

RETABULATION OF SPACE-CHARGE EFFECTS IN THE AGS

REPORT

NUMBER 33

33

RETABULATION OF SPACE-CHARGE EFFECTS IN THE AGS

L. J. Laslett (MURA Notes) 8/14/54

An estimate is made of the charge which can be injected into an A.G. synchrotron before space-charge forces become sufficient to move the operating point from the center of a small diamond, bounded by integral and half-integral resonances, half way towards the edge. Numerical examples, for proton A. G. synchrotron, are given.

A simple discussion of space-charge effects in the alternategradient synchrotron was given in LJL(MAC)-2 (January, 1954), MURA #14. It now appears that attention may be focused on single-turn injection, but that the value $\Delta = 4.0$ cm assumed for that case in the example of LJL(MAC)-2 may be excessive.

It appears desirable, therefore, to present a revised table based on single-turn injection and with Δ taken as 1.5 cm (radius). We take, in this example, n = 345 (cf. EDC-12, p. 6, in which the value 348 for n is discussed). The table is constructed by use of eq. (5) of LJL(MAC)-2 and, because of the more conservative assumptions, contains results approximately 1/10 as large as those cited previously.

Kinetic Energy at Injection (Mev)Total Charge (Coulombs)Inj. Current, l rev. (ma)Particles for 50percent captu49.6 x 10^{-9} 0.493.0 x 10^{10} 512.00.683.7614.40.904.51024.21.957.51536.53.611.42049.15.515.33074.710.223.44010115.831.6	$R_0 = 8600 \text{ cm}$	Δ =	l.5 cm radius	$6 n=+ 0.07 n^{2}$ =+ 0.07 (345) ² =+ 1.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kinetic Energy at	Total Charge	Inj. Current,	Particles for
	Injection (Mev)	(Coulombs)	l rev. (ma)	50percent capture
	4	9.6 x 10-9	0.49	3.0×10^{10}
	5	12.0	0.68	3.7
	6	14.4	0.90	4.5
	10	24.2	1.95	7.5
	15	36.5	3.6	11.4
	20	49.1	5.5	15.3
	30	74.7	10.2	23.4
	40	101	15.8	31.6