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1. Introduction

One of the most important issues for string theory today is to make contact with reality.

Concretely one would like to make testable predictions either for cosmology or particle

physics. We are facing two major problems in this endeavour, however. Firstly, there is no

known explicit construction of a string theory model that resembles our universe. Secondly,

there exists a huge amount of possible solutions, too big to be ever computed completely

in an explicit manner.

The latter issue, known as the ”string theory landscape“ [1, 2], could however not only

be regarded as a problem, but on the contrary as a tool to actually make predictions.1 To

do so, one has to employ methods different from standard string theory model building.

Using a statistical approach [4] to analyse distributions of properties in large subsets of the

landscape, one might hope to find patterns in the huge space of solutions. If present, these

patterns might give important insights into the overall shape of the landscape. On the

one hand, they could be a valuable guide for model building, hinting at interesting regions

that should be investigated more closely. On the other hand, the issue of correlations

of properties within the ensemble of models is of great importance. Finding correlations

between low energy observables in several distinct corners of the landscape could not only be

interpreted as a sign for a more fundamental principle of string theory yet to be discovered,

but might also be used to make concrete predictions for experiments, thereby assuming

that these correlations exist everywhere in the landscape.

Up to now our understanding of the landscape is very limited and only a few broad

studies have been carried out. One can distinguish two possible approaches to the problem.

In a true statistical approach one can try to find general features of large classes of string

compactifications without explicitly constructing them [5 – 9] by trying to find a good

measure on the space of solutions. Alternatively, in a more direct approach, one might

try to construct as many solutions as possible explicitly and apply statistical methods to

analyse this ensemble. This is the method that we use for our present analysis in the context

of type II orientifold compactifications. For this class of models there exist already several

studies on different backgrounds [10 – 16], but similar methods have also been applied to

Gepner models [17 – 19] and heterotic compactifications [20 – 22]. With this work we would

like to make a contribution to this exploration, adding a new class of vacua obtained from

type II orientifold compactifications with intersecting D-branes2 on the specific toroidal

1See also [3] for a discussion of the relation between the landscape and standard model physics.
2For a general review on these constructions see [23], for a summary of statistical work in particular

backgrounds see [24].
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background T 6/Z
′
6. Compared to earlier studies, we will provide new tools to compute the

non-chiral matter sector which has not been studied statistically so far.

Dealing with statistics, there are several caveats not to be overlooked. One of them

concerns the finiteness of solutions [25]. This turns out to be not a problem in our case

since it can be shown explicitly that the number of solutions is finite. Moreover, one has

to be extremely careful if one decides to make statistical predictions for a larger class of

models based on smaller, explicitly analysed examples. In this context it is not a priori clear

if the subset, usually chosen by a random method, can be used to make valid statements

about all possible solutions due to unwanted correlations [26]. Fortunately this will also not

be of our concern since we have been able to explicitly construct and classify all possible

supersymmetric compactifications on this background.

In [15] the statistics of models on T 6/Z6 has been considered. This is a closely related

variant of the orbifold background studied here, which differs only in the way the Z6 orbifold

group acts on the torus lattice. One drawback of this geometry is the enforced simultaneous

absence of symmetric and antisymmetric representations from the spectrum, which makes

it impossible to obtain phenomenologically interesting SU(5) GUT models. Due to the

different embedding of the orbifold action, this is not the case for the Z
′
6 variety. For

earlier work on type II orientifold models on the Z
′
6 orbifold, see [27, 28], where a specific

model with the gauge group of the standard model has been studied. However, due to the

correction of a sign in the orientifold projection of exceptional cycles, we do not recover

their exact model.

This article is organised as follows. In section 2 we explain the geometric setup of the

T 6/Z
′
6 orientifold and the constraints from supersymmetry, tadpole cancellation and K-

theory. We also discuss the computation of the complete (non-chiral) spectrum for T 6/ZM

orbifolds. In section 3 we give an analytic proof of the finiteness of possible solutions to

the constraining equations and explain our methods of statistical analysis. The results of

a systematic study of the distribution of gauge sector properties are presented in section 4.

In particular we look for the frequency distribution of models with a standard model, Pati-

Salam or SU(5) gauge group and the appropriate chiral matter content. Finally we sum

up our results and give an outlook to further directions of research in section 5. Some

technical details are collected in the appendix.

2. Setup

In this section we review the geometric setup of the T 6/Z
′
6 orientifold and the possible

D6-brane configurations. Furthermore we summarise the consistency conditions for super-

symmetric models and give algebraic formulae for the complete matter spectrum in terms

of the intersection numbers of three-cycles. Our notation and conventions are similar to

those of [29, 15] to simplify the comparison between both geometries, but differ from [27].

2.1 Geometry

We assume a factorisation of T 6 into three two-tori, which can be described by complex
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Figure 1: Fixed points of the T 6/Z
′

6 orbifold. Circles on T 2
2 × T 2

3 denote fixed points of θ. T 2
3 is

fixed under θ2, T 2
2 is fixed under θ3. On T 2

1 , point 1 is fixed under θ, points 4,5,6 are fixed under

θ3 and points 2,3 are fixed under θ2. The horizontal radius along π5 − bπ6 on T 2
3 is called R1, the

vertical extension along π6 is denoted by R2. Both options for an untilted (a) and tilted (b) shape

of T 2
3 , parametrised by b = 0, 1/2, are shown.

variables zj, j = 1, 2, 3. The Z
′
6 orbifold group action is generated by

θ : zj → e2πivj zj,

with shift vector ~v = 1
6 (1, 2,−3).3 The orbifold has twelve Z6 fixed points in the origin of

T 2
1 multiplied by different fixed points on T 2

2 × T 2
3 , nine Z3 fixed points on T 2

1 × T 2
2 and 16

Z2 fixed points on T 2
1 × T 2

3 .

The complex structures on T 2
1 × T 2

2 are fixed by the orbifold action, whereas on T 2
3 ,

the complex structure is parameterised by the continuous ratio of radii R2/R1 along the

torus one-cycles π6 and π5 − bπ6. The discrete variable b = 0, 1/2 corresponds to the two

different possible choices of shapes for T 2
3 . This geometric setup is summarised in figure 1.

2.2 Three-cycles

In order to implement an orientifold action and add D6-branes to this orbifold, we need

to know the number of homologically different three-cycles. The Hodge numbers for the

untwisted (U) and twisted sectors are given by (cf. [30]),

hU
1,1 = 3, hθ+θ5

1,1 = 12, hθ2+θ4

1,1 = 12, hθ3

1,1 = 8,

hU
2,1 = 1, hθ+θ5

2,1 = 0, hθ2+θ4

2,1 = 6, hθ3

2,1 = 4.
(2.1)

3Note the difference to the shift vector for the Z6 action of [15], which reads ~v = 1
6
(1, 1,−2). In particular,

there is no permutation symmetry among the two-tori in the present case.
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This gives us a total dimension of the space of three-cycles on T 6/Z
′
6 of 2(1 + h2,1) = 24.

They can be split into three groups. Firstly there are four cycles inherited from the

underlying six-torus (hU
2,1). Secondly two groups of exceptional cycles arise from the θ2+θ4

and θ3 sectors. We will have a close look at all of them in the following.

2.2.1 Bulk cycles

We begin with the three-cycles inherited from the torus, which will be called “bulk cycles”

in the rest of this paper. They can be expanded in terms of the basis

ρ1 = 2(1 + θ + θ2)π1,3,5 = 2 (π1,3,5 + π2,4−3,−5 + π2−1,−4,5)

= 2 (π1,3,5 − 2π2,4,5 + π2,3,5 + π1,4,5) ,

ρ2 = 2(1 + θ + θ2)π2,3,5 = 2 (π1,4,5 + π2,−3,−5 + π2−1,3−4,5)

= 2 (2π1,4,5 + 2π2,3,5 − π2,4,5 − π1,3,5) ,

ρ3 = 2(1 + θ + θ2)π1,3,6 = 2 (π1,3,6 + π2,4−3,−6 + π2−1,−4,6)

= 2 (π1,3,6 − 2π2,4,6 + π2,3,6 + π1,4,6) ,

ρ4 = 2(1 + θ + θ2)π2,3,6 = 2 (π1,4,6 + π2,−3,−6 + π2−1,3−4,6)

= 2 (2π1,4,6 + 2π2,3,6 − π2,4,6 − π1,3,6) .

An arbitrary bulk cycle is characterised by the wrapping numbers (ni,mi) along π2i−1 and

π2i on ⊗3
i=1T

2
i which transform under the Z

′
6 generator θ according to







n1 m1

n2 m2

n3 m3







θ−→







−m1 n1 + m1

−(n2 + m2) n2

−n3 −m3







θ−→







−(n1 + m1) n1

m2 −(n2 + m2)

n3 m3






. (2.2)

The intersection numbers among the bulk three cycles are given by4

ρ1 ◦ ρ2 = ρ3 ◦ ρ4 = 0,

ρ2 ◦ ρ3 = ρ1 ◦ ρ4 = 2,

ρ1 ◦ ρ3 = ρ2 ◦ ρ4 = 4.

In order to shorten the notation, we define wrapping numbers along bulk three-cycles,

P ≡ (n1n2 − m1m2) n3,

Q ≡ (n1m2 + m1n2 + m1m2)n3,

U ≡ (n1n2 − m1m2) m3,

V ≡ (n1m2 + m1n2 + m1m2)m3,

(2.3)

4The bulk intersection numbers given here differ from those in [27] by a sign whereas the intersection

numbers of exceptional cycles agree. The choice of absolute signs is just a convention, but the relative

sign between bulk and exceptional cycles is important. An extensive computer analysis reveals that the

relative sign in [27] leads to half-integer multiplicities of (anti)symmetric representations on some D6-branes.

Moreover, the generic formulae for the non-chiral spectra displayed in the present article for the first time

in section 2.6.2 only reproduce the non-chiral spectra of [31, 32] for the present choice of relative signs of

intersection numbers.
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Orbits of exceptional cycles for T 6/Z
′
6

Orbit Orbit

d4j ⊗ π3 δj d4j ⊗ π4 δ̃j

d5j ⊗ π3 −δ̃j d5j ⊗ π4 δj − δ̃j

d6j ⊗ π3 δ̃j − δj d6j ⊗ π4 −δj

Table 1: Orbits of Z2 fixed points times one-cycles.

such that any bulk cycle can be expanded as

Πbulk = Pρ1 + Qρ2 + Uρ3 + V ρ4. (2.4)

The intersection number of two bulk cycles reads

Πbulk
a ◦ Πbulk

b = 2(PaVb − PbVa + QaUb − QbUa) + 4(PaUb − PbUa + QaVb − QbVa).

2.2.2 Exceptional cycles

We obtain two classes of exceptional three-cycles. One from the Z3 fixed points on T 2
1 ×T 2

2

times a one-cycle on T 2
3 and the other one from Z2 fixed points on T 2

1 ×T 2
3 times a one-cycle

on T 2
2 .

Exceptional cycles from Z2 fixed points: the fixed points on T 2
1 transform as

4
θ−→ 5

θ−→ 6
θ−→ 4,

whereas T 2
3 is only subject to a Z2 rotation and the fixed points are invariant under the

Z
′
6 operation, θ(j) = j; j = 1 . . . 4. Combined with the transformation of the one-cycles on

T 2
2 ,

θ(π3) = π4 − π3, θ(π4) = −π3.

we obtain eight independent exceptional three-cycles, given by

δj = (d4j − d5j) ⊗ π3 + (d5j − d6j) ⊗ π4,

δ̃j = (d6j − d5j) ⊗ π3 + (d4j − d6j) ⊗ π4,

where j = 1 . . . 4 and dij ◦ dkl = −2 δikδjl. The number of cycles is in accordance with

hθ3

2,1 = 4. Starting from a particular fixed point times a one-cycle, the Z
′
6 invariant orbits

are listed in table 1. The intersection numbers among the Z2 exceptional cycles are then

given by

δi ◦ δ̃j = −2δij , δi ◦ δj = δ̃i ◦ δ̃j = 0.
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Exceptional cycles from Z3 fixed points: the third torus is fixed under θ2, and we

have θ(πk) = −πk, k = 5, 6. The fixed points on T 2
1 ×T 2

2 have the form cij with i, j = 1, 2, 3.

On T 2
1 , the points transform in the following way,

1
θ→ 1, 2

θ↔ 3,

whereas on T 2
2 , all fixed points of θ2 are also fixed under θ.

For the exceptional cycles in the θ2 + θ4 sector, we use the ansatz

γ
(α)
j =

(

c
(α)
2j − c

(α)
3j

)

⊗ π5,

γ̃
(α)
j =

(

c
(α)
2j − c

(α)
3j

)

⊗ π6,

with j = 1, 2, 3 and α = 1, 2. The parameter α corresponds to the fact that each fixed

point supports two cycles, associated to the θ2 and θ4 twisted sectors, respectively. The

intersection matrix of c
(α)
ij for fixed ij is given by minus the Cartan matrix of A2, which

leads to the non-trivial intersections of Z3 exceptional cycles,

γ
(α)
j ◦ γ̃

(α)
j = −2, γ

(α)
j ◦ γ̃

(β)
j = 1, with {α, β} ∈ {1, 2}.

