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KRS(MURA) =L

An Alternative Derivation of the Formulas for
the Smooth Approximation

Keith R. Symon, Wayne Uailversity, August 10, 1954

The smooth approximation formulas are derived in a simpler
form, and as the first of a sequence of successive approximations.

Formulas are also worked out for the two dimensional case,

1, The One=Dimensional Case
Let the alternating -gradient equations of motion in one
dimension be written in the form
x! = p,
(1)
p! = f£(x,8),
where primes denote differsentiation with respect to s, and
f(x,s) is periodiec in s with period S. It will be shown in
Anpendix A that il we assume the truth of Powell's conjecture,
that under the transformation
x(s) = x(s + 8)

p(s) — pl(s + 8)

(2)

the stable part of the x,p-plane is covered by a family of closged
invariaat curves, then the solution of Egse. (1) can be written
in the form

x = X(g) #+ ); (XsPy8),
Pla) #+ 4 (X,P;8
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where X,P satisfy the equations

X! 23—'%;
o1 = OH (L)
o X'

where H(X,P) is independent of s, and where.f’, 7{ are periodic

functions of g with period S (for fixed X,P) which vanish at an
arbitrary reference point in the sector. We will call X,P the

smooth motion, and f 4 )‘l the ripple,

Let us substitute Eqs. (3) in Egs. (1):
| / =
X1+ §) P85+ 5p7 P+ N (5)

§
P(H—P’\PH- X'r(x+f\p, z f{)ﬁ»[’,w)
If P,X are held fixed (X',P' are then also fixed by Egs. (L)),
all terms in Eqs. (5) are periodic in s, Let us average these
equations over a sector length S. We denote such an average by
a bar, Then, since the derivative of a periodic function has

zero mean value, we obtain

KO+F)+ pf= P+ (6)

.2 i - =
XA+ PU+7p) = (X+§,0)
We subtract these equations from Eqs. (5), and d enote the

periodic part of a periodic function by a double bar, that is,

for example,

F-F-F. (7)



We then obtain
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MNa = %LX+}, a)- X

Eqs. (6) can be solved for X', P':

X (!"‘7]9 P”H fo‘#(x '*'F}’O‘) (9)

P -

(4 )0 ”'Je Jo fp N

(J+§x)§ (X +£,») -'ﬁx(P-;-F{' )

(1+ 1) (t+ﬁx),ff 7

Equations (8) are subject to the initial condition that j? ,7\

vanish at the reference polint ian the sector.

We will solve these equations by successive approximations

based on the assumption that ,f i Yl s X! and P! are snall, If

we negzlect terms in X', P! in Egs. (8) and neglect “f . n in

comparison with X,P, we obtain in zero order approximation:
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If we take s = 0 at the refereince point, kgs.

‘0, L S L P
. ‘-“—aff(X, LR
AT

We substitute these expressions in the neglected terms in
Eqs. (8) and (9), and obtain in first approximation

5&-: B~ PE X
1= $UKR) +£ 9, (X, 2)-Pex e

(10) cau be
solved:

(12)

(L)

Equations (1l) are not in Hamiltonian formn, since
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We can bring Eqs. (14) iato Hamiltoanian form, however, by auding
a term to the second equation which is of the order of the terms

which have been neglected:

X'z _E.:t_aj;

+-FM (16)
aler® Fos (Pr7)
P g LX ,(L) e ‘E ﬁ‘(x -0) 500)( ) (} f_bfi)v

The Hamiltonian 1s then

(P

ki Q.(H—j

G (¥, 0) d X =Y e

Equations (16) have still the disadvaﬁtage that the betatron
period will depend on the choice of rei'erence point through the
term (1 + j?vx )o This is presunably a. symptom of the inaccuracy
in the approximation when the ripple is large. We will assume

the reference point is so chosean that

ﬁ;:tix:ﬂmﬁ: [ % (18)

With the simplification, Zqs. (16) caan be combined to give the

following equation for X:

X" = «ﬁlx,,a..)—r J 'DDX(X,@) . (19)

This equation agrees with the approximation equation obtai.ed in

KRS(MURA) =1,



2« The Two=-Dimensional Case

The equations of motion in two dimensions have the form
)

= Py

"t
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We gubstitute
2= X+i(XY, <)
¥ = Yy+4 (X, ) 2) (21)

and proceed in precise analogy with the development in Section 1,
The theorem of Appendix A does not apply to the two-dimensional
case, but it turns out that to a first approximation the
substitution (21) can be made to fit Lgs. (20). The resulting
equations corresponding to (19) are

E A s et e i+ ——_

ey, o)+ E4,0 04y

i ;;; . £i+ iy

(22)

Ao

where

T

£=/(¢ T 7 ke s
=S (x v, o)da da

(23)
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The constants of integratioa in Eqs. (23) are to be so chosen
that fi ,_f: are periodic functions with zero mean value, It
follows that only the periodic parts of the functions f and h need
be used in computing the second and third terms in Eqs. (22).

