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We study the effect of WIMP annihilation on the temperature of a neutron star. We shall argue that the
released energy due to WIMP annihilation inside the neutron stars might affect the temperature of stars
older than 10� 106 years, flattening out the temperature at �104 K for a typical neutron star.
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I. INTRODUCTION

Since Zwicky proposed the problem of the ‘‘missing
mass’’ in 1933, a lot of theoretical and experimental effort
has been made in order to unveil the nature of dark matter.
Today, WMAP has provided very accurate data regarding
the matter density in the Universe [1]. The energy density
of the Universe is composed of 4% atoms and roughly 22%
dark matter. Data from recent observations indicate that
dark matter cannot be attributed more than 20% to dim
objects like black holes, brown dwarfs, and giant planets
[2]. From a theoretical point of view, several candidates
rise from different theories, such as neutralinos [3,4],
Majorana neutrinos, and, lately, technibaryons provided
by theories that are not ruled out by the electroweak
precision measurements [5–10]. From the experimental
point of view, the focus is on the direct and indirect
detection of dark matter particles. The direct detection
might occur in underground experiments like CDMS
that, in principle, can detect recoil energies from collisions
between weakly interacting massive particles (WIMPs)
and nuclei, or atmospheric experiments like the X-ray
Quantum Calorimeter (XQC), where strongly interacting
particles might collide with the detector. The indirect
detection might occur via gamma-ray and neutrino tele-
scopes, where the presence of WIMPs can be detected
indirectly, by observing products of WIMP annihilations.
In particular, provided that WIMPs can annihilate and
because they can be trapped inside the Earth or the sun,
such annihilations would produce jets of particles and
more specifically neutrinos coming straight from the center
of the Earth or the sun, that could possibly be detected by
neutrino telescopes [11–13]. On the other hand, gamma-
ray telescopes can, in principle, detect gamma rays pro-
duced by WIMP annihilation at the center of the Galaxy
[14]. Both direct and indirect detection experiments can
impose strong constraints on the cross section of the WIMP
with the nuclei. For instance, heavy Dirac neutrinos have
been excluded as WIMPs for masses up to several TeV,
because their elastic cross section with nuclei is suffi-

ciently large and therefore they should have been detected
by now in CDMS [15].

In this paper we investigate the possibility of a different
kind of indirect signature of WIMP annihilation. Instead of
looking at the indirect signals from the annihilation of
trapped WIMPs inside the Earth or the sun, we examine
the consequences of WIMP annihilation on the tempera-
ture of neutron stars. The neutron stars are massive com-
pact objects with very low temperatures. Naively one
might expect that, since the mass of the trapped WIMPs
inside a neutron star represents a tiny fraction of the overall
mass of the star, such an effect should be negligible.
However, the annihilation of massive particles inside the
star releases a huge amount of energy that is heating up the
star. As we shall argue, once the accretion rate of dark
matter particles equilibrates the rate of annihilation, the
amount of released energy is independent of the star’s
temperature, and therefore at late times the WIMP annihi-
lation can keep the star at a constant temperature that
depends on the mass and the radius of the star, the cross
section of annihilation, and the local dark matter density of
the star.

The paper is organized as follows: First we calculate the
rate of dark matter accretion onto the neutron star includ-
ing general relativity corrections. Then we calculate the
annihilation rate for the WIMPs, and we calculate the
effect of the WIMP annihilation on the cooling curves of
a typical neutron star made of regular nuclear matter. We
present our conclusions in the last section.

II. WIMP’S ACCRETION RATE ONTO THE
NEUTRON STAR

The accretion of dark matter particles inside the Earth
and the sun is not a new subject. Press and Spergel studied
first in [11] the capture rate of WIMPs inside the Earth and
the sun. More elaborate calculations were also done by
Gould [12,13], taking into account several effects specifi-
cally for the case of the Earth and the sun. An estimate of
the accretion rate onto a neutron star was also provided by
Goldman and Nussinov [16], who were the first to study
effects of WIMPs on neutron stars. In this section we
calculate the accretion rate of WIMPs onto a typical neu-*kouvaris@nbi.dk
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tron star including also general relativity corrections that
turn out to affect the rate up to 70%. Our derivation is along
the lines of [11]. We assume that the WIMP population has
a Maxwell-Boltzmann distribution of velocities,

 p�v�dv � n0

�
3

2� �v2

�
3=2

4�v2 exp
�
�3v2

2 �v2

�
dv; (1)

where �v � 270 km=s, and n0 is the number density of the
WIMPs in the neighborhood of the neutron star. The flux of
WIMPs (number per area per time) that crosses a spherical
surface of radius R, with velocity between v and v� dv
and angle with respect to the normal between � and ��
d�, is

 dF � n0

�
3

2� �v2

�
3=2
�v3 exp

�
�3v2

2 �v2

�
d�cos2��dv: (2)