2.2.3 Fractional cycles

The intersection form for pure bulk and exceptional cycles is not uni-modular, and therefore

fractional cycles exist. The uni-modular lattice of three-cycles consists of combinations of

bulk cycles and all kinds of exceptional cycles. A possible choice of basis is displayed in

appendix C. However, only bulk cycles and exceptional cycles at Z2 fixed points have a

known interpretation in terms of partition functions [33], and therefore we only work with

a sublattice consisting of these cycles,

Πfrac =
1

2
Πbuk +

1

2
ΠZ2 ,

where as usual the exceptional cycles consists of a sum of all Z2 fixed point orbits traversed

by the bulk cycle. The correspondence among even and odd wrapping numbers on T 2
1 ×T 2

3

and fixed points dij is given in table 2 for all possible combinations of spatial displacements
∑

k=1,2,5,6 σkπk of a given bulk cycle from the origin on T 2
1 × T 2

3 with σk ∈ {0, 1/2}. The

resulting exceptional three-cycles obtained from tensoring exceptional two-cycles dij with

the basic one-cycles on T 2
2 and taking the Z

′
6 orbit are given in table 1. A general Z2

exceptional cycle is given by

ΠZ2 = (−1)τ0
2

∑

k=0

θk
[ (

di1j1 + (−1)τ1di2j1 + (−1)τ3di1j2 + (−1)τ1+τ3di2j2

)

⊗ (n2π3 + m2π4)
]

. (2.5)

In the following, it will be convenient to expand the Z2 exceptional cycles as

ΠZ2 =
4

∑

i=1

(

di δi + ei δ̃i

)

, (2.6)

– 7 –
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Wrapping numbers and fixed points

(n3,m3) ( odd, odd) ( odd, even) ( even, odd)

(n1,m1) (σ1, σ2) = (0, 0), (σ5, σ6) = (0, 0)

( odd, odd) (d11), (d13), d61, d63 (d11), (d12), d61, d62 (d11), (d14), d61, d64

(σ1, σ2) = (0, 0), (σ5, σ6) = (0, 1/2)

(odd, odd) (d12), (d14), d62, d64 (d13), (d14), d63, d64 (d11), (d14), d61, d64

(σ1, σ2) = (1/2, 0), (σ5, σ6) = (0, 0)

( odd, odd) d41, d43, d51, d53 d41, d42, d51, d52 d41, d44, d51, d54

(σ1, σ2) = (1/2, 0), (σ5, σ6) = (0, 1/2)

( odd, odd) d42, d44, d52, d54 d43, d44, d53, d54 d41, d44, d51, d54

(σ1, σ2) = (0, 0), (σ5, σ6) = (1/2, 0)

( odd, odd) (d12), (d14), d62, d64 (d11), (d12), d61, d62 (d12), (d13), d62, d63

(σ1, σ2) = (0, 0), (σ5, σ6) = (1/2, 1/2)

( odd, odd) (d11), (d13), d61, d63 (d13), (d14), d63, d64 (d12), (d13), d62, d63

(σ1, σ2) = (1/2, 0), (σ5, σ6) = (1/2, 0)

( odd, odd) d42, d44, d52, d54 d41, d42, d51, d52 d42, d43, d52, d53

(σ1, σ2) = (1/2, 0), (σ5, σ6) = (1/2, 1/2)

( odd, odd) d41, d43, d51, d53 d43, d44, d53, d54 d42, d43, d52, d53

Table 2: Fixed points on T 2
1 ×T 2

3 which are traversed by bulk cycles. The case (σ1, σ2) = (1/2, 1/2)

gives the same result as (σ1, σ2) = (0, 0) for wrapping numbers (n1, m1) = (odd, odd).

with coefficients di, ei ∈ Z.

As an example and consistency check, the fractional cycles with bulk parts along

the O6-planes and neither displacements nor Wilson lines which reproduce the non-chiral

models of [31, 32] are listed in (A.1).

2.3 RR tadpoles

The worldsheet parity Ω is accompanied by a complex conjugation R

zi R−→ zi,

which leads to O6-planes. The lattices on T 2
1 × T 2

2 can have two different orientations A

and B with respect to complex conjugation. In the first case π2i−1 lies along the invariant

axis, in the latter π2i−1 + π2i stays invariant. The notation for T 2
1 × T 2

2 is the same as

in [29, 15]. Similarly for T 2
3 according to the standard notation first introduced in [34],

(π5 − bπ6)/(1 − b) is positioned on the R invariant axis with b = 0, 1/2 for the a and b

shape, respectively.

– 8 –
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ΩR images of cycles for T 6/Z
′
6

lattice ΩR : ρ1 ΩR : ρ2 ΩR : ρ3 ΩR : ρ4

AAa/b ρ1 − (2b)ρ3 ρ1 − ρ2 + (2b) (ρ4 − ρ3) −ρ3 ρ4 − ρ3

ABa/b, BAa/b ρ2 − (2b)ρ4 ρ1 − (2b)ρ3 −ρ4 −ρ3

BBa/b ρ2 − ρ1 − (2b) (ρ4 − ρ3) ρ2 − (2b)ρ4 ρ3 − ρ4 −ρ4

Table 3: ΩR images of the cycles inherited from the torus for T 6/Z
′

6. The third torus can be

untilted (a) or tilted (b) as parameterised by b = 0, 1/2.

O6-planes for T 6/Z
′
6

lattice (n1,m1;n2,m2;n3,m3) P Q U V cycle

AAa/b (1, 0; 1, 0; 1
1−b ,

−b
1−b)

1
1−b 0 −b

1−b 0 ρ1−bρ3

1−b

(1, 1; 0, 1; 0,−1) 0 0 1 −2 ρ3 − 2ρ4

ABa/b (1, 0; 1, 1; 1
1−b ,

−b
1−b)

1
1−b

1
1−b

−b
1−b

−b
1−b

ρ1+ρ2−b(ρ3+ρ4)
1−b

(1, 1;−1, 2; 0,−1) 0 0 3 −3 3(ρ3 − ρ4)

BAa/b (1, 1; 1, 0; 1
1−b ,

−b
1−b)

1
1−b

1
1−b

−b
1−b

−b
1−b

ρ1+ρ2−b(ρ3+ρ4)
1−b

(0, 1; 0, 1; 0,−1) 0 0 1 −1 ρ3 − ρ4

BBa/b (1, 1; 1, 1; 1
1−b ,

−b
1−b) 0 3

1−b 0 −3b
1−b

3(ρ2−bρ4)
1−b

(0, 1;−1, 2; 0,−1) 0 0 2 −1 2ρ3 − ρ4

Table 4: O6-planes for T 6/Z
′

6. The first row for each lattice corresponds to the orbit of ΩRθ−2k

invariant planes, the second to the ΩRθ−2k−1 invariant ones with the wrapping numbers listed

for the k = 0 representatives. The number of parallel O6-planes depends on the geometry of T 2
3 ,

namely NO6 = 2(1 − b). Since the O6-planes are non-dynamical objects which are stuck at the Z2

fixed points, an additional factor 1/2 arises in the tadpole cancellation condition.

The action on the bulk cycles is summarised in table 3. There exist two orbits of cycles

invariant under ΩRθ2k and ΩRθ2k+1, which are wrapped by the O6-planes as displayed in

table 4.

The exceptional cycles at Z2 fixed points receive apart from the purely geometric R
transformation a global minus sign5 from the Ω action [33]. The resulting orientifold images

are given in table 5.

The tadpole cancellation condition

∑

a

Na

(

Πa + Π′
a

)

= 4ΠO6

5Note that this sign is not present in [27, 28]. This has important consequences for the space of solutions,

in particular the three generation model presented in [28] cannot be realised.

– 9 –
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ΩR images of Z2 fixed-cycles for T 6/Z
′
6

lattice ΩR : δ1 ΩR : δ2 ΩR : δ3 ΩR : δ4

AAa/b −δ1 −δ2+2b −δ3−2b −δ4

ABa/b −δ̃1 −δ̃2+2b −δ̃3−2b −δ̃4

BAa/b δ̃1 δ̃2+2b δ̃3−2b δ̃4

BBa/b δ̃1 − δ1 δ̃2+2b − δ2+2b δ̃3−2b − δ3−2b δ̃4 − δ4

ΩR : δ̃1 ΩR : δ̃2 ΩR : δ̃3 ΩR : δ̃4

AAa/b δ̃1 − δ1 δ̃2+2b − δ2+2b δ̃3−2b − δ3−2b δ̃4 − δ4

ABa/b −δ1 −δ2+2b −δ3−2b −δ4

BAa/b δ1 δ2+2b δ3−2b δ4

BBa/b δ̃1 δ̃2+2b δ̃3−2b δ̃4

Table 5: ΩR images of the Z2 exceptional three-cycles for T 6/Z
′

6.

splits into two parts. One is the toroidal part of the cycles given by

AAa/b :

{

R1
R2

:
∑

a Na (2Pa + Qa) = 8
R2
R1

:
∑

a Na (−Va − bQa) = 8(1 − b)
,

ABa/b

BAa/b
:

{

R1
R2

:
∑

a Na(Pa + Qa) = 8
R2
R1

:
∑

a Na (Ua − Va + b(Pa − Qa)) = k 8(1 − b)
,

BBa/b :

{

R1
R2

:
∑

a Na (Pa + 2Qa) = 24
R2
R1

:
∑

a Na (Ua + bPa) = 8(1 − b)
,

(2.7)

where k = 3 for ABa/b geometries and k = 1 in the BAa/b case. Ri/Rj labels the ratio

of radii to which the divergences in the tree channel amplitude calculation providing the

tadpole cancellation conditions are proportional.

The second part of the tadpole cancellation condition deals with the exceptional cycles.

Since the O6-planes do not wrap any exceptional cycle, the associated tadpole cancellation

condition is fulfilled if all exceptional D6-brane contributions cancel among each other. In

terms of the expansion (2.6), the tadpole conditions for the different geometries can be
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written explicitly as

AAa/b :
∑

a Na

[

−ea
1δ1 + (−ea

2 + 2b(da
2 + ea

2 − da
3 − ea

3)) δ2

+ (−ea
3 + 2b(da

3 + ea
3 − da

2 − ea
2)) δ3 − ea

4δ4

+2ea
1 δ̃1 + (2ea

2 + 2b(ea
3 − ea

2)) δ̃2

+ (2ea
3 + 2b(ea

2 − ea
3)) δ̃3 + 2ea

4 δ̃4

]

= 0,

ABa/b :
∑

a Na

[

(da
1 − ea

1) δ1 + (da
2 − ea

2 + 2b(ea
2 − ea

3)) δ2

+ (da
3 − ea

3 + 2b(ea
3 − ea

2)) δ3 + (da
4 − ea

4) δ4

+ (ea
1 − da

1) δ̃1 + (ea
2 − da

2 + 2b(da
2 − da

3)) δ̃2

+ (ea
3 − da

3 + 2b(da
3 − da

2)) δ̃3 + (ea
4 − da

4) δ̃4

]

= 0,

BAa/b :
∑

a Na

[

(da
1 + ea

1) δ1 + (da
2 + ea

2 + 2b(ea
3 − ea

2)) δ2

+ (da
3 + ea

3 + 2b(ea
2 − ea

3)) δ3 + (da
4 + ea

4) δ4

+ (ea
1 + da

1) δ̃1 + (ea
2 + da

2 + 2b(da
3 − da

2)) δ̃2

+ (ea
3 + da

3 + 2b(da
2 − da

3)) δ̃3 + (ea
4 + da

4) δ̃4

]

= 0,

BBa/b :
∑

a Na

[

2b(da
2 − da

3)δ2 + 2b(da
3 − da

2)δ3

+(da
1 + 2ea

1)δ̃1 + (da
2 + 2ea

2 + 2b(da
3 + ea

3 − da
2 − ea

2)) δ̃2

+ (da
3 + 2ea

3 + 2b(da
2 + ea

2 − da
3 − ea

3)) δ̃3 + (da
4 + 2ea

4)δ̃4

]

= 0.

(2.8)

Both bulk (2.7) and exceptional (2.8) tadpole conditions are used in section 2.5 to

discuss possible constraints from global anomalies.

2.4 Supersymmetry

The supersymmetry conditions on bulk cycles can be computed from

Z ≡ eiφ
(

n1 + e
πi
3 m1

)(

n2 + e
πi
3 m2

)

(

(
R1

R2
+ ib)n3 + im3

)

with φ = 0,−π/6,−π/3 for the AAa/b, ABa/b or BAa/b, BBa/b lattices, respectively.

Supersymmetry is preserved by the toroidal cycles for which

Im (Z) = 0, Re (Z) > 0.

It is convenient to introduce the complex structure parameter ̺ with

R2

R1
=

2̺√
3

in order to write the necessary supersymmetry conditions Im (Z) = 0 for the bulk parts of

the cycles as

AAa/b :
3

2̺
Q + (2U + V ) + b(2P + Q) = 0,

ABa/b, BAa/b :
1

2̺
(P − Q) − (U + V + b(P + Q)) = 0,

BBa/b :
3

2̺
P − (U + 2V + b(P + 2Q)) = 0.

