estimate NAD+ production from either rate. Furthermore the end

rates differed in a manner which appeared dependent on the amount of NAD+ produced (Figure

A.1(a)). This suggests that the background rate may arise from oxidation of NADH by LDH

in the absence of pyruvate in a concentration dependent manner. As such a single exponential

model, f([NAD+]) = AeB[NAD+], relating concentration of NAD+ ([NAD+]) was fitted to the

data (Figure A.1(a)). This model did not adequately fit the data obtained so a double expo-

nential model, f([NAD+]) = A1e
B1[NAD+] + A2e

B2[NAD+], was also fitted, with better results

(Figure A.1(a)). Finally a third model referred to as a linear model was constructed, to create

a smooth transition between the two rates, f(t) = r0
t1−t
t1

+ r1
t
t1
, where r0 and r1 are the start

and end rates, t is time and t1 the end time. The resulting predictions of background rate and

NAD+ production are presented below (Figure A.2(a)-(f)).
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Figure A.1: Construction of exponential models of background NAD+ production. Graph (a) plots
observed background rate against concentration of NAD+ produced, single exponential
and double exponential fits, curves are colour coded according to the key provided.
Table (b) contains the constants used to construct the single and double exponential
plots.
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Figure A.2: Predicted background rate and NAD+ production dependent on model used. Graphs
(a), (c), and (e) plot the predicted background rate against time for the single exponen-
tial, double exponential and linear models respectively. Graphs (b), (d), and (f) plot
the predicted NAD+ production for the same models.



B. EXTENDED COMPARISON OF SIMULATED TO EXPERIMENTAL

DATA

A total of sixteen different pathways were simulated using four different sets of parameters as

described in Section 7.2.3. The simulations arising from three of these sets of parameters did

not result in close matches between experimental and simulated data and as such were not

covered in detail. The resulting graphs are shown below (Figures B.1, B.2, B.3). The graphs

show a significant difference between predicted and experimental NAD+ production. Figure

B.4(a) plots the best RMS error values between predicted and experimental curves, showing

the fourth case, used in the subsequent analysis was the best predictor of the experimental data.

The NAD+ production under cases 2 and 3 are compared in Figure B.4(b). The two curves are

almost indistinguishable; NAD+ production for case 3 is slightly slower than that for case 2.
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Figure B.1: Comparison of experimental time courses to those simulated using Model 7.2.3.1.
Graphs (a)-(d) plot concentration of NAD+ produced (Conc) against time in minutes.
Graphs (a), (b), (c) and (d) correspond to the pathways A to C, A to D, A to E and A to
F respectively. The adjusted experimental time courses are plotted in colour according
to the keys provided. The simulated time course is plotted in black.
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Figure B.2: Comparison of experimental time courses to those simulated using 7.2.3.2. Graphs
(a)-(d) are as in Figure B.1.
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Figure B.3: Comparison of experimental time courses to those simulated using 7.2.3.3. Graphs
(a)-(d) are as in Figure B.1.
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Figure B.4: Comparison of RMS error for the models for NAD+ production and subpathways used.
Graph (a) plots the lowest RMSE for each model and pathway used. Models 7.2.3.1-
4 are referred to as 1AB, 1AC, 2 and 3 respectively. Graph (b) plots the simulated
concentration of NAD+ produced by the full pathway for Models 7.2.3.2 and 7.2.3.3
referred to as 1AC and 2 respectively.



C. TABLES OF PARAMETERS FOR THE MODELS USED IN CHAPTER 7

The parameters of each of the models used in Chapter 7 are tabulated below. Models were

implemented in COPASI as described in Section 3.5. Certain reactions, corresponding to

necessary recycling and monitoring reactions, are modelled only by a rate. It is assumed that

these reactions are sufficiently fast to ensure immediate turnover of their substrates.