We can express the flux in a more convenient way with
respect to the two invariants of the motion, i.e. the energy
of the WIMP per mass E � �1=2�v2 and the angular mo-
mentum per mass J � vR sin�. The total accretion rate
(number of particles per time) is [11]

 dF � 4�R2dF � n0

�
3

2� �v2

�
3=2

exp
�
�3E

�v2

�
4�2dEdJ2:

(3)

The actual capture rate of WIMPs by the star can be
calculated in two steps. The first one is to determine
what part of the phase space for E and J can give orbits
for the WIMPs that intersect with the neutron star. In the
second step we have to determine what fraction of the
particles that intersect with the star lose enough energy
so they can be trapped inside the star. For the first part of
the calculation, we have to find the trajectories that have a
perihelion (closest distance to the center of the star) at most
equal to the radius of the star. Press and Spergel calculated
this using classical Newtonian mechanics. The perihelion
is

 rperi �

�
J2

GM

���
1�

�������������������������������
1� 2

J2

GM
E
GM

s �
; (4)

where G is the gravitational constant and M is the mass of
the neutron star. This expression has two limiting cases.
For J2E� �GM�2

 rperi �
J2

2GM
; (5)

and for J2E	 �GM�2

 rperi �

������
J2

2E

s
: (6)

The two regimes are separated by the hyperbola

 

J2

GM

E
GM

� 1: (7)

Since Eq. (3) falls exponentially with respect to the energy,
we approximate (as it is done in [11]) the exponential as
unity with E varying from zero to �1=3� �v2, which is the
characteristic scale of the exponential. In addition, E is also
restricted to values smaller than E0, where E0 represents a
constant that parametrizes the maximum kinetic energy per
mass of the WIMP at an asymptotically large distance from
the star in order for the WIMP to be captured by the star.
We shall determine E0 later on. Therefore, as it was argued
in [11], the accretion rate of capturable WIMPs is given by
(3), if we integrate over E from zero to the minimum
between �1=3� �v2 and E0 and over J2 from zero up to
2GMR [that comes from (5) if rperi � R], where R is
now the radius of the star. The rate can be written as

 F � n0

�
3

2� �v2

�
3=2

4�2�2GMR�min
�
1

3
�v2; E0

�
: (8)

This formula differs by a factor of 2 with respect to the
corresponding one in [11], as it was first pointed out by
Gould [12]. Although the above formula is a good approxi-
mate relation for the capture rate of WIMPs for the sun and
the Earth, for the case of a neutron star, general relativity
corrections increase the rate significantly. To show this, we
are going to use the timelike geodesic equations that de-
scribe the motion of a particle in a Schwarzschild metric.
The trajectory for nonrelativistic particles (such as the
WIMPs) is given by [17]

 

�
du
d�

�
2
� 2mu3 � u2 �

2

J2 mu�
2E

J2 ; (9)

wherem � GM (in natural units) and u � 1=r. We want to
find for what values of the phase space of E and J2 the
perihelion becomes smaller or equal to the radius of the
neutron star. At the perihelion du=d� � 0 and u � 1=R
(for rperi � R). If we express E in units of GM=R and J2 in
units of GMR, Eq. (9) gives

 E �
1

2

�
1�

2GM
R

�
J2 � 1: (10)

The above equation gives the relation between E and J in
order for the perihelion to be R. For E � 0, J2 � 2=�1�
2GM=R�. This means that the allowed phase space for J2

has increased compared to the Newtonian case from 2
(again in units of GMR) to 2=�1� 2GM=R�. For a typical
neutron star of mass 1.4 the solar mass M
 and a radius of
10 km, J2 � 2=�1� 2GM=R� ’ 3:4. This is a 70% in-
crease in the phase space of J2 and the capture rate com-
pared to the classical case. Therefore Eq. (8) should be
modified as

 F � n0

�
3

2� �v2

�
3=2

4�2�2GMR�
1

1� 2GM=R

� min
�

1

3
�v2; E0

�
: (11)
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Now we estimate E0. We shall show that, in the case of a
neutron star, E0 	 �1=3� �v2, and therefore Eq. (11) should
be always taken with �1=3� �v2 as the minimum. A WIMP
that intersects with the neutron star might or might not
interact with the nuclear matter inside the star. If it does
scatter at some point, the recoil energy and the energy loss
of the particle are 0< T < 4mnm�=�mn �m��

2, where T
is the recoil energy and mn and m� are the masses of the
nucleus and the mass of the WIMP, respectively. If we
assume that the scattering is isotropic, then the recoil
energy should be uniformly distributed. The condition
that holds in order to capture a WIMP is that the energy
loss in the scattering should be at least equal to the initial
kinetic energy of the WIMP at an asymptotically large
distance from the star. If this condition is fulfilled, the
WIMP stays in a bound state with the star. Therefore, for
an average collision that takes place in the star, this con-
dition can be written as

 �E �
2mnm�

�mn �m��
2

�
1�

��������������������
1�

2GM
R

s �
� E0; (12)

where we took into account the gravitational redshift ef-
fect. Again we have chosen to set c � 1. If we plug the
typical values we used before for the mass and the radius of
a neutron star and a WIMP mass of the order of TeV, we
find that E0 is 3 orders of magnitude larger than �1=3� �v2,
and therefore, for all the cases of interest, we can use (11)
with �1=3� �v2 as the minimum.

Equation (11) gives the rate of capturable WIMPs, that
is, the number of WIMPs per second that intersect with the
neutron star. However, as mentioned before, in order for
the WIMP to be trapped in the star, one or more collisions
have to take place. We know from classical mechanics that,
if the WIMP does not scatter while traveling through the
star, it cannot be captured by the star. We calculate now the
fraction of the capturable WIMPs [given by (11)] that can
yield scatters into bound orbits. Such a fraction would
depend strongly on the elastic scattering cross section of
the WIMP-nucleus system. For the typical neutron star of
mass 1:4M
 and R � 10 km, the average density of neu-
trons is � � 3M=�4�R3mn� ’ 4� 1038 neutrons=cm3. If
we take a typical value for the elastic cross section between
WIMP-neutron of the order of 10�44 cm2, the mean free
path is about 1 km. Since, for an average WIMP, even one
scattering is enough to result in a bound orbit around the
star, a mean free path of 1 km means that the fraction of the
capturable WIMPs that will be trapped is very close to 1.
To entertain this, if for simplicity we assume that the
WIMP has a straight trajectory while inside the neutron
star, a segment of 1 km corresponds to an impact parameter
of 9.9 km, which means that only if the WIMP intersects
between 9.9 and 10 km from the center of the star will it
travel a distance less than 1 km inside the star. Obviously if
the cross section is larger than 10�44 cm2, the fraction
saturates even faster to 1. We shall give now a more

quantitative answer about the fraction following the deri-
vation of [11]. The fraction f of the particles that undergo
one or more scatterings while inside the star is defined as

 f �
�

1� exp
�
�
Z ���

mn
dl
��
’

�Z ���

mn
dl
�
; (13)

where the last approximation holds if the elastic cross
section between WIMP-nucleus �� is smaller than �crit �

mnR
2=M ’ 6� 10�46 cm2. Equation (13) now reads

 f ’
��
�crit

�Z �

M=R3

dl
R

�
: (14)

In order to find f, we examine trajectories with E � 0 as in
[11], since E� GM=R. We average over J2 (which ranges
from 0 to 3.4 for our typical neutron star). For an accurate
calculation of f, we need to know the exact density profile
of the star, in order to know explicitly the mass of the star
M�r� as a function of the radius. Here we give an estimate
of f, by assuming for simplicity that the density of the star
is constant through the whole volume. This means that
M�r�=M � �r=R�3 (where M is the total mass of the
star). If we take the derivative of Eq. (9) with respect to
�, we get the following equation of motion for the WIMP
inside the neutron star:

 

d2û

d�2
� û �

1

J2

M�r�
M
� 3

GM
R

M�r�
M

û2 �
1

J2û3 �
3GM
Rû

;

(15)

where û � Ru and again J2 is measured in units of GMR.
The initial conditions of this differential equation are
û�� � 0� � 1, which means that we have chosen � � 0
at the point where the WIMP crosses the surface of the star.
For the velocity

 

dû�� � 0�

d�
�

�������������������������������
2GM
R
� 1�

2

J2

s
: (16)

The length of the path of the particle traveling inside the
star is

 

dl
R
�
d�

û2

���������������������������
dû
d�

�
2
� û2

s
: (17)