(2.9)
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Equation (2.9) does not distinguish between supersymmetric D6-branes and their anti-

D6-branes. The anti-D6-branes are excluded by the sufficient supersymmetry conditions

Re (Z) > 0,

AAa/b : 2P + Q − 2̺(V + bQ) > 0,

ABa/b, BAa/b : (P + Q) − 2̺

3
(V − U + b(Q − P )) > 0,

BBa/b : P + 2Q + 2̺(U + bP ) > 0.

(2.10)

Fractional cycles are supersymmetric if the bulk part is supersymmetric and the exceptional

cycle is composed of orbits of fixed points traversed by the bulk part as listed in table 2,

including appropriate signs corresponding to the Z2 eigenvalue and relative Wilson lines

on T 2
1 × T 2

3 as in (2.5).

2.5 K-theory

D-branes are not fully characterised by (co)homology but rather by K-theory [35, 36]

which imposes additional Z2 valued constraints on model building. As in the previous

analyses of intersecting D6-branes on T 6/(Z2×Z2) [11, 12] and T 6/Z6 [15] as well as of

Gepner models [37], we are not able to formulate these constraints directly, but follow the

proposal of [38] which uses probe branes to check for global anomalies. This is based on

the observation that the path integral for a theory with an odd number of fermions in the

fundamental representation of a SU(2) gauge factor is ill defined [39]. The probe brane

constraint is known to truly coincide with the K-theory constraint for compactifications on

smooth manifolds.

In terms of intersection numbers of D6-branes, the K-theory constraint is formulated

as
∑

a

NaΠa ◦ Πprobe
!
= 0 mod 2, (2.11)

where the sum over all D6a-branes does not include the ΩR images and Πprobe is any three-

cycle wrapped by a D6-brane carrying an SU(2) or more generally Sp(2N) gauge group.

Although the correct identification of all SO(2N) and Sp(2N) gauge groups is technically

challenging and beyond the scope of this paper, one can identify all possible D6-branes

which are their own ΩR images and therefore carry either orthogonal or symplectic gauge

factors. The complete list for all choices of tori is given in tables 19, 20, 21 and 22.

Using all ΩR invariant branes as probe branes is in general expected to be a too strong

constraint since some of the branes may carry SO(2N) gauge groups. However, as for the

T 6/Z6 orbifold, a brute computer search reveals that any possible constraint from (2.11)

is automatically fulfilled.

This can also be seen analytically by reshuffling the sum in (2.11) using the bulk

and exceptional tadpole cancellation conditions (2.7) and (2.8), such that the contribution

from each brane a is already even. We demonstrate this in detail for the AAa/b torus in

the following. We start by computing the bulk and exceptional parts of the intersection

numbers separately,

Πa ◦ Πprobe =
1

4
Πbulk

a ◦ Πbulk
probe +

1

4
Πex

a ◦ Πex
probe.

– 12 –
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lattice # 1
4Πbulk

a ◦ Πbulk
probe

∑

a Na

(

1
4Πbulk

a ◦ Πbulk
probe

)

AAa/b 1 1
2(1−b) (2Ua + Va + b(2Pa + Qa))

∑

a Na
Ua+bPa

1−b − 4

2 −3
2Qa 3

∑

a NaPa − 12

Table 6: Intersection numbers of D6a-branes: bulk parts.

The bulk parts for probe branes of type 1a,bb,c and 2a,bb,c on AAa/b defined in table 19

are listed in the third column of table 6. To compute these entries, the bulk tadpole

conditions (2.7) have been used. For branes of type 1a,bb or c, the bulk contribution to

the K-theory constraint is given by

1

4

∑

a

Na Πbulk
a ◦ Πbulk

probe =
1

2(1 − b)

∑

a

Na [2(Ua + bPa) + (Va + bQa)]

=
1

1 − b

∑

a

Na (Ua + bPa) +
1

2(1 − b)
(−8(1 − b))

=
∑

a

Na
Ua + bPa

1 − b
− 4,

where in the second line the tadpole condition associated to R2/R1 has been inserted.

Similarly, the entry for branes of type 2a,bb or c is obtained using the tadpole condition

proportional to R1/R2. The reshuffling of sums is possible since always only a finite number

of D6-branes contribute to the tadpole conditions as discussed in detail in section 3.1.

The exceptional contributions to the K-theory constraint (2.11) are computed along

the same lines as the bulk ones as displayed in table 7, where in the last column the tadpole

conditions (2.8) on the exceptional cycles have been used.

Combining the results of tables 6 and 7, for probe branes 2a, the K-theory con-

straint (2.11) takes the form

∑

a

Na (3Pa ± da
1 ± da

4)
!
= 0 mod 2 (2.12)

for any combination of signs. It turns out that every term 3Pa±da
1±da

4 in the sum already

fulfils the constraint independently. To see this, one can analyse in which situations P is

even. As explained in section 3, it is sufficient to assume (n1,m1) = (odd, odd), for which

the dependence of the first factor n1n2−m1m2 and n1m2 +m1n2 +m1m2 in the definition

of P,U and Q,V , respectively, on the choice of wrapping numbers on T 2
2 is given in table 8.

For (n1,m1) = (odd, odd), the bulk part on T 2
1 passes either through fixed points 1

and 6 or through 4 and 5, leading to the exceptional contributions

d6j ⊗ (n2π3 + m2π4)
θ−orbit−→ −(n2 + m2)δj + n2δ̃j ,

(d4j ± d5j) ⊗ (n2π3 + m2π4) −→ (n2 ± m2)δj + (m2 ∓ (n2 + m2))δ̃j .

From this one finds that

dj = ±(n2 ± m2), ej = ±n2 mod 2, (2.13)
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lattice # 1
4Πex

a ◦ Πex
probe

∑

a Na

(

1
4Πex

a ◦ Πex
probe

)

AAa/b 1a ±1
2(ea

1 + 2da
1) ± 1

2 (ea
2

1−b

+ 2d 2
1−b

)a
∑

a Na(±da
1 ± da

2
1−b

)

1bb ±1
2 (ea

3 − ea
2) ±∑

a Na(d
a
2 − da

3)

1c
±1

2(ea
3 + da

3 + da
3−2b)

±1
2(ea

4(1−b) + da
4(1−b) + da

4−2b)

∑

a(±da
3 ± da

4(1−b))

2a ±1
2(ea

1 + 2da
1) ± 1

2 (ea
4 + 2da

4)
∑

a Na(±da
1 ± da

4)

2bb ±1
2 (ea

2 − ea
3) ±∑

a Na(d
a
3 − da

2)

2c
±1

2(ea
2 + da

2 + da
2+2b)

±1
2(ea

3 + da
3 + da

3−2b)

∑

a Na(±da
2 ± da

3)

Table 7: Intersection numbers of D6a-branes and probe branes: exceptional parts. The K-theory

constraint is evaluated for all possible choices of signs corresponding to the ΩR invariant cycles in

table 19.

(n2,m2) n1m2 + m1n2 + m1m1
n2 ± m2

n1n2 − m1m2

( odd, odd ) odd even

( odd, even ) odd odd

( even, odd ) even odd

Table 8: Relation of Q, V and P, U and the wrapping numbers on T 2
2 for (n1, m1) = (odd, odd).

if the fixed point j on T 2
3 is traversed by the bulk cycle and zero otherwise.

Finally, the occurrence of the fixed points j for various choices of (n3,m3) has to

be taken into account. For n3 even either j = (1, 4) or (2, 3) occur simultaneously, for

(n3,m3) = (odd, odd) it is (1,3) or (2,4) and for (n3,m3) = (odd, even) (1,2) or (3,4).

The terms in (2.12) can now be shown to be always even. For n3 even both fixed

points 1 and 4 on T 2
3 contribute coefficients of the form (2.13) which together are even (or

d1 = d4 = 0), and also P ∼ n3 is even. If n3 is odd, only fixed points j = 1 or 4 on T 2
3

add a non-vanishing contribution dj , which according to table 8 is even or odd at the same

time when P is even or odd. This concludes the proof that probe branes of type 2a do not

exclude any solution to the tadpole cancellation condition. The proof for type 2c branes

works completely analogously.

For branes of type 1a,c, one has to consider M3 = m3+bn3
1−b . If M3 is even, either fixed

points (1, 2
1−b) or (3, 4(1− b)) on T 2

3 are traversed simultaneously by a bulk cycle. If M3 is

odd one exceptional cycle out of each set contributes non-trivially. The rest of the proof is

identical to the discussion above for branes of type 2a.

On the AAa lattice, this shows that the probe brane argument does not exclude any
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Closed string spectrum T 6/(Z′
6 × ΩR)

lattice AAa/b, BAa/b ABa/b, BBa/b

sector NSNS RR NSNS RR

untwisted
NSNS: Graviton + Dilaton + 3C + 1 scalar

RR: Axion + 1 scalar

θ + θ5 (8 − 2b)C (4 + 2b)V 3(4 − 2b)C (6b)V

θ2 + θ4 11C 3C + 4V 15C 3C

θ3 NSNS: (10-4b) C; RR: 2 C + (4b) V

Table 9: Closed string spectrum of T 6/(Z′

6 ×ΩR). C corresponds to the scalar degrees of freedom

of a chiral multiplet while V denotes a massless vector multiplet. The fermionic superpartners arise

from the R-NS and NS-R sectors. In the untwisted sector the two explicitly listed scalars belong to

one chiral multiplet, in the same way as the dilaton and axion.

models. On the AAb lattice, there are two more candidates of probe branes 1bb and 2bb.

In this case, the tadpole conditions
∑

a Na(d
a
2 − da

3 − ea
3) =

∑

a Na(d
a
3 − da

2 − ea
2) = 0 serve

to obtain the constraint
∑

a

Na (Pa ± (da
2 − da

3))
!
= 0 mod 2,

which is always fulfilled since Pa ± (da
2 − da

3) is even for any a.

The argumentation above can be repeated for the other lattices as well, leading in all

cases to the fact that the probe brane constraint is trivially fulfilled. The only ingredients

are the bulk and exceptional tadpole cancellation conditions (2.7) and (2.8), as well as

the geometric interpretation of factional branes having exceptional contributions only from

fixed points traversed by the bulk cycle. The argument is therefore independent of the

complex structure parameter ̺ and also valid for non-supersymmetric models.

2.6 Massless spectrum

2.6.1 The closed spectrum

The closed string spectra for all lattices of type b on T 2
3 have been computed in [31, 32].

Here we also list the spectra for the a type lattice on T 2
3 . The complete list is displayed in

table 9 with b = 0, 1/2 parameterising the a and b type lattice, respectively. In terms of

hodge numbers, the closed spectrum contains h+
1,1 vector and h−

1,1 + h2,1 chiral multiplets

in addition to the axion-dilaton multiplet [40] with Hodge numbers given in (2.1) and

h1,1 = h+
1,1 + h−

1,1.

2.6.2 The open spectrum

The chiral part of the spectrum is computed from the topological intersection numbers

among the fractional cycles [33] of a given tadpole solution as displayed in table 10.
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Chiral spectrum

representation net chirality χ

(Antia)
1
2 (Πa ◦ Π′

a + Πa ◦ ΠO6)

(Syma)
1
2 (Πa ◦ Π′

a − Πa ◦ ΠO6)

(Na,Nb) Πa ◦ Πb

(Na,Nb) Πa ◦ Π′
b

Table 10: Counting of net chirality χ ≡ χL − χR in four dimensions via intersection numbers of

cycles Πa. The overall orientifold cycle ΠO6 for T 6/Z
′

6 is read off from table 4 taking into account

the multiplicity NO6/2 = (1 − b).

In case of T 6 [41] or T 6/(Z2×Z2) [42] compactifications there exist, except from the

chiral spectrum, three chiral multiplets in the adjoint representation (or antisymmetric for

D6-branes with gauge group Sp(2N) on T 6/(Z2×Z2) [43]) and non-chiral matter pairs if

branes are parallel on some T 2
i . These pairs are then counted by the intersection number

on the other tori T 2
j × T 2

k (j, k 6= i).

The situation is different for T 2n/ZM orbifold backgrounds with n = 2, 3 and M 6= 2.

Under the action of the orbifold generator θ, any n-cycle a is mapped to its image (θa)

which for Z
′
6 has the wrapping numbers (n

(θa)
i ,m

(θa)
i )i=1...n given in (2.2). For M odd, the

cycle a has M images. For M = 2N , each cycle a has only N distinct images since the Z2

subgroup maps a to itself.

Each of the orbifold images contributes to the massless spectrum, and open strings in

the a(θkb) sectors can have different chiralities for different k. Therefore, non-chiral pairs

of massless particles can arise even if the two branes under consideration are not parallel

on any two-torus. The total number of multiplets is computed using the bulk intersection

numbers Ia(θkb) =
∏n

i=1 I
(i)

a(θkb)
=

∏n
i=1(n

a
i m

(θkb)
i − ma

i n
(θkb)
i ) for all k and the number of

intersections IZ2

a(θkb)
which are Z2 invariant, weighted with signs from relative Wilson lines

and Z2 eigenvalues as defined below in (2.15).