C
.
T
a
b
les

o
f
P
a
ra
m
eters

fo
r
th
e
M
o
d
els

u
sed

in
C
h
a
p
ter

7
2
7
5

Enzyme Parameter Value Enzyme Parameter Value Reactions Rate (s−1)

MurA kcat (s
−1) 8.07 MurB kcat (s

−1) 3.17 vIDH 10000

km (PEP) (µM) 4.81 km (NADPH) (µM) 20.9 vPK/LDH 10000

km (UGP) (µM) 390 km (UDPPEE) (µM) 32.8 Species Init Conc (µM)

MurC kcat (s
−1) 7.58 MurD kcat (s

−1) 36.5 UGP 50

km (ATP) (µM) 22.4 km (ATP) (µM) 38.2 UDPPEE 0

km (L-Ala) (µM) 716 km (D-Glu) (µM) 293 UMN 0

km (UMN) (µM) 202 km (U1P) (µM) 26.2 U1P 0

MurE kcat (s
−1) 73.5 MurF kcat (s

−1) 29.2 U2P 0

km (ATP) (µM) 191.2 km (ATP) (µM) 12.3 U3P 0

km (L-Lys) (µM) 498.6 km (D-Ala-D-Ala) (µM) 31.7 PEP 1230

km (U2P) (µM) 13.4 km (U3P) (µM) 3.40 ATP 200

Species Init Conc (µM) Species Init Conc (µM) Species Init Conc (µM) NADPH 100

L-Ala 10000 D-Glu 10000 L-Lys 10000 NADH 1000

D-Ala-D-Ala 10000 MurA-F 0.1

Table C.1: Table of parameters for Model 7.2.1.1. Kinetic parameters for error bars found in Table 5.1. Subpathways were modelled by eliminating
unnecessary enzymes and substrates.
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Enzyme Parameter Value Enzyme Parameter Value

MurA kcat (s
−1) 28.8 MurB kcat (s

−1) 4.12

km (PEP) (µM) 4.81 km (NADPH) (µM) 20.9

km (UGP) (µM) 390 km (UDPPEE) (µM) 32.8

MurC kcat (s
−1) 7.58 MurD kcat (s

−1) 36.5

km (ATP) (µM) 22.4 km (ATP) (µM) 38.2

km (L-Ala) (µM) 716 km (D-Glu) (µM) 293

km (UMN) (µM) 202 km (U1P) (µM) 26.2

MurE kcat (s
−1) 73.5 MurF kcat (s

−1) 29.2

km (ATP) (µM) 191.2 km (ATP) (µM) 12.3

km (L-Lys) (µM) 498.6 km (D-Ala-D-Ala) (µM) 31.7

km (U2P) (µM) 13.4 km (U3P) (µM) 3.40

Table C.2: Table of parameters for Model 7.2.3.1. Initial conditions and reactions were as found
in Table C.1. Subpathways were modelled by eliminating unnecessary enzymes and
substrates.

Enzyme Parameter Value Enzyme Parameter Value

MurA kcat (s
−1) 28.8 MurB kcat (s

−1) 4.12

km (PEP) (µM) 4.81 km (NADPH) (µM) 20.9

km (UGP) (µM) 390 km (UDPPEE) (µM) 32.8

MurC kcat (s
−1) 26.6 MurD kcat (s

−1) 36.5

km (ATP) (µM) 22.4 km (ATP) (µM) 38.2

km (L-Ala) (µM) 716 km (D-Glu) (µM) 293

km (UMN) (µM) 202 km (U1P) (µM) 26.2

MurE kcat (s
−1) 73.5 MurF kcat (s

−1) 29.2

km (ATP) (µM) 191.2 km (ATP) (µM) 12.3

km (L-Lys) (µM) 498.6 km (D-Ala-D-Ala) (µM) 31.7

km (U2P) (µM) 13.4 km (U3P) (µM) 3.40

Table C.3: Table of parameters for Model 7.2.3.2. Initial conditions and reactions were as found
in Table C.1. Subpathways were modelled by eliminating unnecessary enzymes and
substrates.
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Enzyme Parameter Value Enzyme Parameter Value