We can find the length of the path of a particle inside the
star if we integrate� from zero up to the angle that û��� �
1 again, which is the point where the particle exits from the
star. Using Eqs. (14) and (17), and after having solved
Eq. (15) numerically, and averaging over J2 from 0 to
3.4, we found that the average path inside the star is
1:87R and f � 0:45��=�crit. We should emphasize that
the above estimate of f holds for �� < �crit. It is under-
stood that if �� > �crit, f increases, saturating to 1 as soon
as �crit becomes larger than roughly 10�45 cm2. In addi-
tion, we should mention that our estimate is a lower bound
for f. This is because in our derivation we assumed a
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constant density. Neutron stars are expected to be denser as
we approach the center. In this case, f will be larger than
our estimate. To illustrate this, we examined the extreme
case where all the mass of the star is concentrated at the
core. In this scenario, although somewhat unrealistic, f
increases drastically because, for a large range of J2, the
orbits follow spirals around the center. A large fraction of
the particles will be trapped in the star, not because of
energy loss due to a collision, but due to the fact that they
are trapped gravitationally. Our expectation is that the real
case should be somewhere in the middle, and therefore we
consider our previous estimate for f as a lower bound.

Using Eq. (11) and the values for our typical neutron
star, M � 1:4M
, R � 10 km, we get the rate of accretion
of dark matter inside the star in particles per second,

 F �
3:042� 1025

m� �GeV�
� A� f; (18)

where A is a constant that parametrizes the local dark
matter density in the vicinity of the neutron star in units
of 0:3 GeV=cm3 (which is the standard dark matter density
around the Earth). For cross sections �� > 10�45 cm2,
f � 1; otherwise f is given by f � 0:45��=�crit.

III. ANNIHILATION RATE

Once the WIMP undergoes one scattering inside the star,
it loses, on average, enough energy to be captured by the
star. Even if the kinetic energy is sufficient enough to make
it exit from the star, it will be forced to return and probably
scatter again, losing even more energy. The WIMP can
repeat this process several times until its kinetic energy
reduces down to the thermal velocity inside the star. It is
easy to show that, for most cases of interest, the WIMP
thermalizes very fast compared to the other time scales of
the problem. We can make a very rough estimate of how
long it takes for a WIMP moving with the average velocity
of 270 km= sec to obtain a velocity comparable to the
thermal velocity. Let us assume that the WIMP has under-
gone one scattering and therefore has lost, on average,
energy of �2mn=m��v

2
esc=2, where vesc is the escape veloc-

ity from the star. A simple approximate calculation shows
that it will take a few seconds before the WIMP intersects
again with the star and again loses a fraction, 2mn=m�, of
its energy. This depends on the cross section of the elastic
collision between WIMP-nucleus, but as we showed in the
previous section, for �� > 10�45 cm2, this will happen on
average. In that case, it will take just a few hours before the
kinetic energy of the WIMP reduces down to the thermal
velocity. So our conclusion is that, for not extremely small
cross sections, captured WIMPs will thermalize pretty fast
and they will have a Maxwell-Boltzmann distribution in
velocity and in distance from the center of the star.

The population of dark matter WIMPs inside the star is
governed, in principle, by three processes. The first one is

the accretion of WIMPs onto the star. The second is the
evaporation, and the third one is the annihilation. Once the
WIMPs thermalize inside the star, they follow a Maxwell-
Boltzmann distribution in velocity. Particles that are in the
tail of the distribution (with large velocities) can escape
from the star, if the velocity is larger than the escape
velocity of the star. However, in the cases we are interested
in, this process is exponentially suppressed. The rate of
evaporating particles is proportional to exp��GMm�=RT�
[18]. Since the radius of a neutron star is very small, and we
are interested in WIMPs with mass of the order of TeV, the
rate becomes negligible. For a temperature of 100 keV
(which corresponds to a typical temperature of a neutron
star that is a few thousand years old), and form� � 1 TeV,
the suppression is exp��107�. Therefore we can safely
ignore the evaporation process.

If the WIMP is a Majorana particle, for example, a
Majorana neutrino, it is possible to coannihilate with an-
other one. The annihilation depends on the cross section as
well as the density of the WIMPs inside the star. The
annihilation cross section should not be confused with
the elastic cross section between WIMP-nucleus that was
mentioned before. One big difference between the two is
that the annihilation cross section for Majorana particles is
usually velocity dependent. If the WIMP is a Majorana
neutrino, it has an elastic cross section with nuclei

 �� �
2G2

F

�
�2Is; (19)

where � is the reduced mass of the system WIMP-nuclei
and Is is a form factor that depends on the nucleus [19].
The annihilation cross section of two Majorana neutrinos
depends on what channels are open for annihilation. If the
mass of the Majorana neutrinos is larger than 100 GeV, the
dominant channel is the annihilation to a pair ofW� �W�

mediated by a Z boson [20]. In the case where m� 	

100 GeV, the annihilation cross section is given by

 �A �
G2
Fm

2
�

3�
�2; (20)

where � is the velocity of the WIMP (at the center of mass
frame). Once the WIMP gets thermalized in the star,
h�2i � 3T=�2m�� (T being the temperature in the star).