The intersection number between two branes a and b can be split into contributions

from different orbifold images as follows. For simplicity, we start with a T 6/ZM orbifold

with M odd. The bulk cycle is then given by

Πa =

M−1
∑

k=0

θk
[

⊗3
i=1 (na

i π2i−1 + ma
i π2i)

]

=
M−1
∑

k=0

[

⊗3
i=1

(

n
(θka)
i π2i−1 + m

(θka)
i π2i

)]

,
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and the intersection number can be written as

Πa ◦ Πb = − 1

M

M−1
∑

k,l=0

[

3
∏

i=1

(

n
(θka)
i π2i−1 + m

(θka)
i π2i

)

◦
(

n
(θlb)
i π2i−1 + m

(θlb)
i π2i

)

]

= − 1

M

M−1
∑

k,l=0

I(θka)(θlb).

Using further that I(θka)(θlb) = Ia(θl−kb), the intersection number on T 6/ZM with M odd

takes the form

Πa ◦ Πb = −
M−1
∑

m=0

Ia(θmb). (2.14)

The result is modified for T 6/ZM with M = 2N . In this case, branes wrap fractional

cycles Πfrac = 1
2Πbulk+ 1

2ΠZ2 , and the Z2 subgroup preserves any brane position, b = (θNb).

The bulk contribution to the intersection number is therefore

(

1

2
Πbulk

a

)

◦
(

1

2
Πbulk

b

)

= −1

2

N−1
∑

m=0

Ia(θmb).

The exceptional part of the factional cycle, which was given in (2.5) for T 6/Z
′
6, can be

written for any T 6/Z2N as

ΠZ2
a =

N−1
∑

k=0

∑

xaya

(−1)τxaya dθk(xa)θk(ya) ⊗
(

n
(θka)
2 π3 + m

(θka)
2 π4

)

. (2.15)

Here dxaya denotes the exceptional two-cycle at the Z2 fixed point (xa, ya) on T 2
1 × T 2

3 (or

some permutation of tori) which is traversed by the bulk part of a. The coefficients τxaya

have to fulfill
∑

xaya

τxaya = 0 mod 2,

in order to account for the choice of a Z2 eigenvalue and two discrete Wilson lines. The

intersection number among exceptional two-cycles,

dxy ◦ dx̃ỹ = −2 δxx̃δyỹ,

at Z2 singularities leads to

(

1

2
ΠZ2

a

)

◦
(

1

2
ΠZ2

b

)

= − 1

2

N−1
∑

m=0

(

∑

xaya,xbyb

(−1)τxaya+τxbyb δxa,θm(xb) δya,θm(yb) I
(2)
a(θmb)

)

≡− 1

2

N−1
∑

m=0

IZ2

a(θmb).

It follwos that the intersection number for fractional cycles takes the form

χab ≡ χab
L − χab

R = Πfrac
a ◦ Πfrac

b = −
N−1
∑

m=0

Ia(θmb) + IZ2

a(θmb)

2
. (2.16)
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Chiral and non-chiral massless matter on T 6/(Z2N × ΩR)

representation total number = ϕ

(Adja) 1 + 1
4

∑N−1
k=1

∣

∣

∣
Ia(θka) + IZ2

a(θka)

∣

∣

∣

(Antia)
1
4

∑N−1
k=0

∣

∣

∣
Ia(θka′) + IZ2

a(θka′)
+ IΩRθ−k

a + IΩRθ−k+N

a

∣

∣

∣

(Syma)
1
4

∑N−1
k=0

∣

∣

∣Ia(θka′) + IZ2

a(θka′)
− IΩRθ−k

a − IΩRθ−k+N

a

∣

∣

∣

(Na,Nb)
1
2

∑N−1
k=0

∣

∣

∣Ia(θkb) + IZ2

a(θkb)

∣

∣

∣

(Na,Nb)
1
2

∑N−1
k=0

∣

∣

∣
Ia(θkb′) + IZ2

a(θkb′)

∣

∣

∣

Table 11: Counting of all chiral and non-chiral matter states ϕ in T 6/(Z2N × ΩR) models.

Using the fact that a generic open string sector a(θkb) contains one fermionic massless de-

gree of freedom and the (θkb)a sector completes this to a chiral fermion in four dimensions,

the chiral plus non-chiral bifundamental matter is counted by

ϕab ≡ χab
L + χab

R =

N−1
∑

m=0

∣

∣

∣

∣

∣

Ia(θmb) + IZ2

a(θmb)

2

∣

∣

∣

∣

∣

. (2.17)

The total number of symmetric and antisymmetric states is obtained in a similar manner

when ΠO6 is split into its ΩRθ−2k and ΩRθ−1−2k contributions. The wrapping numbers

for T 6/Z
′
6 and k = 0 are listed in table 4, the remaining ones are obtained by rotating the

wrapping numbers by θk (k = 1 . . . N − 1) within the two orbits, see (2.2) for T 6/Z
′
6.

The complete computation of open string massless spectra for T 6/(Z2N ×ΩR) models

is displayed in table 11.6 This computation is valid for fractional branes a, b at generic

non-vanishing angles.7 On T 6/ZM for arbitrary M , there exist also supersymmetric sectors

where branes are parallel on either one or all three tori. In this case, the formulae for M

even are modified as follows:

• for D6-branes parallel along all three directions: if some relative Wilson line or parallel

displacement on T 2
1 × T 2

3 exists, the massless matter is lifted. The case of identical

6The analysis of the intersection numbers of fractional D7-branes and O7-planes and the resulting

six dimensional spectrum on T 4/ZM is analogous to the T 6/ZM case discussed here, with the exception

that the adjoint representation in the aa sector is absent since fractional D7-branes in six dimensions are

completely stuck at the Z2 fixed points, whereas the D6-brane position in four dimensional models is free

on the additional two-torus. Furthermore, D7-branes parallel on both tori with opposite Z2 eigenvalue

but no relative Wilson line or distance contribute two hyper multiplets in the representation (Na,Nb).

The expression for D7-branes can be explicitly checked using the topological intersection numbers of the

fractional cycles since the massless spectrum in six dimensions is chiral.
7For models on T 6/ZM with M odd the simplifications are obvious, starting with the expansion of

intersection numbers (2.14) for bulk cycles instead of (2.16) for fractional cycles. The aa sector contains

then three multiplets in the adjoint representation. If branes a, b are parallel along T 2
i , one has to replace

|I
(i)
ab | = 0 → 2.
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branes is included in table 11 by the universally existing chiral multiplet in the

adjoint representation. If two branes a and b have opposite Z2 eigenvalue but identical

position and no relative Wilson line, the spectrum contains 2× [(Na,Nb)+c.c.] chiral

multiplets. In the special case of b = a′, the bifundamental representation is replaced

by the antisymmetric as in the non-chiral models in [31, 32].

• for D6-branes parallel along the two-torus on which the Z2 subgroup acts trivially,

i.e. T 2
2 for T 6/Z

′
6: as on T 6, there is a non-chiral matter pair at each intersection on

T 2
1 × T 2

3 . The total number of states is computed by replacing

I
(2)
ab = 0 →

∣

∣

∣I
(2)
ab

∣

∣

∣ = 2 in Iab and IZ2
ab .

This agrees with the result for the (6i,6i+3) sectors of the T 6/Z6 and T 6/Z
′
6 models

in [31, 32]. The counting of the adjoint representations in the (6i,6i+2) sectors of

the non-chiral T 6/Z4 models that can be found in the papers cited above, receives a

factor of 1/2 since the a(θa) sector has no inverse sector providing anti-particles as

does ba for ab.

• for D6-branes parallel along one of the two two-tori with Z2 fixed points, i.e. T 2
1 or

T 2
3 for T 6/Z

′
6: in case of a relative Wilson line or displacement on the corresponding

torus, the massless matter is lifted. Without Wilson line or displacement, the two

massless states have opposite Z2 eigenvalue, such that there exists one chiral multiplet

irrespective of the relative Z2 eigenvalue. The formulae for counting bifundamentals,

adjoints, symmetrics and antisymmetrics simplify, e.g. for branes parallel along T 2
3

and no Wilson lines or displacements we obtain

(Adja) :
1

4

∣

∣

∣
Ia(θka) + IZ2

a(θka)

∣

∣

∣
−→ 1

2

∣

∣

∣
I
(1)

a(θka)
I
(2)

a(θka)

∣

∣

∣
,

(Antia) :
1

4

∣

∣

∣
Ia(θka′) + IZ2

a(θka′)
+ IΩRθ−k

a + IΩRθ−k+N

a

∣

∣

∣

−→ 1

2

∣

∣

∣I
(1)

a(θka′)
I
(2)

a(θka′)
+ IΩRθ−k

a;T1×T2

∣

∣

∣ ,

(Syma) :
1

4

∣

∣

∣
Ia(θka′) + IZ2

a(θka′)
− IΩRθ−k

a − IΩRθ−k+N

a

∣

∣

∣

−→ 1

2

∣

∣

∣
I
(1)

a(θka′)
I
(2)

a(θka′)
− IΩRθ−k

a;T1×T2

∣

∣

∣
,

(Na,Nb) :
1

2

∣

∣

∣Ia(θkb) + IZ2

a(θkb)

∣

∣

∣ −→
∣

∣

∣I
(1)

a(θkb)
I
(2)

a(θkb)

∣

∣

∣ ,

(Na,Nb) :
1

2

∣

∣

∣
Ia(θkb′) + IZ2

a(θkb′)

∣

∣

∣
−→

∣

∣

∣
I
(1)

a(θkb′)
I
(2)

a(θkb′)

∣

∣

∣
.

The modifications for parallel branes along T 2
1 are obvious. These formulae apply to

the (6i,6i+2) sectors of the non-chiral T 6/Z
′
6 models in [31, 32].

3. Methods of analysis

To study the solution space of the constraining equations at a statistical level, there are

two basic possibilities. Either we can find a suitable approximation to the distribution of
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solutions in the parameter space, or we can study a set of explicitly calculated solutions.

We follow the second approach and use a computer generated ensemble of solutions. In fact

we have been able to construct all possible solutions for this geometry and do therefore not

have to rely on a choice of random subsets of parameters as in the case of T 6/Z6 in [15].

The computer algorithm we used combines methods developed for the similar analyses

in [11] and [15].

3.1 Finiteness of solutions

Before starting to analyse the space of four-dimensional solutions, one would like to know

whether there are only finitely many. If this were not the case, a systematic study could

give no results and one should better use a method based on random subsets instead. In

the following we give a proof that the number of solutions to the constraining equations

from supersymmetry, K-theory and RR-tadpoles is finite. The proof is similar in struc-

ture to the one given for the Z6-case in [15], but some subtle differences arise due to the

different structure of the tadpole equations as well as the complex structure parameter ̺.

Nevertheless it is also possible to show in the case at hand that the contributions from

individual D6-brane stacks to the left hand side of the bulk tadpole conditions (2.7) are

always positive and the total number of possible solutions is therefore bounded from above.

For the question of a finite number of solutions we care only about the tadpole condi-

tions for the bulk cycles (2.7) and the supersymmetry constraints (2.9) and (2.10). This

is justified by two results from section 2.3. Firstly the fact that the tadpole conditions for

the exceptional part of the fractional cycles are decoupled and receive no contribution from

the orientifold planes. Secondly by the notion that the number of possible combinations of

exceptional cycles that can be used to “dress” one bulk cycle is always finite. The K-theory

conditions could only reduce the total number of solutions and we do not need them for

the proof. As discussed in section 2.5 they are trivially fulfilled in the present case anyway.

Showing the finiteness of solutions therefore consists of two remaining steps. In a first

step we show that the contribution of a single supersymmetric brane stack to the tadpole

condition for the bulk cycles (2.7) in terms of the variables P,Q,U, V , defined by (2.3), is

always positive. In a second step it is demonstrated that the variables we use are “good

variables” in the sense that no infinite series of values for the wrapping numbers {ni,mi}
can occur for constant values of P,Q,U or V . To simplify the discussion, we deal only with

the AAa/b-geometry in the following, the proof for the other possibilities can be obtained

by analogy.

Using the first supersymmetry condition (2.9) and U + V = m3/n3(P + Q) for n3 6= 0,

we obtain the following expression for the contribution to the first bulk tadpole of one

brane stack,

2P + Q =
−3Q

2̺(b + m3
n3

)
. (3.1)

We have to impose the constraints n3 ≥ 0 and m3 + bn3 ≥ 0 on the wrapping numbers on

the third torus in order to avoid overcounting of solutions obtained by trivial geometric

symmetries, as explained in detail in section 3.2. This restriction constrains b + m3/n3
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to be always positive, which is also trivially true for the complex modulus ̺. Negative

contributions to the tadpole equation can therefore only occur for branes with Q > 0.

Combining (3.1) with the second supersymmetry condition (2.10) leads to the inequal-

ity

−3Q > 4̺2

(

b +
m3

n3

)

Q,

which can only be fulfilled for Q < 0. Therefore all terms in the first sum of the bulk

tadpole constraints (2.7) are positive. The values of (2P + Q) are bounded from above by

the right hand side of the equation, which is given by the constant orientifold charge.8

Having established that the value of Q is bounded, the only possibility to obtain an

infinite series of solutions arises if the values of (n1,m1, n2,m2, n3,m3) ∈ Z are unbounded

for a constant value of Q.