MurA kcat (s
−1) 28.8 MurB kcat (s

−1) 4.12

km (PEP) (µM) 4.81 km (NADPH) (µM) 20.9

km (UGP) (µM) 390 km (UDPPEE) (µM) 32.8

MurC kcat (s
−1) 26.6 MurD kcat (s

−1) 21.5

km (ATP) (µM) 22.4 km (ATP) (µM) 38.2

km (L-Ala) (µM) 716 km (D-Glu) (µM) 293

km (UMN) (µM) 202 km (U1P) (µM) 26.2

MurE kcat (s
−1) 63.1 MurF kcat (s

−1) 23.9

km (ATP) (µM) 191.2 km (ATP) (µM) 12.3

km (L-Lys) (µM) 498.6 km (D-Ala-D-Ala) (µM) 31.7

km (U2P) (µM) 13.4 km (U3P) (µM) 3.40

Table C.4: Table of parameters for Model 7.2.3.3. Initial conditions and reactions were as found
in Table C.1. Subpathways were modelled by eliminating unnecessary enzymes and
substrates.

Enzyme Parameter Value Enzyme Parameter Value

MurA kcat (s
−1) 28.8 MurB kcat (s

−1) 4.46

km (PEP) (µM) 4.81 km (NADPH) (µM) 41.2

km (UGP) (µM) 390 km (UDPPEE) (µM) 68.7

Table C.5: Table of parameters for Model 7.2.3.4. Initial conditions and reactions were as found in
Table C.1. Parameters for MurC, MurD, MurE and MurF are unchanged from those
found in Table C.4. Subpathways were modelled by eliminating unnecessary enzymes
and substrates.

Enzyme Parameter Value Enzyme Parameter Value

MurA kcat (s
−1) 28.8 MurB kcat (s

−1) 4.46

km (PEP) (µM) 4.81 km (NADPH) (µM) 41.2

km (UGP) (µM) 390 km (UDPPEE) (µM) 68.7

ki (UMN) (µM) 19.1

Table C.6: Table of parameters for Model 7.4.1.1 and 7.4.1.2. Initial conditions and reactions were
as found in Table C.1. Parameters for MurC, MurD, MurE and MurF are unchanged
from those found in Table C.4. Subpathways were modelled by eliminating unnecessary
enzymes and substrates.
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Enzyme Parameter Value Enzyme Parameter Val 3 Val 4

MurA kcat (s
−1) 28.8 MurB kcat (s

−1) 4.46 4.12

km (PEP) (µM) 4.81 km (NADPH) (µM) 41.2 20.9

km (UGP) (µM) 390 km (UDPPEE) (µM) 68.7 32.8

ki (UMN) (µM) 19.1

ki (UDPPEE) (µM) 19.1

Table C.7: Table of parameters for Model 7.4.1.3-4. Initial conditions and reactions were as found
in Table C.1. Parameters for MurC, MurD, MurE and MurF are unchanged from those
found in Table C.4. Model 7.4.1.3 uses parameters for MurB given in column Val 3. Model
7.4.1.4 uses parameters for MurB given in column Val 4. Subpathways were modelled by
eliminating unnecessary enzymes and substrates.

Enzyme Parameter Value Enzyme Parameter Value

MurA kcat (s
−1) 28.8 MurB kcat (s

−1) 4.46

km (PEP) (µM) 4.81 km (NADPH) (µM) 41.2

km (UGP) (µM) 390 km (UDPPEE) (µM) 62.7

ki (UMN) (µM) 19.1

MurC kcat (s
−1) 26.6 MurD kcat (s

−1) 21.5

km (ATP) (µM) 22.4 km (ATP) (µM) 38.2

km (L-Ala) (µM) 716 km (D-Glu) (µM) 293

km (UMN) (µM) 202 km (U1P) (µM) 26.2

ki (C-1) (µM) 15.3

MurE kcat (s
−1) 63.1 MurF kcat (s

−1) 23.9

km (ATP) (µM) 191.2 km (ATP) (µM) 12.3

km (L-Lys) (µM) 498.6 km (D-Ala-D-Ala) (µM) 31.7

km (U2P) (µM) 13.4 km (U3P) (µM) 3.40

Table C.8: Table of parameters for Models 7.4.1.5 and 7.4.1.6. Initial conditions and reactions were
as found in Table C.1, C-1 concentration was either 0 or 200 µM. Subpathways were
modelled by eliminating unnecessary enzymes and substrates. The IDH reaction was
eliminated when simulating measurement of NADPH. Initial conditions were changed as
experimental conditions dictated.
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Enzyme Parameter Value Enzyme Parameter Value