The annihilation rate of WIMPs in the star is given by

 �A � h��vi
Z
n2dV; (21)

where h��vi is the thermally averaged annihilation cross
section times the velocity and n is the density of the
WIMPs inside the neutron star. For convenience we shall
assume that the density is constant inside the star. In this
case, the population of WIMPs inside the star is governed
by
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dN
dt
� F � CAN2: (22)

The constant CA � h��vi=V, where V is the volume of the
star. The accretion rate F was derived in the previous
section. The solution of Eq. (22) is

 N�t� �

������
F

CA

s
tanh

�
t
	

�
: (23)

The time scale 	 � 1=
�����������
FCA

p
. The released energy due to

the annihilation is

 E � CAN
2m� � F tanh2�t=	�m�: (24)

The amount of the released energy depends on the time
scale 	. If 	 is large compared to the age of the known
neutron stars, the hyperbolic tangent is suppressed and the
effect of the dark matter on the temperature of the star is
negligible. For particles with a velocity independent anni-
hilation cross section, 	 is given by

 	 �
2:1� 103 years����������

Af�39

m�

q ; (25)

where �39 is defined through h�Avi � �3910�39 cm2. In
the case of a Majorana particle, Eq. (23) holds only ap-
proximately because the cross section is velocity depen-
dent, and therefore in conditions of thermal equilibrium, it
is also temperature dependent. Since the temperature of the
star changes as a function of time, this means that there is
additional time dependence on the annihilation rate.
Generally, for a Majorana neutrino with mass larger than
100 GeV, the cross section is given by Eq. (20) times a
factor sin4� which denotes the suppression of the cross
section due to a mixing between the left-handed neutrino
(that interacts weakly) and a sterile right-handed neutrino
[10,20]. The time scale 	 is

 	 �
1�����������
FCA

p �
5:98� 105 years�������������������

Af�39

m2
�
� T
108�

r ; (26)

where the temperature T is measured in Kelvin degrees and
�39 is defined by the relation �A � �3910�39�2 cm2. The
mass m� is measured in GeV. Equation (26) can be written
more conveniently in terms of the mixing angle sin� as

 	 �
2:52� 105 years��������������������������
Afsin4�� T

108�
q : (27)

If the Majorana neutrino is exclusively left handed, sin� �
1, and for a temperature of 108 K, the time scale is about
105 years (depending on how much larger the local dark
matter density is in the vicinity of the star compared to the
one of the Earth). As it can be seen from (24), the annihi-
lation saturates to F for times larger than roughly 3	. As
we already mentioned, since the temperature of the star

changes in time, Eqs. (26) and (27) are approximate. We
shall return to the question of how fast the annihilation rate
reaches the saturated value in the next section.

IV. COOLING AND HEATING THE NEUTRON
STAR

In this section we investigate the influence of the WIMP
annihilation on the temperature of the neutron star.
Naively, one would expect that such an effect should be
negligible due to the fact that the accretion of dark matter
represents a tiny fraction of the whole mass of the star.
However, there are two elements that make this investiga-
tion interesting. The first one is that, although the trapped
dark matter represents a small fraction of the mass of the
star, the annihilation of two WIMPs releases a huge
amount of energy. After the annihilation, this energy is
carried mostly by leptons, quarks, and photons. Since they
cannot escape from the star, they will heat it up. A small
portion of the energy will be carried by neutrinos that will
escape and will not contribute to the heating of the star.
However, to first approximation, the energy carried by the
neutrinos is negligible compared to the one carried by
quarks, leptons, and photons. So, we are going to assume
that the whole annihilation energy will not be carried by
neutrinos, and therefore this energy will heat up the star.
The second reason we investigate this effect is that the
energy released by the annihilation and, consequently, the
emissivity of this process does not scale with the tempera-
ture. As long as the equilibrium between accretion and
annihilation has been reached, the released energy per time
remains unchanged. All the dominant cooling processes of
a neutron star scale with positive powers of T. This means
that inevitably, even if the emissivity due to WIMP anni-
hilation is small, as the temperature of the star decreases,
the WIMP annihilation emissivity will dominate at some
point.