An infinite series can only arise in the part n1m2+m1n2+m1m2 of the definition (2.3).

There are two possible cases: Either all {n1,m1, n2,m2} are unbounded, or only two of

them. In the first case it would be impossible to satisfy (2.10), therefore we are left with

the second case. An infinite series of solutions can arise, if we have that n1 = n2 ∈ N and

m1 = −m2 = const. But this is no valid solution since P = (n1n2−m1m2)n3 is unbounded

from above and therefore the tadpole conditions cannot be fulfilled.

The second bulk tadpole condition is treated similarly: n3 > 0 and Q < 0 imply

n1m2 + m1n2 + m1m2 < 0, which together with m3 + bn3 ≥ 0 produces V + bQ ≤ 0.

The case n3 = 0 leads to a vanishing contribution to the first bulk tadpole and a positive

contribution to the second one, as well as to the simplified supersymmetry constraint

−V > 0. This completes the proof.

3.2 Algorithm

The computer algorithm we used to generate the ensemble of solutions is divided into three

parts. Thereby we make use of the fact that the model building constraints can be treated

separately for bulk and exceptional cycles.

In a first step we determine all supersymmetric bulk branes, i.e. those satisfying the

constraints (2.9) and (2.10), for all possible values of the complex structure modulus ̺

and all choices of tori such that the bulk tadpole conditions (2.7) are not exceeded.9 In

order to count models only once which lie in the same orbit of the orbifold and orientifold

projections, we use the additional constraints10

(n1,m1) ≡ (1, 1) mod 2, n1, n3,m3 + bn3 ≥ 0.

In more detail, the first constraint restricts the choice of representatives for equivalent

bulk-cycles under the orbifold projection to just one. The second and third constraint

8This constant might be modified in the presence of fluxes (cf. also the discussion in [6]), but it is always

positive and bounded from above.
9To determine the supersymmetric cycles for all possible values of ̺ is non-trivial and has shown to be

impossible in the case of T 6/(Z2×Z2) [11].
10There are several possibilities of constraints one could choose, singling out different representatives of

the orbits of the orbifold and orientifold projections. However, this choice does not affect the properties of

the models.

– 21 –



J
H
E
P
0
9
(
2
0
0
7
)
1
2
8

(n1, n3 ≥ 0) take care of the fact that one might flip the signs of bulk cycles on two

of the three two-tori simultaneously, without changing the model. The last constraint

finally makes sure that we count models only once under the exchange of branes with their

orientifold images.

The bulk branes obtained in this way are used in the second step to construct all

combinations of stacks of branes that fulfil the bulk tadpole conditions (2.7). At this point

we allow for combinations of different bulk cycles only, which leads to a rather restricted

set of bulk configurations. The properties of these models without exceptional branes are

presented in section 4.1.

Finally, all consistent combinations of exceptional cycles, i.e. those for which the tad-

poles of the exceptional cycles cancel, are computed for each bulk configuration. In this

way we obtain all possible fractional brane solutions to the combined tadpole and super-

symmetry constraints. More concretely, the exceptional cycles are obtained by considering

all 128 combinations of shifts (σ1, σ2, σ5, σ6) ∈ {0, 1/2} and signs (τ0, τ1, τ3) ∈ {0, 1}, which

together with the wrapping numbers on the second torus (n2,m2) determine the cycle

unambiguously.

4. Results

In this section we present the results of a complete survey of supersymmetric models on

T 6/Z
′
6. In analogy to the way the models are constructed, we begin with combinations

of bulk cycles that fulfil the bulk tadpole constraints.11 In a second part the full models,

including exceptional cycles, are analysed. Finally we look in detail at solutions that

resemble the gauge sector and chiral matter content of the standard model and Pati-Salam

or SU(5) models, respectively.

4.1 Solutions for the bulk branes

In a first step, we construct all possible supersymmetric bulk cycles and combine them to

models fulfilling the bulk tadpole constraints (2.7). In total there are 4416 bulk cycles,

out of which one can construct 13416 different models. The value of the complex structure

modulus ̺ varies between 1/96 and 135.

In figure 2 the total number of solutions to the bulk tadpole equations for the different

geometries on the three two-tori is given. Obviously the geometry of the first torus has

no influence on the results, while the geometries of the second and third torus change the

number of solutions significantly.

Another interesting feature of the solutions that shows up in the bulk part and that par-

allels the observations we made for Z6 in [15], concerns the rank of the total gauge group.

The distribution shown in figure 3a is quite similar to the results on the T 6/(Z2×Z2)-

orbifold. We expect this behaviour to change drastically after the inclusion of exceptional

cycles, in a similar manner as in the Z6 case. The number of possible combinations of ex-

ceptional cycles goes roughly as 128k, where k is the number of brane-stacks, and therefore

11Note that we are always referring to the bulk part of fractional cycles when we talk about bulk cycles

in this section.
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Figure 2: Number of pure bulk solutions for the different geometries. The four groups of bars

represent the geometry on the first two tori, while the geometry of the third torus is represented

by the blue bars on the left (b = 0) and the red bars on the right (b = 1/2) in each group.
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Figure 3: Frequency distributions of the total rank of the gauge group for (a) pure bulk solutions

and (b) the full set of solutions.

models with a large number of stacks make up for the main contribution to the statistics.

We show in the next section that this is indeed the observed behaviour.

Finally we consider the probability distribution to find a single gauge group factor Gi

of rank N within the total gauge group G =
⊗

Gi. The plot shown in figure 4a describes

the probability distribution for pure bulk models. The number of solutions N (N) can be

approximated very well by

N (N) ≈
T+1−N

∑

k=1

T 4

N2
=

T 4

N2
(T + 1 − N), (4.1)

where T is the orientifold charge appearing on the right hand side of the tadpole constraint

and can be read off for the different geometries from (2.7). The factor of T 4

N2 has been

derived in [14] for the T 6/(Z2×Z2) orbifold and holds in the present case as well. The

additional factor of (T + 1 − N) has to be included, because the result of [14] has been

derived for a fixed number of stacks. Since we are showing the contributions from all stacks,
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Figure 4: Frequency distributions of the probability to find a gauge factor of rank N for (a) pure

bulk solutions and (b) the full ensemble of solutions.
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BB 1.37 × 1023 3.08 × 1016

Figure 5: Frequency distribution of the total number of solutions for the different geometries. As

in Figure 2 the four groups of bars represent the geometry on the first two tori, while the geometry

of the third torus is represented by the blue bars on the left (b = 0) and the red bars on the right

(b = 1/2) in each group.

we have to sum over all possibilities for the gauge factor in question to appear. This is

given approximately by the maximum number of stacks, which is fixed by T , minus the

contribution of the brane factor, which is proportional to N .

4.2 Complete solutions

After the inclusion of all possible combinations of exceptional cycles, we obtain a much

larger number of solutions, in total 1.67 × 1023. Note that this number is five orders of

magnitude smaller then the total number of solutions we estimated12 in the case of Z6

to be 3.4 × 1028 [15]. In figure 5 the total number of full solutions to the tadpole and

supersymmetry constraints is shown for the different geometries.

12Since it was not possible to compute all models explicitly in the Z6-case, a random subset method has

been used to estimate the full frequency distributions. The results have been checked for convergence and

the estimated error is smaller then 1%.
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In contrast to the pure bulk results, we obtain different numbers of solutions for the

AB and BB geometries, although the numbers for the AA and BA variants are again

identical. The symmetry between different geometries is therefore lifted if the second torus

is tilted.

In figure 3b the frequency distribution of the total rank of the gauge group is shown.

As already advertised in the last section, we find a very different behaviour compared to

the bulk result in figure 3a. Solutions with a large total rank of the gauge group are greatly

enhanced. This is due to the fact that many more possibilities for different combinations of

exceptional cycles exist for configurations with a large number of stacks, each consisting of

a small number of branes. In fact those configurations with the maximum number of stacks,

each consisting of a single brane, dominate the statistics, since the number of combinations

of exceptional cycles scales roughly as nk
e , where k is the number of stacks and ne the

number of exceptional cycles that can be chosen for one bulk cycle. In principle there are

27 possibilities for each bulk cycle, considering all combinations of σ and τ , but not all of

them lead to solutions of the tadpole and supersymmetry constraints. This behaviour is

completely analogous to the case of T 6/Z6, where very similar results have been found [15].

Another statistical distribution that gets enhanced by the contribution of the excep-

tional part of the fractional cycles is given by the probability distribution of single gauge

group factors of rank N . In figure 4b we show the distribution for the full set of mod-

els. Comparing with the distribution for the pure bulk solutions in figure 4a, we see an

enhancement of smaller factors. Including the factor of nk
e in (4.1), we find

N (N) ≈
T+1−N

∑

k=1

T 4

N2
nk

e =
T 4

N2

(

nT+2−N
e − 1

ne − 1

)

≈ T 4

N2
nT+1−N

e . (4.2)

Using this formula to fit the results, we obtain ne ≈ 32, which means that actually only

1/4 of all possible combinations of exceptional cycles lead to a consistent model.

4.3 Standard models

After the general analysis in the last two sections, we are now going to restrict our attention

to a specific subset of solutions. In the context of a survey of parts of the landscape we are

of course interested in the probability to find vacua which possess as many properties of the

standard model, or more precisely the MSSM since we are dealing with supersymmetric

solutions only, as possible. To single out solutions which come close to this goal, we will

firstly consider only those which contain factors of SU(3) × SU(2) × U(1) in their gauge

group G. Secondly we require the right amount of chiral matter, appropriately charged

under the standard model gauge group. Since in the type II orientifold setup only U(N),

SO(2N) or Sp(2N) gauge groups can occur, we will always have at least one additional

U(1) factor.13

Note that we use the same constructions as in previous works on intersecting brane

statistics [11, 15]. The standard model sector is implemented with four stacks of branes

13This is only true if the SU(2) factor is realised by a Sp(2) brane, otherwise there are at least two

additional U(1)s.
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(i) (ii) (iii) (iv)

G U(3)a × Sp(2)b U(3)a × U(2)b

×U(1)c × U(1)d ×U(1)c × U(1)d

QL χab χab + χab′ χab χab

uR χa′c + χa′d χa′c + χa′d χAntia χAntia

dR χa′c′ + χa′d′ χa′c′ + χa′d′ χa′c + χa′d χa′c + χa′c′

+χAntia +χAntia +χa′c′ + χa′d′

L χbc + χbd χbc + χbd χbc + χbd χb′d

+χb′c + χb′d +χb′c + χb′d

eR χSymc + χSymd χSymc + χSymd −χSymb χcd′ + χc′d′

+χcd′ +χcd′ −χSymb

qY
1
6qa + 1

2qc + 1
2qd

1
6qa + 1

2qc + 1
2qd −1

3qa − 1
2qb −1

3qa − 1
2qb + qd

Table 12: Chiral matter spectrum and definition of the hypercharge qY in terms of the four U(1)

charges for the four different embeddings of the standard model. The amount of chiral matter

is given in terms of the intersection numbers as defined in table 10. The constraints on possible

models can be read off by requiring the number of generations for all sectors to be equal.

(a, b, c, d) [41]. To realise the matter spectrum of the standard model, we allow for

four different possibilities. In terms of the intersection numbers between the four brane

stacks, the chiral matter sector is summarised in table 12. We do not restrict our search

to models with three generations of quarks and leptons, but we require the spectrum to be

self-consistent in the sense that the number of generations for all matter species is identical

and we do not obtain additional chiral matter from the visible sector.

We do allow for a hidden sector, i.e. additional gauge group factors and chiral matter,

which ideally should be completely decoupled from the visible sector of the standard model

in the sense that no chiral matter charged under both, visible and hidden sectors occurs (so

called chiral exotics). Furthermore we have to find a combination of the several U(1)s in

the game which has the right properties to serve as the standard model hypercharge. Since

U(1) factors in these models might receive a mass through the Green-Schwarz mechanism,

we will have to make sure that at least the hypercharge stays massless. This is exactly the

case if the hypercharge is non-anomalous under mixed gauge anomalies. It is interesting

to see how large the suppression of solutions by this condition will be, since it has been

found in [11] that this additional constraint is quite weak compared to the much stronger

requirements of obtaining the right gauge group and matter spectrum. To check if this is

true in the present case as well, we left the property of having a non-anomalous hypercharge

as an open parameter.
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massless U(1)

1 8.79 × 1019 3.42 × 1019

2 1.63 × 1012 1.63 × 1012

3 1.28 × 1016 4.43 × 1015

Figure 6: Frequency distribution of models with the gauge group and the chiral matter spectrum

of the MSSM for different numbers of generations in the visible sector. For each generation the

left blue bars represent models with a massive hypercharge, while the red bars on the right count

models with a massless hypercharge only.

Explicitly, the mixed gauge anomaly for U(1)a and SU(N)b is given by

A ∼ Na

(

χab + χab′
)

.

To obtain a massless hypercharge U(1)Y , this anomaly has to vanish for all possible non-

abelian gauge factors. This results in the condition that the corresponding cycle,

ΠY =
∑

i∈{a,b,c,d}

NixiΠi,

with coefficients xi as given in table 12, has to be invariant under the orientifold projection.

