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A. TRANSVERSE FREE WAVES ON ELECTRON BEAMS

The transverse waves that propagate on a one-dimensional electron beam in a finite

magnetic field are being studied. The general dielectric tensor for an unbounded, rela-

tivistic electron beam is presented and a detailed discussion of the waves along the mag-

netic field is given. The results are useful in understanding the instabilities that arise

when such a beam passes through a plasma. (See Section VIII-C of this report. )

1. General Dielectric Tensor

The system to be investigated is shown in Fig. V-l. We assume that the electrons

are cold and are neutralized by ions of infinite mass. A plane wave of the form

exp[j(wt-k - F)] is assumed, and the vector k is chosen to lie in the x-z plane. If we

use the relativistic force equation and Maxwell's equations to solve for the current in

terms of the electric field, we can define a dielectric tensor for the medium and write

Maxwell's equations as

kXE= LoH (1)

kXH=-EE K.E (2)o

Here,
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and po is the charge density of the beam as measured by a stationary observer. The

transverse and longitudinal masses are defined by

mt = Yomo

3
m = ymo,

where

yo= (I- v2/c2 1/2

and m 0 is the rest mass. The dielectric tensor can easily be generalized

to include a multiparticle system by summing over all species in the usual

manner.
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Fig. V-1. Electron-beam system.
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2. Waves along the Magnetic Field

For the waves along the magnetic field, kx = 0 and the dielectric tensor assumes

the form

K -K 0
I. x

SKx  K 0

0 0 K

where the elements are easily obtained from the general tensor. The waves are of two

types (in the rest of this report, k = k):z
(a) Longitudinal oscillations with H = 0 and E = E z ; K11 = 0. These are the well-

known space-charge waves and will not be discussed further in this investigation.

(b) Transverse waves that are right or left circularly polarized with

2
2k=-- K for left polarization (clockwise) (6)

c

2
2 2

k 2_ Kr for right polarization (counterclockwise) (7)
c

where

2
W pt r

K =K - jKx = 1 2 (8)

2
pt r

K r  K. + jK x = 1 2 (9)

r c

The solutions of the dispersion equations are complicated because of their cubic nature.

The propagating modes are most easily obtained by a transformation into a reference

frame moving with the beam because the dispersion equation is then quadratic (Fig. V-2).

The transformation of (w, k) is

w= Yo(w' + k'v o ) (10)

k = -o(k' + u'vo/c 2 ). (11)
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Fig. V-2. Co-moving reference frames.

In the primed reference frame, the dispersion equations are

2

2  wo2 p
k' - - (+co (left) (12)

c co

where
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and p' is the charge density as measured in the co-moving reference frame.

It should be noted that Eqs. 12 and 13 are just the dispersion relations for

the left and right circularly polarized waves in an electron plasma. The dis-

persion of the right polarized waves can be obtained by letting w - -w in the

left polarized case; thus a plot of w-k for positive and negative frequencies

for the left polarized waves will cover both cases in the primed reference

frame.

If we have reasonably low densities and high magnetic fields ( <<w co), the

dispersion equation is of the form sketched in Fig. V-3. The transformation

to the laboratory frame gives the dispersion curve shown in Fig. V-4. We

notice that the left polarized wave has a low-frequency backward wave under
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Fig. V-3. Dispersion of left polarized wave in
co-moving frame (w <<wco).
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Fig. V-4. Electron-beam dispersion (w p<<w ).pc
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Fig. V-5. Detail of low-frequency, backward wave
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these conditions. This branch is shown in detail in Fig. V-5. It will be shown

in the next section that the left polarized wave carries negative energy for all

phase velocities less than c. Therefore, a portion of the low-frequency branch

is an active backward wave that propagates negative energy opposite to the beam

velocity.
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Fig. V-7. Dispersion for = 10 o , - 0. 5.
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The w-k plots for some representative cases that are not covered by this

approximate analysis are shown in Figs. V-6, V-7, and V-8. Since the trans-

formation gives at least one real root of k for all w, it is a simple matter

to obtain the complex k values from Eqs. 6 and 7 by factoring out the real

root. These are also shown in Figs. V-6, V-7, and V-8. It can be shown that

the low-frequency backward wave will no longer exist when (wp/wc)(Vo/c) exceeds

a certain critical value of the order of unity. This is also evident from Figs. V-6,

V-7, and V-8.
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3. Energy and Power

The application of Sturrock's criterion would show that the left polarized waves with

phase velocity less than c carry negative energy, whereas the right polarized waves

carry positive energy.1 This can also be shown from an explicit evaluation of the

energy density in the laboratory frame. The total energy density of a plane wave in

such a medium is 2 ' 3

=2 -* 0 = -
W = 1/4 i 2 + 1/4 E - (wK)E. (15)

It can be shown that the right and left polarized waves are orthogonal, and that the

energy density of the left polarized wave is
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W = 1/4 io Ti 2 + 1/4 E I1 28 (wK2 )

2
Wpt c

= 1/4 E0o 2 2
w(w-kv +

For a slow wave, w/k < c, it can be shown that for propagating waves the wave number

must lie in the range

w+w
<k <  c

o o

By using the disperion relations, the energy density can be written as

W =- 1/4 EIE12

2w(w-kvo)2 + (w-kc) + 2kcw(1 -

w(kv o - w) (w+wc-kv o )

which is negative definite for slow waves.

wave is

Wr = 1/4 E 22 + kptw 2Wr o o(o c )

The energy density of the right polarized

which is positive definite.

R. J. Briggs, A. Bers
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