Let us assume for the moment, and we shall examine
later under what conditions this is possible, that the time 3	
has been reached and the released energy from the annihi-
lation of the WIMPs is E � Fm�. The emissivity, i.e.
released energy per volume per time, is

 
dm �
E

4�R3=3
�

3Fm�

4�R3 � A1:16� 104 erg cm�3 s�1:

(28)

There are several processes that contribute to the cooling
of a neutron star, depending on the form of matter, the
temperature, and the density of the star. If the star is
sufficiently dense, unpaired quark matter or other exotic
phases might occur deep inside the star. If the neutron star
has unpaired quark matter, for the first million years it
cools very fast due to neutrino emission via the direct
Urca process. In this case the emissivity scales as 
� �
T6. Direct Urca processes are allowed in sufficiently dense
nuclear matter, nuclear matter with pion condensation,
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kaon condensation, or nonzero hyperon density, and in all
phases of quark matter except the Color Flavor Locked
phase; see [21] and references therein. For neutron stars
that are not in sufficiently high density, direct Urca pro-
cesses n! p� e� ��, p� e! n� � are kinematically
forbidden. In this case, a bystander neutron is needed in
order to kinematically assist the reaction. This is the so-
called modified Urca process. During the epoch dominated
by the modified Urca, the star loses energy through neu-
trino emission, by converting protons and electrons to
neutrons and vice versa. The emissivity of this process
scales as �T8. It is [22]

 
� � �1:2� 104 erg cm�3 s�1�

�
n
n0

�
2=3
�

T

107 K

�
8
; (29)

where n is the baryon density of the star and n0 �
0:17 fm�3 is the baryon density in nuclear matter. In our
calculation for the neutron star of M � 1:4M
 and R �
10 km, we are going to use the average density n � 3:9�
1038 particles per cm3 and therefore n=n0 � 2:3.

After the first million years and, roughly, as soon as the
temperature of the star drops below 108 K, the dominant
mechanism of cooling is not through neutrino emission
anymore, but through photon emission from the surface of
the star. The rate of heat loss from the surface of the star is

 L� � 4�R2�T4
surface; (30)

where � is the Stefan-Boltzmann constant and Tsurface is
the temperature of the surface of the star. The surface of a
neutron star is usually colder than the interior of the star.
This change in the temperature occurs inside the crust of
the neutron star, taking place within 100 meters below the
surface. The surface temperature of the star is well ap-
proximated by [23–25]

 Tsurface � �0:87� 106 K�
�

gs
1014 cm=s2

�
1=4
�

T

108 K

�
0:55
;

(31)

where T is the interior temperature of the star and gs �
GM=R2 is the surface gravity. The rate of heat loss L� can
now be expressed in terms of the interior temperature as

 L� � 4�R2��0:87� 106 K�4
�

gs
1014 cm=s2

��
T

108 K

�
2:2
:

(32)

If we divide L� over the volume of the star, we can get an
‘‘effective’’ emissivity of photons measured in energy over
volume and time,

 
� �
L�

�4=3��R3 � 1:8� 1014

�
T

108 K

�
2:2

erg cm�3 s�1;

(33)

where we used gs � 1:85� 1014 cm=s2.

In order to be able to derive the temperature as a function
of time, we need to know the heat capacity of the star. For a
gas of noninteracting fermions, the specific heat is given by
[22]

 cV �
k2
BT

3@3c

X
i

piF

�����������������������������
m2
i c

2 � �piF�
2

q
; (34)

where the sum runs over the different species. In the case
we investigate, namely, the one of noninteracting nuclear
matter, i runs over n, p, e and the Fermi momenta for
neutral matter in weak equilibrium are

 pnF � �340 MeV�
�
n
n0

�
1=3
; (35)

 ppF � peF � �60 MeV�
�
n
n0

�
2=3
: (36)