We consider now the two-dimensional equations in the form

fle e =Flry)g («)

(24)
‘R (/&Jg)‘o’) = h (;C;?) 3'(’01)
where g(s) is a unit square wave,
; | o<ad¢ts
G s 5 (25)
(-l %ﬁﬁl( VAR

We have taken f and h with zero mean values (diazonal of necktie),

but the resulting equations are easily modified for the off

diagonal case, simply by adding the mean values of f and h to
the smoothed forces,

We calculate }f and éi, $

o

£ = F(X,Y)/&(&}ca,(-ﬂ-),
G = hX, Y la) g (+),

where/x{ (s) is a periodic function with period %S defined by

Ty 5 1
AMla) = ﬂz('¢ ”'ﬁfs) *‘g%' g QR &L =]
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(26)

(27)
Al A= 225 ) = ()



We have now to calculate
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So B =~ hOGYIFy (1Y)
Py 2
SR 22 FOOY) (X, Y)
e r— .
LRy =8 RGN by (1Y)
The smooth equations o:i motion are then
\“.. S‘L :
% 2 W(FFXH’F\/) -
9

YN: _‘f”_&:"(hhy-{*th)

Inhomogeneities, bumps, displaced sectors, etc., can be
treated in either of two ways. The smooth equations (22) may be
written down for the distorted sector (as if it were periodic)
and used to carry the smooth solution through this sector,
Alternatively, the difference between f(X,Y,s) for the distorted
sector and the undistorted periodic f(X,Y,s) can be included

on the right side of Egs. (22) as an added inhomogeneous term,
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Appendix A., Proof of the Existence of Smooth Equations of Motion

We will assume the truth of the conjecture of J. L. Powell,
based on numerical solutions carried out on the Illiac, that
every point in the stable region of the phase plane lies on an
invariant curve which i1s transformed into itself under the
transformation (2) generated by Egs. (1). It follows that there
is a constant of the notion ol(x,p,s) which is periodic in s with

the sector period S, such that the invariant curves are given by

ol (%,p,2) = * Conalint, (30)

(L, PratS)zeinp )

We now choose any reference point, say s = 0, in the sector,
and we define the function o, (X,P) of the "smooth variables"

X,P by the equation

d,(XP)=cL (X,P0). ko

Following a suggestion of Powell, let H(ol,) be a function of

ol, to be specified later, and consider the equations
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These equations define a motion X(s), P(s) for which H, and

hence also ol, , 1s a constant of the motion:

oo (X,P) = & Conotant. (3L)

Zquation (3l) defines the orbits of X,P.

Comparing Eqs. (30), (32), and (34), we see that the orbits
for the smooth motion X(s)P(s) are the same as the invariant
curves (30) at the reference point in each sector,

We now show that if H(cia) is properly chosen, the point
X,P traces out the invariant curve at such a rate that at
the reference points s = nS it coincides with the phase X,p of
the actual motion, We first note that changes in the factor
H, (o, ) in Egs. (33) correspond to changes in the time scale
with which the orbit is traversed., Consider now any particular
value of ol , and assumne that the invariant curve C for this

value of oL is a simply connected closed curve (Fig. 1),

Let C! be a nearby

s e Bl
,,/”’:iJﬂ-w-wwhu ke % invariant curve, Take
Pl o 1 e i
,’;/// ofo N\ _— any point ¥, o of C and
7 = Y o
f 7 Ll connect it by a short line
pesda
: P ; L, to the curve C'. Let
\ v the line L. move according
b b SAA / A
3 P to Egs. (1) during the
"‘-,._‘_H‘ ;‘ F‘_. . e
SR R portod
\ !lf
TR i RN At s = S the curves
3if&, ) C,C! will return to their

original positions and
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thg line L, will have transformed into a line Ll conaecting the
transform . xy, py of X5, Py with C's Let the total area between
the curves C,C' be A, and let the portion of A between the

lines Ly, Ly be A A. (The ambiguity as to which of the two

parts of A is between L, and L, is to be settled in any consistent
and continuous way.) We then define the betatron wavelength

on C as follows:
: A
a8 C’f’r"ﬁf‘d AR ° (35)

By Liouville's theorem, the areas A A swept out by Lo on
successive transformations through a sector are all equal, If
for some integers n, N, nS = N9 and if C' is sufficiently close
to C, then after n sectors, the line L, will have swept cut a
total area n § A = NA, and the final transform Ly will nearly
coincide with Ly, so that xu,p, nearly coincides with XoPo+ By
continuity, if XoPq is moved around the curve, the same »air of
integers n,N will give nS = § 7, and hence the definition (35)
of 777 1is independent of the starting poiat Xg,p, on C.