The results of a search for possible standard models are shown in figure 6. All models

that have been found belong to the embedding of type (ii) from table 12. Demanding a

massless hypercharge does change the number of solutions by a factor of 0.4, which is quite

insignificant compared to the suppression factor of 7.3 × 10−4 for models that contain a

gauge factor of U(3)×U(2)/Sp(2)×U(1) and n generations of matter. It is also interesting

to observe that in models with two generations of chiral matter the hypercharge is always

massless.

Taking the number of generations into account, we find a suppression factor of standard

model configurations of 2.6 × 10−8, which comes quite close to the value of 10−9 found

for models on the T 6/(Z2×Z2) orbifold [11]. This is somewhat surprising, because the

geometry we are considering and the results for the frequency distributions of gauge sector

properties are much more similar to T 6/Z6. In that case however the suppression factor

has been found to be 10−22 [15].

4.3.1 Chiral exotics

What has not yet been taken into account in our analysis is the amount of chiral exotics

in these models. With this term we refer to chiral matter that is charged under both, the

visible and the hidden sector gauge group. When it comes to phenomenology these chiral
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Figure 7: Frequency distribution of the total amount of chiral exotic matter for a subset of

solutions with geometry ABa, three generations of MSSM matter and a massless hypercharge. For

the definition of ξ see (4.3).

multiplets are highly undesirable, so it is an interesting question how many of them are

present in the models we found. Ideally one would like to find solutions without any chiral

exotics.

In the following we restrict our attention to models with three generations of standard

model particles. To quantify the amount of chiral exotics, we define a total amount

ξ :=
∑

v∈V
h∈H

∣

∣

∣
χvh − χv′h

∣

∣

∣
, (4.3)

where V = {a, b, c, d} defines the set of branes in the visible sector and H contains all

stacks of the hidden sector.

The possible solutions with geometry ABa for different values of ξ are displayed in

figure 7. We find a broad spectrum of different amounts of chiral exotics, with values for

ξ between 10 and 30 being the most common. Compared to the large number of solutions

however, the variety is rather restricted, which follows from the fact that many of the

models are quite similar in structure. This can be understood by noticing that most of

them have only slightly different configurations of exceptional cycles that very often lead to

the same chiral matter content. Note that there is a particularly interesting set of 1.3×107

models that have no chiral exotics at all.

4.3.2 Example

To give an explicit example of this class of constructions, we choose one with complex

structure ̺ = 1
2 and five stacks of branes. The gauge group is U(3)×U(2)×U(1)Y ×U(1)2

and has total rank 8. The three-cycles wrapped by the five stacks of branes are given in

table 13, where a refers to the U(3) stack, b to the first U(2), c and d to the two U(1)s which

together with the U(1) of stack a combine to the massless hypercharge. The remaining

stack e is the additional U(1) hidden sector gauge group. The full matter spectrum can

be computed as outlined in section 2.6.2 from the intersection numbers listed in tables 14

and 15 for the full and chiral spectrum, respectively.
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Standard model example: brane configuration

brane N P, Q, U, V d1, d2, d3, d4 e1, e2, e3, e4 σ1, σ2, σ5, σ6 τ0, τ1, τ3

a 3 0, 0, 1, -1 0, 1, -1, 0 0, 1, -1, 0 1
2 , 0, 1

2 , 0 0, 1, 1

b 2 3, 0, 3, 0 -3, 0, -3, 0 0, 0, 0, 0 1
2 , 0, 0, 0 1, 1, 0

c 1 1, 1, 0, 0 0, 0, 3, -3 0, 0, -3, 3 1
2 , 0, 0, 1

2 0, 1, 1

d 1 0, 0, 3, -3 0, -1, 1, 0 0, -1, 1, 0 0, 0, 1
2 , 0 0, 1, 1

e 1 0, 0, 3, -3 3, 0, 0, 3 -3, 0, 0, -3 1
2 , 0, 0, 0 0, 1, 0

Table 13: Brane configuration for one particular standard model with one brane in the hidden

sector. The cycles are given in terms of the basis of bulk-cycles (2.4) and exceptional cycles (2.6).

In addition we list the displacement and Wilson line coefficients, σ and τ , as defined in section 2.2.3.

For an explicit list of the torus wrapping numbers {ni, mi}, see appendix D.1.

Standard model example: complete matter spectrum

brane ϕAdj ϕAnti ϕSym ϕ·b ϕ·c ϕ·d ϕ·e ϕ·b′

ϕ·c′ ϕ·d′

ϕ·e′

a 2 6 0 0 3 6 0 5 3 6 0

b 10 8 12 11 8 8 11 5 8

c 4 10 0 5 6 5 6

d 10 16 6 0 0

e 10 16 6

Table 14: Number of chiral and non-chiral multiplets for the standard model example. The branes

are defined in table 13, for the definition of ϕ see equation (2.17).

In terms of representations of (SU(3) × SU(2))U(1)Y
the matter spectrum contains the

following multiplets,

2 × (8,1)0 + 10 × (1,3)0 + 36 × (1,1)0

+ 3 ×
[

(3,2)1/6 + (3̄,1)1/3 + (3̄,1)−2/3 + 5 × (1,2)−1/2 + 4 × (1,2)1/2 + (1,1)1 + (1,1)0

]

+
[

(3,2)1/6 + 6 × (3,1)−1/3 + 3 × (3,1)2/3 + 4 × (1,2)−1/2 + 8 × (1,2)0 + 4 × (1,12)0

+6 × (1,32)0 + 4 × (1,1)0 + 6 × (1,1)1/2 + 4 × (1,1)1 + c.c.
]

.

4.4 SU(5) models

Another interesting class of models are those which do not contain the MSSM directly at

the string scale, but the gauge group and chiral matter content of a grand unified theory.

In the following we present a statistical analysis of solutions with the characteristics of

SU(5) and Pati-Salam models within the full ensemble of solutions.

To obtain SU(5) models we checked for configurations containing at least two stacks

of branes, one (referred to as stack a) containing five branes that form a U(5) gauge group,
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Standard model example: chiral matter spectrum

brane χAnti χSym χ·b χ·c χ·d χ·e χ·b′

χ·c′ χ·d′

χ·e′

a 0 0 0 -3 0 0 3 -3 0 0

b 0 0 -9 6 0 -9 3 0

c 0 0 -3 0 3 0

d 0 0 0 0

e 0 0

Table 15: Number of chiral multiplets for the standard model example. The branes are defined in

table 13, for the definition of χ see equation (2.16).
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Figure 8: Frequency distributions of SU(5) models according to the number of generations

(= χAntia = χa′b). The table shows in addition the number of multiplets in the symmetric repre-

sentations of SU(5).

and one stack (b) with only one brane to give a U(1) gauge group. The chiral matter of

SU(5) models is contained in the 10 and 5̄ representations of SU(5). The number of these

representations is given in our construction by the number of antisymmetric matter of the

first stack χAntia, and the bifundamental matter in χa′b. These two numbers should be the

same and give the number of generations of chiral matter, which we use as a free parameter.

In addition there might be matter in the symmetric representation of SU(5), which is not

very desirable from a phenomenological point of view, but as it turns out there do not exist

any solutions where this matter is absent.14

The result of our survey is shown in figure 8. There exist only solutions with 2 or 4

generations of chiral matter and all of them contain at least one symmetric representation

of SU(5). This result shows much less possibilities for SU(5) models than in the T 6/(Z2×Z2)

case, studied in [44, 13]. In the systematic analysis of [13] more variety in the number of

14Moreover, there might exist more exotic matter between the visible sector and the hidden sector group,

which is also undesirable phenomenologically. Since there do not exist models without symmetric represen-

tations, we did not perform the (computationally more complex) check for other exotic matter multiplets.
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generations has been found (solutions with 1,2,4 and 8 generations) and, more importantly,

models without symmetric representations are possible. Although the total number of

solutions is quite large, this is mainly an effect due to the exceptional cycles, as explained

earlier. None of the models is very attractive from a phenomenological point of view, in

particular because of the presence of symmetric matter.

4.5 Pati-Salam models

To obtain Pati-Salam models with gauge group SU(4)× SU(2)L × SU(2)R, we constrained

our search to models with at least three stacks. One with four branes forming a U(4)

gauge group (referred to as stack a), and two with two branes that form U(2) gauge groups

(stacks b and c). In principle it is also possible to allow for Sp(2) groups here (which can

be obtained from branes sitting on top of the orientifold planes), but we focus on those

with gauge group U(4) × U(2) × U(2) × H in the following. H denotes the hidden sector

gauge group, which also might be absent.

The chiral matter in the visible sector that we would like to obtain is

QL = (4,2,1), QR = (4̄,1,2),

written in terms of representations of the visible sector gauge group. This amounts to the

following constraints on the intersection numbers of the three stacks a, b and c introduced

above,

χab = χa′c′ = g, χAntia = χSyma = 0, (4.4)

where g denotes the number of generations. The second set of constraints excludes un-

wanted symmetric and antisymmetric representations of SU(4). An additional constraint

can be imposed on the amount of matter in the bifundamental representation of SU(2)L
and SU(2)R. These multiplets might however also be candidates for Higgses, which is why

we leave their number as an open parameter, concretely defined as

χ(2,2) :=
∣

∣

∣
χbc

∣

∣

∣
+

∣

∣

∣
χbc′

∣

∣

∣
. (4.5)

The results, shown in figure 9, are interesting for at least two reasons. Firstly, the

number of possible generations is one or three, exactly those numbers which did not appear

in the SU(5) case. Secondly there exist models that contain three generations of chiral

matter, with or without additional chiral Higgs candidates.15 These are given by the

intersection number between the two SU(2) branes.

4.5.1 Chiral exotics

As in the case of the standard model constructions, we would like to know how much

chiral exotics arise in these constructions. Unfortunately it turns out that this number is

generically very large. For a more detailed analysis we chose a subset of Pati-Salam models,

consisting of all constructions with three generations of chiral matter in the visible sector

and a maximum number of two stacks in the hidden sector.

15There might or might not exist additional non-chiral multiplets, which can also be used as possible

Higgs candidates.
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Figure 9: Frequency distribution of Pati–Salam models according to the number of generations

in the visible sector (= χab = χa′c′). In the table we list additionally the amount of matter in the

bifundamental representation (2,2) given by χ(2,2), as defined in (4.5).
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Figure 10: Frequency distribution of Pati-Salam models with three generations of matter in the

visible sector and not more then two stacks in the hidden sector, divided according to the total

amount of chiral exotic matter ξ, as defined by (4.3).

To quantify the amount of chiral exotics, we use their absolute number ξ, as defined

in (4.3). The results are shown in figure 10. They reveal that in all possible constructions

not only a non-vanishing number of chiral exotics is present, but there are always a lot of

them. The small number of different values for ξ shows the similar structure of constructions

of this type. The number of different values is much smaller than in the standard model

case, due to the effect that U(4) factors are suppressed compared to U(3) factors. Moreover,

we are only considering models with a maximum number of two branes in the hidden sector,

a condition that severely reduces the number of possible configurations.

4.5.2 Example

Let us look at one example of a special subset of these solutions, consisting only of models

with three generations of chiral matter without chiral Higgs candidates. The geometry

of the model is ABa, the complex structure modulus is given by ρ = 3
2 and we have a
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Pati-Salam example: brane configuration

brane N P, Q, U, V d1, d2, d3, d4 e1, e2, e3, e4 σ1, σ2, σ5, σ6 τ0, τ1, τ3

a 4 0, 0, 1, -1 0, 1, 1, 0 0, 1, 1, 0 1
2 , 0, 1

2 , 0 0, 1, 0

b 2 2, -1, 2, -1 -2, 0, -2, 0 1, 0, 1, 0 1
2 , 0, 0, 0 1, 1, 0

c 2 2, -1, 2, -1 2, 0, 2, 0 -1, 0, -1, 0 1
2 , 0, 0, 0 0, 1, 0

d 1 3, 0, 1, 0 1, 0, 1, 0 -2, 0, -2, 0 1
2 , 0, 0, 0 1, 1, 0

e 1 2, -1, 2, -1 -2, 0, -2, 0 1, 0, 1, 0 0, 0, 0, 0 0, 0, 0

Table 16: Brane configuration for one Pati-Salam model with two branes in the hidden sector. The

cycles are given in terms of the basis of bulk-cycles (2.4) and exceptional cycles (2.6). In addition

we list the displacement and Wilson line coefficients, σ and τ , as defined in section 2.2.3. For an

explicit list of the torus wrapping numbers {ni, mi}, see appendix D.2.

total number of five stacks, which are given in detail in table 16. The gauge group is

U(4)×U(2)L×U(2)R×U(1)2 with total rank 10. The intersection numbers between stacks

a, b and c are fixed by the constraints (4.4), but as already mentioned above, there is quite

an amount of chiral exotic matter in bifundamental representations of the first three stacks

and stacks d and e. The relevant intersections to compute the full chiral and non-chiral

spectrum are listed in tables 17 and 18. In terms of representations of U(4)×U(2)L×U(2)R
the spectrum contains the following matter multiplets,

2 × (16,1,1) + 4 × (1,4,1) + 4 × (1,1,4) + 6 × (1,1,1)

+ 3 ×
[

(4,2,1) + (4̄,1,2) + (4,1,1)1,0 + (4̄,1,1)0,1

]

+ 6 ×
[

(1,1,2)0,1 + (1,1, 2̄)1,0 + (1,12,1) + (1,1,12) + 11,-1 + 1-2,0

]

+
[

3 × (4,1,1)-1,0 + (4, 2̄,1) + (4,2,1) + 2 × (4,1,1)1,0 + 5 × (1,2, 2̄) + 4 × (1,2,2)

+3 × (1,2,1)0,-1 + 7 × (1,2,1)1,0 + 2 × (1,2,1)0,1 + 3 × (1,1,2)0,-1 + 5 × (1,1,2)1,0

+2 × (1,1,2)-1,0 + 3 × 11,1 + 3 × (6,1,1) + 2 × (1,3,1) + 2 × (1,1,3) + c.c.
]

,

where the subscripts denote the charge under the U(1) factors of branes d and e. If

no charges are given, they are zero and if the non-abelian part is written just as 1, the

corresponding multiplet is understood to be a singlet under the full visible sector gauge

group.