The cooling of the star is dictated by the differential
equation

 

dT
dt
�
�L� � L� � Ldm

VcV
�
V��
� � 
� � 
dm�

VcV

�
�
� � 
� � 
dm

cV
; (37)

where the volume of the star V drops out at the end. We
have neglected the contribution of the WIMPs to the
specific heat, since they consist of a tiny fraction of the
mass of the star. We solved Eq. (37) numerically, by
imposing an initial temperature for the star of 1010 K at
very early time. However, we should emphasize that the
temperature is very insensitive to the initial condition. It
affects the temperature only during the first years of the
star’s life, but it has no effect later on. In Fig. 1, we have
plotted in a logarithmic scale the internal and the surface
temperature of the star as a function of time, starting from
time t � 1000 years, up to 100� 106 years. We have
plotted the temperature for three different cases that cor-
respond to different local dark matter densities for the
vicinity of the star. We chose the local dark matter density
to be the one of the Earth (0:3 GeV=cm3), 10 times larger
and 100 times larger than the one of the Earth. For com-
parison, we also plotted the cooling curve of the same star
without including the effect of dark matter annihilation. As
we can see from the figures, the dark matter annihilation
does not affect the temperature of the star up to t � 10�
106 years. Between 103 and 106 years, the star cools due to
neutrino emission via the modified Urca process, while
after roughly 106 years it cools through photon emission
from its surface. However, by inspection of Eqs. (28), (29),
and (33), we see that the dark matter annihilation emissiv-
ity scales with the lowest power of T. More precisely, 
dm

does not depend on T, once equilibrium between the rate of
accretion of dark matter and the rate of annihilation has
been established. This means that inevitably, when the
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temperature of the star drops sufficiently, the power of the
dark matter annihilation that heats up the star will equal the
power of photon emission, and as a result the temperature
will remain flat as a function of time. This happens roughly
at t � 10� 106 years and at surface temperatures between
3000 and 10 000 K (depending on the local dark matter
density, the mass, and the radius of the star). To entertain
the possibility of having a neutron star with a local dark
matter density 10 or 100 times larger than 0:3 GeV=cm3,
we can use an indicative profile density for the dark matter
halo. We consider the Navarro-Frenk-White profile, where
the dark matter density is given by [26]

 ��r� �
�0

�rR�
��1� �rR�

������=
: (38)

This profile has a spike in the center of the Galaxy for
positive �. We shall use  � 1, � � 3, � � 1, R �
20 kpc, and �0 � 0:235 GeV=cm3. Given this density
profile, a neutron star with density 10 and 100 times larger
than the local dark matter density of the Earth should be
1.37 and 0.15 kpc from the center of the Galaxy, respec-
tively. The position of the Earth is roughly 8 kpc from the
center of the Galaxy. This means that a neutron star that
exhibits a flatness in temperature of �104 K for time t >
10� 106 years due to the dark matter annihilation should
lie at least�6:5 kpc away from the Earth. This limit can be
improved, if the star has ‘‘more convenient’’ mass and
radius than what we have considered for a typical neutron
star. The emissivity 
dm is proportional to F , which is
proportional to the factor MR=�1� 2GM=R�. The emis-
sivity 
dm is also proportional to the local dark matter
density. When we quote results with local dark matter
density 10 times larger than the one of the Earth, this
does not imply per se that the star has to be at a region
of the Galaxy with �dm � 3 GeV=cm3, but the factor
MR=�1� 2GM=R� times the local dark matter density
should be 10 times the same factor for our typical star
with M � 1:4M
 and R � 10 km times the density of
0:3 GeV=cm3. For example, a neutron star of M � 2M

and R � 6 km gives a factor of �26:5 compared to our
typical star. Therefore our results for density 100 times the

density of the Earth are applied also for a star with mass
and radius given in the previous sentence and a local dark
matter density of only 100=26:5 � 3:77 times the density
of dark matter around the Earth.

Now we return to a question we posed earlier. In the
results we have presented, we have assumed that equilib-
rium between the accretion and the annihilation rate has
taken place before t � 10� 106 years, where the effect of
the WIMP annihilation becomes important. If 	 is much
larger than 10� 106 years, the annihilation rate has not
reached the asymptotic value �F and the effect on the
temperature of the star will be negligible. We saw in Fig. 1
that, even if the asymptotic annihilation rate is reached
very early, the WIMP annihilation does not affect the
temperature for t < 10� 106 years (or equivalently for
temperatures higher than 104 K). This means that, up to
107 years, the temperature of the star is controlled by
modified Urca and photon emission. We already mentioned
that, if the WIMP annihilation cross section is velocity
dependent (like in the case of Majorana neutrinos),
Eqs. (24), (26), and (27) hold only approximately since 	
is temperature dependent (and implicitly time dependent).
In particular, Eqs. (26) and (27) can give a lower bound
estimate of how fast the asymptotic annihilation rate is
reached. For most candidates of our interest, Majorana
neutrinos or Majorana technibaryons [10], we can safely
take f � 1, since the elastic cross section with nuclei is not
smaller than 10�45 cm2. By using Eq. (27), with f � 1,
A � 10, and an ‘‘average’’ temperature of 108 K for the
star, we get 	� 106 years for cross section suppression
sin� > 0:1. In reality, the situation is better, because this
estimate is done assuming constant T � 108 K. However,
the temperature of the star is much higher at the beginning
(� 1010 K), and due to the modified Urca process, it drops
down to T � 108 K roughly at t � 106 years. The higher
temperature at the beginning brings the annihilation rate to
the asymptotic value more quickly. In addition, for 106 <
t < 107 years, where the star cools mainly due to photon
emission, the annihilation rate can also improve towards
the asymptotic value, although since the temperature falls
really fast, this happens at a slow rate. For the two cases we