MurA kcat (s
−1) 28.8 MurB kcat (s

−1) 4.46

km (PEP) (µM) 4.81 km (NADPH) (µM) 41.2

km (UGP) (µM) 390 km (UDPPEE) (µM) 62.7

ki (UMN) (µM) 19.1

ki
∗ (UDPPEE) (µM) var

Table C.9: Table of parameters for Models 7.4.1.7 (ki (UDPPEE) 19.1) and 7.4.1.8 (ki (UDPPEE)
10). Initial conditions and reactions were as found in Table C.1; concentrations of C-1
were either 0 or 200µM. Parameters for MurC, MurD, MurE and MurF are unchanged
from those found in Table C.8. Subpathways were modelled by eliminating unnecessary
enzymes and substrates. The IDH reaction was eliminated when simulating measurement
of NADPH. Initial conditions were changed as experimental conditions dictated.

Enzyme Parameter Value Enzyme Parameter Value

MurA kcat (s
−1) 28.8 MurB kcat (s

−1) 4.12

km (PEP) (µM) 4.81 km (NADPH) (µM) 20.9

km (UGP) (µM) 390 km (UDPPEE) (µM) 32.8

ki (UMN) (µM) 19.1

ki
∗ (UMN) (µM) var

Table C.10: Table of parameters for Models 7.4.1.9 (ki (UDPPEE) 19.1) and 7.4.1.10 (ki (UDPPEE)
10). Initial conditions and reactions were as found in Table C.1; concentrations of C-1
were either 0 or 200µM. Parameters for MurC, MurD, MurE and MurF are unchanged
from those found in Table C.8. Subpathways were modelled by eliminating unnecessary
enzymes and substrates. The IDH reaction was eliminated when simulating measure-
ment of NADPH. Initial conditions were changed as experimental conditions dictated.
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Enzyme Parameter Value Enzyme Parameter Value Reactions Rate (s−1)

MurA kcat
∗ (s−1) 28.8 (7.8) MurB kcat (s

−1) 4.46 vIDH 10000

km (PEP) (µM) 4.81 km (NADPH) (µM) 41.2 vPK/LDH 10000

km (UGP) (µM) 390 km (UDPPEE) (µM) 62.7 v‡UGPrep 0.145 (0.16) (µM)

ki
† (UMN) (µM) 19.1 Species Init Conc (µM)

ki
† (UMN) (µM) 19.1 UGP 100

MurC kcat (s
−1) 26.6 MurD kcat (s

−1) 21.5 UDPPEE 0

km (ATP) (µM) 22.4 km (ATP) (µM) 38.2 UMN 0

km (L-Ala) (µM) 716 km (D-Glu) (µM) 293 U1P 0

km (UMN) (µM) 202 km (U1P) (µM) 26.2 U2P 0

ki (C-1) (µM) 15.3 U3P 0

MurE kcat (s
−1) 63.1 MurF kcat (s

−1) 23.9 PEP 10000

km (ATP) (µM) 191.2 km (ATP) (µM) 12.3 ATP 200

km (L-Lys) (µM) 498.6 km (D-Ala-D-Ala) (µM) 31.7 NADPH 100

km (U2P) (µM) 13.4 km (U3P) (µM) 3.40 NADH 1000

Species Init Conc (µM) Species Init Conc (µM) Species Init Conc (µM) MurA-F 0.1

L-Ala 10000 D-Glu 10000 L-Lys 10000 D-Ala-D-Ala 10000

Table C.11: Table of parameters for Models 7.4.2.1-4. A range of initial concentration of C-1 were used. For even numbered models value in brackets
was used for the kcat of MurA and the kis marked with a † were eliminated. For Models 7.4.2.3 and 7.4.2.4 the reaction UGPrep was
included. It represents simple flux of UGP into the system at the given rate, the value in brackets being used for Model 7.4.2.4.