5. Conclusions

In this article we have performed a complete analysis of all possible N = 1 supersymmetric

solutions for the T 6/Z
′
6 orbifold background in the context of intersecting D6-brane models

on type IIA orientifolds. To analyse all O(1023) solutions, we reformulated the constraining

equations as well as the formulae to calculate the amount of chiral and non-chiral matter in
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Pati-Salam example: complete matter spectrum

brane ϕAdj ϕAnti ϕSym ϕ·b ϕ·c ϕ·d ϕ·e ϕ·b′

ϕ·c′ ϕ·d′

ϕ·e′

a 2 6 0 3 2 6 3 0 5 7 0

b 4 6 4 10 10 6 8 10 6

c 4 6 4 0 6 14 4

d 2 8 6 6 6

e 4 10 0

Table 17: Number of chiral and non-chiral multiplets for the Pati-Salam example. The branes are

defined in table 16, for the definition of ϕ see equation (2.17).

Pati-Salam example: chiral matter spectrum

brane χAnti χSym χ·b χ·c χ·d χ·e χ·b′

χ·c′ χ·d′

χ·e′

a 0 0 -3 0 0 -3 0 3 3 0

b 6 0 0 -6 0 0 0 6

c 6 0 0 0 0 0

d 0 -6 6 0

e 6 0

Table 18: Number of chiral multiplets for the Pati-Salam example. The branes are defined in

table 16, for the definition of χ see equation (2.16).

terms of algebraic equations with rational coefficients. The algebraic formalism to compute

the non-chiral spectrum is new and can be used for all toroidal orbifold backgrounds.

The full ensemble of solutions, as well as special subsets of interesting configurations,

have been analysed from a statistical point of view. The main results are the following.

Concerning the full set of solutions we found that the frequency distributions of the total

rank of the gauge group behaves at a qualitative level exactly as it has been found in

an earlier study of T 6/Z6 [15], showing an enhancement of models with bigger total rank,

compared to constructions without exceptional cycles, such as T 6/(Z2×Z2). Concerning the

probability distribution of individual factors of the gauge group with rank N , we confirm

a result from [14], showing that the distribution scales as N−2 if one ignores contributions

from exceptional cycles. Taking them into account amounts to an additional exponential

factor in (4.2).

Things are different from T 6/Z6 if one starts to look for specific configurations. We have

done an analysis of possible configurations that contain the gauge group of the standard

model, as well as SU(5) and Pati-Salam GUT models. In general, the number of solutions

for such configurations is larger than in the Z6 case, although the total number of solutions

is smaller by five orders of magnitude. In particular, there does exist a considerable amount

of interesting standard model and Pati-Salam configurations with three generations of chiral

matter. We provided an example for both cases. We analysed these subsets in some detail,

focussing on the existence of a massless hypercharge and the presence of chiral exotics.

As in other orbifold constructions, requiring a massless hypercharge is not a very strong
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restriction, but chiral exotics are omnipresent in Pati-Salam models and in the vast majority

of Standard Model constructions. In our analysis, which has been restricted to a subset of

all possible constructions, we find a class of O(107) models without chiral exotics. This is

certainly a very interesting set of solutions that deserves further study. We hope to come

back to this in future work.
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A. The non-chiral models in cycle language

As a cross-check of the formulae given in section 2, the non-chiral spectra with D6-branes

on top of the O6-planes passing through the origin computed in [31, 32] are reproduced by

two types of fractional branes for each choice of lattice,

AAa/b :

{

Π1 = 1
2

ρ1−bρ3

1−b + 1
2 (δ1 + (1 − 2b)δ2 + (2b)δ4)

Π2 = 1
2(ρ3 − 2ρ4) + 1

2 (−δ1 − δ4)
,

ABa/b :







Π1 = 1
2

ρ1+ρ2−b(ρ3+ρ4)
1−b + 1

2

(

δ1 + δ̃1 + (1 − 2b)[δ2 + δ̃2] + (2b)[δ4 + δ̃4]
)

Π2 = 1
23(ρ3 − ρ4) + 1

2

(

−δ1 − δ̃1 − δ4 − δ̃4

) ,

BAa/b :







Π1 = 1
2

ρ1+ρ2−b(ρ3+ρ4)
1−b + 1

2

(

δ̃1 − δ1 + (1 − 2b)[δ̃2 − δ2] + (2b)[δ̃4 − δ4]
)

Π2 = 1
2 (ρ3 − ρ4) + 1

2

(

δ1 − δ̃1 + δ4 − δ̃4

) ,

BBa/b :







Π1 = 1
2

3(ρ2−bρ4)
1−b + 1

2

(

δ̃1 − 2δ1 + (1 − 2b)[δ̃2 − 2δ2] + (2b)[δ̃4 − 2δ4]
)

Π2 = 1
2 (2ρ3 − ρ4) + 1

2

(

2δ1 − δ̃1 + 2δ4 − δ̃4

) .

(A.1)

The choices A and B for the lattice T 2
3 in [31, 32] correspond to setting the complex

structure parameter ̺A = 3, ̺B = 1 in the tilted torus b with b = 1/2. Each model has

gauge group U(2) ×U(2) and a completely non-chiral spectrum as required to fit with the

previously computed spectra.

B. Search for SO(2N) or Sp(2N) gauge groups

If some fractional cycle is ΩR invariant, besides from U(N) gauge groups, SO(2N) or

Sp(2N) gauge factors can occur. In tables 19, 20, 21 and 22, we examine the candidate

cycles which have bulk parts parallel to the O6-planes.

As listed in the tables, fractional cycles which sit on top of the O6-planes, i.e.

(σ1, σ2;σ5, σ6) = (0, 0; 0, 0),
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for the T 2
3 a-type lattice also

(σ1, σ2;σ5, σ6) =

(

0, 0;
1

2
, 0

)

,

are never ΩR invariant. All other ΩR invariant bulk cycle positions can serve as probe

brane candidates for the K-theory constraint discussed in section 2.5 for appropriate choices

of Wilson lines.

For the K-theory constraints, only Sp(2)-branes are relevant, but since we do not find

a fast method to distinguish SO and Sp groups, we take all ΩR invariant cycles as probe

branes. Even with this larger set, it can be shown that the constraint is always trivially

fulfilled (cf. section 2.5).

C. The lattice of three-cycles

The twelve dimensional lattice of fractional cycles consisting of bulk and Z2 exceptional

cycles only is spanned by

α1 = 1
2 (ρ1 + δ1 + δ2) , α7 = 1

2 (δ1 + δ2 + δ3 − δ4) ,

α2 = 1
2

(

ρ4 − δ̃1 − δ̃4

)

, α8 = −1
2

(

δ̃1 − δ̃2 + δ̃3 − δ̃4

)

,

α3 = 1
2 (ρ1 − δ1 − δ2) , α9 = 1

2 (δ1 + 3 δ2 + δ3 − δ4) ,

α4 = 1
2

(

ρ4 + δ̃1 + δ̃4

)

, α10 = 1
2

(

δ̃1 − δ̃2 + δ̃3 + δ̃4

)

,

α5 = 1
2

(

−2 ρ1 + ρ2 + δ̃3 + δ̃4

)

, α11 = 1
2

(

2 ρ1 − ρ2 − 3 δ̃3 − 3 δ̃4

)

,

α6 = 1
2 (−ρ3 + 2 ρ4 − δ2 − δ3) , α12 = 1

2 (−ρ3 + 2 ρ4 − 3 δ2 − 3 δ3) .

(C.1)

Defining

ε =

(

0 1

−1 0

)

, (C.2)

the intersection matrix is

Ibulk+Z2 = Diag(ε, ε, ε, ε, ε, 3 ε). (C.3)

An unimodular basis of three-cycles is obtained if also the exceptional cycles at Z3 fixed

points are taken into account as follows,

α13 =
1

3
ρ1 −

1

6
ρ2 −

1

2

(

δ̃3 + δ̃4

)

+
1

3

(

(γ
(1)
1 − γ

(2)
1 ) − (γ

(1)
2 − γ2

2)
)

,

α14 =
1

3

(

(γ
(1)
1 − γ

(2)
1 ) + (γ

(1)
2 − γ2

2) + (γ
(1)
3 − γ2

3)
)

,

α15 =
1

6
ρ3 −

1

3
ρ4 +

1

2
(δ2 + δ3) −

1

3

(

(γ̃
(1)
1 − γ̃

(2)
1 ) − (γ̃

(1)
2 − γ̃

(2)
2 )

)

,

α16 =
1

3

(

(γ̃
(1)
1 − γ̃

(2)
1 ) + (γ̃

(1)
2 − γ̃

(2)
2 ) + (γ̃

(1)
3 − γ̃

(2)
3 )

)

,

α17 = γ
(1)
1 − γ

(2)
1 , α18 = γ

(1)
1 , α19 = γ

(1)
2 , α20 = γ

(1)
3 ,

α21 = γ̃
(1)
1 − γ̃

(2)
1 , α22 = γ̃

(2)
1 , α23 = γ̃

(2)
2 , α24 = γ̃

(2)
3 .

(C.4)
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D. Bulk wrapping numbers

In the following we list the torus wrapping numbers of the branes in the two examples we

gave in sections 4.3.2 and 4.5.2.

D.1 Standard model example

An explicit realisation of the bulk branes in the standard model example is given by

a : (n1,m1;n2,m2;n3,m3) = (1,−1; 1, 0; 0, 1) → (P,Q,U, V ) = (0, 0, 1,−1),

b : (n1,m1;n2,m2;n3,m3) = (1, 1; 2,−1; 1, 1) → (P,Q,U, V ) = (3, 0, 3, 0),

c : (n1,m1;n2,m2;n3,m3) = (1,−1;−1, 2; 1, 0) → (P,Q,U, V ) = (1, 1, 0, 0),

d : (n1,m1;n2,m2;n3,m3) = (1,−1; 1,−2; 0, 1) → (P,Q,U, V ) = (0, 0, 3,−3),

e : (n1,m1;n2,m2;n3,m3) = (1,−1; 1,−2; 0, 1) → (P,Q,U, V ) = (0, 0, 3,−3).

D.2 Pati-Salam example

An explicit realisation of the bulk branes in the Pati-Salam example is given by

a : (n1,m1;n2,m2;n3,m3) = (1,−1; 1, 0; 0, 1) → (P,Q,U, V ) = (0, 0, 1,−1),

b : (n1,m1;n2,m2;n3,m3) = (1, 1; 1,−1; 1, 1) → (P,Q,U, V ) = (2,−1, 2,−1),

c : (n1,m1;n2,m2;n3,m3) = (1, 1; 1,−1; 1, 1) → (P,Q,U, V ) = (2,−1, 2,−1),

d : (n1,m1;n2,m2;n3,m3) = (1,−1; 0, 1; 3, 1) → (P,Q,U, V ) = (3, 0, 1, 0),

e : (n1,m1;n2,m2;n3,m3) = (1,−1; 1, 1; 1, 1) → (P,Q,U, V ) = (2,−1, 2,−1).
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Fractional cycles parallel to O6-planes for T 6/Z
′
6

lattice

#
Πbulk (σ1, σ2;σ5, σ6) ΠZ2 ΩR(ΠZ2)

ΩR
inv.