103 104 105 106 107 108
Time

104
105
106
107
108

Internal Temperature

103 104 105 106 107 108
Time

104

105

106

Surface Temperature

FIG. 1. Left panel: The internal temperature of a neutron star (in Kelvin) with M � 1:4M
 and R � 10 km as a function of time (in
years). The solid line that crosses the time axis corresponds to the case where the effect of dark matter annihilation is neglected. The
thin solid line corresponds to a local dark matter density for the star of 0:3 GeV=cm3. The dashed and thick solid lines correspond to
local densities of 3 and 30 GeV=cm3, respectively. Right panel: Same as in the left panel but for the surface temperature of the neutron
star.
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mentioned, Majorana neutrinos and Majorana technibary-
ons, the annihilation rate reaches the asymptotic value
before 10� 106 years. For example, for a Majorana neu-
trino, Eq. (27), for sin� � 1, A � 100, and f � 1, gives
2:52� 104 years (for T � 108 K). For a Majorana neu-
trino (or Majorana technibaryon) with suppressed coupling
to the Z boson in order to account for the right dark matter
density, for a mass of 1 TeV, sin� � 0:26 [10]. In this case,
Eq. (27) gives a characteristic time scale 	 � 3:7�
105 years, with A, f, and T as before. Therefore, for
most cases of interest and unless the cross section is very
small, the annihilation rate reaches the accretion rate be-
fore 10� 106 years, which is the time where the dark
matter annihilation affects the temperature of the neutron
star.

V. CONCLUSIONS

We investigated the effect of WIMP annihilation on the
temperature of a neutron star. We found that, for a typical
neutron star with a local dark matter density at least
3 GeV=cm3, and if the WIMP has an elastic cross section
not smaller than 10�46 cm2, the WIMP annihilation flat-
tens out the temperature of the star around �104 K at t �
10� 106 years. Two neutron stars that have different local
dark matter densities would have different final tempera-
tures scaling as T � �1=2:2

dm . Given the uncertainty in our
knowledge of the age of a neutron star and the fact that the
peak of a blackbody spectrum of 104 K lies in the infrared,
it is a challenge to observe such an effect, which would
possibly be a signature of WIMP annihilation.
Alternatively, instead of trying to spot neutron stars with
such a low temperature, it might be more efficient to study
pulsars, detected already by their nonthermal emission and
to constrain their thermal emission putting an upper bound
on their temperature.

In our analysis, we disregarded the interesting possibil-
ity of having an exotic phase of quark matter in the typical

neutron star. Exotic quark matter phases like color super-
conductivity can have an effect on the cooling of a neutron
star [27–30]. This could change the dominant cooling
process for the first million years, but it is highly unlikely
that our conclusions would change regarding the effect of
the WIMP annihilation. We also neglected reheating
mechanisms that could possibly be present for old neutron
stars. These mechanisms can be viscous dissipation of
rotational energy within the star [31], energy release due
to weak deviations from beta equilibrium [32], accretion
from interstellar gas, or others; see [33] and references
therein. All of these mechanisms are model dependent,
and it is not clear what their effect is on the temperature
of an old neutron star compared to the WIMP annihilation
mechanism. As a rule, in a nonsuperfluid old star without a
magnetic field and an accreted envelope, the alternative
mechanisms mentioned above probably cannot prevent the
star from getting a very low temperature. In this case,
WIMP annihilation might be the dominant reheating
mechanism of the star.

Much theoretical work remains to be done. An interest-
ing question is if the effect of WIMP annihilation inside a
neutron star can change the suggested mechanisms for
superbursts and gravitational wave bursts proposed in
[34–36]. These mechanisms assume a phase transition to
quark matter at the center of the neutron star via metastable
phases, which can lead to a burst. The released energy from
the WIMP annihilation inside the star might work as a
catalyst, accelerating the phase transition and making it
impossible for the metastable phases to persist.
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