We now choose Hy (al, ) for the value of, = oL corresponding
to the curve C so that the period of the smooth motion of X,P
around C according to Lgs. (33) is 77 . (The sign of Hy( oo )
is chosen go that the smootl. motion traces the boundary of the
shaded region A A in FPig, 1) This deterwuines the function
H( &, ) to within an arbitrary additive constant., Now by letting
the line Lo in Mg, 1 move according to the smooth equations (33),

and using the fact that the smooth motion is also area preserving
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by (33), we can show that

5 AP Q.;WA%. ; (36)
¢ —C

where A A' is the area between Lé and L}, Li beinz the transiorm
of L0 during one sector [or the smooth motion. As C! approaches
C, O AY/ A A approaches 1, and Li must therefore coincide with
L1 at least at the point X1sP1 = X13Py+ This shows that the
smooth variables X,P coincide perilodically with the ectual variables
X;p at the relference point ia each sector (if they coincide
initially).

The case where the invariant curve 1s not simply connected
can also be acconnodated, We cousider asg an examnle the case
where the invariant curve C consists of two separate closed curves
which transform into one another through a sector, In th:s case,
we take the period 23 in which each piece of S transforms into
itselfl and proceed as in the preceding two paragraphs. The
result will be that the point X,P moving around one branch of C
will coincide at the r eference point in every other sector with
the actual phase »noint x,p. At the reference points in the
alternate sectors, the poiat x,p will coincide with a polnt X,P
moving around the other branch ol C.

We now define the '"ripple variables" j? y 7 s

Jf‘: )i(d’)" X fa)
H oz ple) - Pla)

(37)
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where x(s), p(s) is any particular solution of igs. (1), and
X(s), P(s) is the corresponding solution of Egqs. (33), i.e. the
solution which agrees at the reference point in each sector,

The ripple variables j?, *7 then vanish at the reference points,
We define f’, ’1 as functions of X,P,s in the following way.

Por a given X,P,s, solve Egs. (33) backward (or forward) to the
next previous reference point s,= nS, and let XO,PO be the valuss
of X,P at s = sg. Then, starting at s = sy with X5,Py = X5,Pp,
solve Egse. (1) forward (or backward) to s. The functions

§ % L ﬂ (XsP,8) are then defined by Eqs. (37):

Z(a) = Ala)+ £(X,P o) ,
P =P+ (XP o). e

It is clear from the periodicity of Iqs. (1) (and (3)) and the
fact that x,p and X,P egree at tle reference points that the
functions f?,P] are periodic in s with period S, for fixed X,P,

In the case where the invariant curve C is composed of
two separated closed curves, the ripple functions should be
defined as above, but taking the sector length as 2S. Two sets
of ripple functions g ,7] are then obtained, depending on
whether we begin' the double scclors on odd or even mpultiples of S,
The ripple functions are then periodic in ¢ with period :2S,
vanishing at every other refereince point, and, at the alternate
reference points, tekin: on values which are the differences of
the coordinates X,P of the two smooth phase points, tracing out
the two parts of C in gynchronism with the actuél motion., More
complicated connectedness vproperties of the invariant curves C can

be treated similarly,
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Corrigendums

The last sentence in Section 1 is incorrect. Equation (19)

agrees with the formulas of KRS(MURA)=1 only when f(x,s) = 0
(on the diagonal)., Off the diagonal, the formulas of

+ —— —— SRR
KRS(MURAF1 are slightly more accurate when f(x,s){< f(x,s), but

become inaccurate when f(x,s) is large enough to produce
oscillations of period comparable with the sector length, The
formulas of the present paper are simpler and only slightly

less accurate slightly off the diagonal, and are furthermore

accurate for f(x,s)>)f(x,s)s The dotted curve for the
predicted edge of the necktie in Fig, 2 of KRS3(1MUKA)=-1l, for
example, is displaced about 2 to 5% closer to the correct
curve if we use the formulas of the present paper. The
formulas given here give presumably a good approximation as
long as the ripple is small in comparison with the smooth

part of the motion,