AAa/b ρ1−bρ3

1−b (0, 0; 0, 0) τ̃1δ1 + τ̃2δ 2
1−b

−τ̃1δ1 − τ̃2δ 2
1−b

no

(1a) (0, 1
2 ; 0, 0)

−τ̃2δ1 + (τ̃2 − τ̃1)δ̃1

−τ̃4δ 2
1−b

+ (τ̃4 − τ̃3)δ̃ 2
1−b

τ̃1δ1 + (τ̃2 − τ̃1)δ̃1

+τ̃3δ 2
1−b

+ (τ̃4 − τ̃3)δ̃ 2
1−b

τ̃2 = −τ̃1

τ̃4 = −τ̃3

(1bb) (0, 0; b, 1−2b
2 ) τ̃1δ3 + τ̃2δ4(1−b) −τ̃1δ3−2b − τ̃2δ4−2b

a: no

b:τ̃2 = −τ̃1

(1c) (0, 1
2 ; b, 1−2b

2 )
−τ̃2δ3 + (τ̃2 − τ̃1)δ̃3

−τ̃4δ4(1−b) + (τ̃4 − τ̃3)δ̃4(1−b)

τ̃1δ3−2b + (τ̃2 − τ̃1)δ̃3−2b

+τ̃3δ4−2b + (τ̃4 − τ̃3)δ̃4−2b

τ̃1 = −τ̃ 2
1−b

τ̃3 = −τ̃4(1−b)

AAa/b ρ3 − 2ρ4 (0, 0; 0, 0) −τ̃1δ1 − τ̃2δ4 τ̃1δ1 + τ̃2δ4 no

(2a) (0, 1
2 ; 0, 0)

τ̃1δ1 + (τ̃2 − τ̃1)δ̃1

+τ̃3δ4 + (τ̃4 − τ̃3)δ̃4

−τ̃2δ1 + (τ̃2 − τ̃1)δ̃1

−τ̃4δ4 + (τ̃4 − τ̃3)δ̃4

τ̃1 = −τ̃2

τ̃3 = −τ̃4

(2bb) (0, 0; 1
2 , 0) −τ̃1δ2 − τ̃2δ3 τ̃1δ2+2b + τ̃2δ3−2b

a: no

b: τ̃2 = −τ̃1

(2c) (0, 1
2 ; 1

2 , 0)
τ̃1δ2 + (τ̃2 − τ̃1)δ̃2

+τ̃3δ3 + (τ̃4 − τ̃3)δ̃3

−τ̃2δ2+2b + (τ̃2 − τ̃1)δ̃2+2b

−τ̃4δ3−2b + (τ̃4 − τ̃3)δ̃3−2b

τ̃1 = −τ̃ 2
1−b

τ̃3 = −τ̃4(1−b)

Table 19: Search for ΩR invariant cycles 1
2Πbulk + 1

2ΠZ2 . The prefactors τ̃i = ±1 corresponding to the choice of a Z2 eigenvalue and two Wilson

lines are subject to the constraint
∏4

i=1 τ̃i = 1. The numbering in the first column corresponds to the probe brane candidates discussed in section 2.5.

In the last column, the combinations of τ̃i for which ΩR invariant cycles occur are listed. Part 1.

–
38

–
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Fractional cycles parallel to O6-planes for T 6/Z
′
6

lattice

#
Πbulk (σ1, σ2;σ5, σ6) ΠZ2 ΩR(ΠZ2)

ΩR
inv.

ABa/b
ρ1+ρ2

1−b

− b(ρ3+ρ4)
1−b

(0, 0; 0, 0) τ̃1(δ1 + δ̃1) + τ̃2(δ 2
1−b

+ δ̃ 2
1−b

) −τ̃1(δ1 + δ̃1) − τ̃2(δ 2
1−b

+ δ̃ 2
1−b

) no

(1a) (0, 1
2 ; 0, 0)

(τ̃1 − 2τ̃2)δ1 + (τ̃2 − 2τ̃1)δ̃1

+(τ̃3 − 2τ̃4)δ 2
1−b

+ (τ̃4 − 2τ̃3)δ̃ 2
1−b

(2τ̃1 − τ̃2)δ1 + (2τ̃2 − τ̃1)δ̃1

+(2τ̃3 − τ̃4)δ 2
1−b

+ (2τ̃4 − τ̃3)δ̃ 2
1−b

τ̃1 = −τ̃2

τ̃3 = −τ̃4

(1bb) (0, 0; b, 1−2b
2 ) τ̃1(δ3 + δ̃3) + τ̃2(δ4(1−b) + δ̃4(1−b))

−τ̃1(δ3−2b + δ̃3−2b)

−τ̃2(δ4−2b + δ̃4−2b)

a: no

b:τ̃2 = −τ̃1

(1c) (0, 1
2 ; b, 1−2b

2 )
(τ̃1 − 2τ̃2)δ3 + (τ̃2 − 2τ̃1)δ̃3

+(τ̃3 − 2τ̃4)δ4(1−b) + (τ̃4 − 2τ̃3)δ̃4(1−b)

(2τ̃1 − τ̃2)δ3−2b + (2τ̃2 − τ̃1)δ̃3−2b

+(2τ̃3 − τ̃4)δ4−2b + (2τ̃4 − τ̃3)δ̃4−2b

τ̃1 = −τ̃ 2
1−b

τ̃3 = −τ̃4(1−b)

ABa/b 3(ρ3 − ρ4) (0, 0; 0, 0) −τ̃1(δ1 + δ̃1) − τ̃2(δ4 + δ̃4) τ̃1(δ1 + δ̃1) + τ̃2(δ4 + δ̃4) no

(2a) (0, 1
2 ; 0, 0)

(2τ̃2 − τ̃1)δ1 + (2τ̃1 − τ̃2)δ̃1

+(2τ̃4 − τ̃3)δ4 + (2τ̃3 − τ̃4)δ̃4

(τ̃2 − 2τ̃1)δ1 + (τ̃1 − 2τ̃2)δ̃1

+(τ̃4 − 2τ̃3)δ4 + (τ̃3 − 2τ̃4)δ̃4

τ̃1 = −τ̃2

τ̃3 = −τ̃4

(2bb) (0, 0; 1
2 , 0) −τ̃1(δ2 + δ̃2) − τ̃2(δ3 + δ̃3)

τ̃1(δ2+2b + δ̃2+2b)

+τ̃2(δ3−2b + δ̃3−2b)

a: no

b:τ̃2 = −τ̃1

(2c) (0, 1
2 ; 1

2 , 0)
(2τ̃2 − τ̃1)δ2 + (2τ̃1 − τ̃2)δ̃2

+(2τ̃4 − τ̃3)δ3 + (2τ̃3 − τ̃4)δ̃3

(τ̃2 − 2τ̃1)δ2+2b + (τ̃1 − 2τ̃2)δ̃2+2b

+(τ̃4 − 2τ̃3)δ3−2b + (τ̃3 − 2τ̃4)δ̃3−2b

τ̃1 = −τ̃ 2
1−b

τ̃3 = −τ̃4(1−b)

Table 20: Search for ΩR invariant cycles. Part 2.

–
39
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Fractional cycles parallel to O6-planes for T 6/Z
′
6

lattice

#
Πbulk (σ1, σ2;σ5, σ6) ΠZ2 ΩR(ΠZ2)

ΩR
inv.

BAa/b
ρ1+ρ2

1−b

− b(ρ3+ρ4)
1−b

(0, 0; 0, 0) τ̃1(δ̃1 − δ1) + τ̃2(δ̃ 2
1−b

− δ 2
1−b

) τ̃1(δ1 − δ̃1) + τ̃2(δ 2
1−b

− δ̃ 2
1−b

) no

(1a) (0, 1
2 ; 0, 0) τ̃1δ1 − τ̃2δ̃1 + τ̃3δ 2

1−b
− τ̃4δ̃ 2

1−b
−τ̃2δ1 + τ̃1δ̃1 − τ̃4δ 2

1−b
+ τ̃3δ̃ 2

1−b

τ̃1 = −τ̃2

τ̃3 = −τ̃4

(1bb) (0, 0; b, 1−2b
2 ) τ̃1(δ̃3 − δ3) + τ̃2(δ̃4(1−b) − δ4(1−b)) τ̃1(δ3−2b − δ̃3−2b) + τ̃2(δ4−2b − δ̃4−2b)

a: no

b:τ̃2 = −τ̃1

(1c) (0, 1
2 ; b, 1−2b

2 ) τ̃1δ3 − τ̃2δ̃3 + τ̃3δ4(1−b) − τ̃4δ̃4(1−b) −τ̃2δ3−2b + τ̃1δ̃3−2b − τ̃4δ4−2b + τ̃3δ̃4−2b

τ̃1 = −τ̃ 2
1−b

τ̃3 = −τ̃4(1−b)

BAa/b ρ3 − ρ4 (0, 0; 0, 0) τ̃1(δ1 − δ̃1) + τ̃2(δ4 − δ̃4) −τ̃1(δ1 − δ̃1) − τ̃2(δ4 − δ̃4) no

(2a) (1
2 , 0; 0, 0) −τ̃1δ1 + τ̃2δ̃1 − τ̃3δ4 + τ̃4δ̃4 τ̃2δ1 − τ̃1δ̃1 + τ̃4δ4 − τ̃3δ̃4

τ̃1 = −τ̃2

τ̃3 = −τ̃4

(2bb) (0, 0; 1
2 , 0) τ̃1(δ2 − δ̃2) + τ̃2(δ3 − δ̃3) −τ̃1(δ2+2b − δ̃2+2b) − τ̃2(δ3−2b − δ̃3−2b)

a: no

b:τ̃1 = −τ̃2

(2c) (1
2 , 0; 1

2 , 0) −τ̃1δ2 + τ̃2δ̃2 − τ̃3δ3 + τ̃4δ̃3 τ̃2δ2+2b − τ̃1δ̃2+2b + τ̃4δ3−2b − τ̃3δ̃3−2b

τ̃1 = −τ̃ 2
1−b

τ̃3 = −τ̃4(1−b)

Table 21: Search for ΩR invariant cycles. Part 3.

–
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Fractional cycles parallel to O6-planes for T 6/Z
′
6

lattice

#
Πbulk (σ1, σ2;σ5, σ6) ΠZ2 ΩR(ΠZ2)

ΩR
inv.

BBa/b 3(ρ2−bρ4)
1−b (0, 0; 0, 0) τ̃1(δ̃1 − 2δ1) + τ̃2(δ̃ 2

1−b
− 2δ 2

1−b
) τ̃1(2δ1 − δ̃1) + τ̃2(2δ 2

1−b
− δ̃ 2

1−b
) no

(1a) (0, 1
2 ; 0, 0)

(τ̃1 + τ̃2)δ1 + (τ̃1 − 2τ̃2)δ̃1

+(τ̃3 + τ̃4)δ 2
1−b

+ (τ̃3 − 2τ̃4)δ̃ 2
1−b

−(τ̃1 + τ̃2)δ1 + (2τ̃1 − τ̃2)δ̃1

−(τ̃3 + τ̃4)δ 2
1−b

+ (2τ̃3 − τ̃4)δ̃ 2
1−b

τ̃1 = −τ̃2

τ̃3 = −τ̃4

(1bb) (0, 0; b, 1−2b
2 ) τ̃1(δ̃3 − 2δ3) + τ̃2(δ̃4(1−b) − 2δ4(1−b)) τ̃1(2δ3−2b − δ̃3−2b) + τ̃2(2δ4−2b − δ̃4−2b)

a: no

b: τ̃1 = −τ̃2

(1c) (0, 1
2 ; b, 1−2b

2 )
(τ̃1 + τ̃2)δ3 + (τ̃1 − 2τ̃2)δ̃3

+(τ̃3 + τ̃4)δ4(1−b) + (τ̃3 − 2τ̃4)δ̃4(1−b)

−(τ̃1 + τ̃2)δ3−2b + (2τ̃1 − τ̃2)δ̃3−2b

−(τ̃3 + τ̃4)δ4−2b + (2τ̃3 − τ̃4)δ̃4−2b

τ̃1 = −τ̃ 2
1−b

τ̃3 = −τ̃4(1−b)

BBa/b 2ρ3 − ρ4 (0, 0; 0, 0) τ̃1(2δ1 − δ̃1) + τ̃2(2δ4 − δ̃4) −τ̃1(2δ1 − δ̃1) − τ̃2(2δ4 − δ̃4) no

(2a) (1
2 , 0; 0, 0)

−(τ̃1 + τ̃2)δ1 + (2τ̃1 − τ̃2)δ̃1

−(τ̃3 + τ̃4)δ4 + (2τ̃3 − τ̃4)δ̃4

(τ̃1 + τ̃2)δ1 + (τ̃1 − 2τ̃2)δ̃1

+(τ̃3 + τ̃4)δ4 + (τ̃3 − 2τ̃4)δ̃4

τ̃1 = −τ̃2

τ̃3 = −τ̃4

(2bb) (0, 0; 1
2 , 0) τ̃1(2δ2 − δ̃2) + τ̃2(2δ3 − δ̃3) −τ̃1(2δ2+2b − δ̃2+2b) − τ̃2(2δ3−2b − δ̃3−2b)

a: no

b: τ̃1 = −τ̃2

(2c) (1
2 , 0; 1

2 , 0)
−(τ̃1 + τ̃2)δ2 + (2τ̃1 − τ̃2)δ̃2

−(τ̃3 + τ̃4)δ3 + (2τ̃3 − τ̃4)δ̃3

(τ̃1 + τ̃2)δ2+2b + (τ̃1 − 2τ̃2)δ̃2+2b

+(τ̃3 + τ̃4)δ3−2b + (τ̃3 − 2τ̃4)δ̃3−2b

τ̃1 = −τ̃ 2
1−b

τ̃3 = −τ̃4(1−b)

Table 22: Search for ΩR invariant cycles. Part 4.
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