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An Adiabatic Theorem for Motions Which
Exhibit Invariant Phase Curves

Keith R, Symon, Wayne University, August l, 1954

We consider a particle with one degree of freedom moving
according to a Hamiltonian function H(p,q, A\ ,t), depending on
a parameter % » and which may also depend on the time, We
assume that for each fixed value of A of interest, the motion
is stable and exhibilts invariant phase curves, that is, curves
which are either continuously or periodically transformed into
themselves by the transformation generated by the Hamiltonian
— equations of motion. This implies that there is a constant of
the motion ol (p,q, A\syt), which is either independent of t or

periodic in t, the invariant curves being given by the equation

ol (Psygs N st) = oL = a constant, (1)

When the Hamiltonian is independent of t, the invariant curves
are simply the closed orbits on the phase plane. When the
Hamiltonian is periodic in t, there 1s evidence; at least in
many cases, for the existence of invariants of the form (1)
with the same period in t. We will further assume that there
is only one set of invariant curves, that is, that all
constants of the motion are functions of ol « This seems to be
true except in the case of the linear alternating gradient

= equations when the betatron pefiod is a rational multiple of
the sector period; in the latter case it is probable that the

adiabatic theorem can fail,



The theorem to be »roved is that under the above
assumptions, if the parameter ‘a is changed sufficiently
slowly (in comparison with the period of oscillation or the
betatron period), a set of particles which lie initially on
an invariant curve will continue to lie on some lnvariant
curve, Liouvillet's theorem states that a set of narticles
which 1ie on any closed curve (not necessarily invariant) will
after any change in parameters lie on a closed curve having |
the same area, An immedlate corollary of these two theorems
is that for suifficiently slow changes in the parameter A. ’
the area of the invariant curve on whicih & particle is located
will remain constant. Whea the Hamiltonian is independent of
t, this reduces to the usual statenent of the adiabatic
invariance of the area or the orbit in the phase plane,

In order to nprove the theorem, we show that the change
in =& . when ,\ is varied slowly, is a function only ol the
initial value of = , and hence that particles having initially
the sane value of ¥ will continue to have the saie values

of & « The time rate ol change In »~¢ 1s
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The sum of the first threc teras 1s zero, since ol is a constant
of the motion for constant A . Suppose now that at t = tq,
}\ = )\1, and during the time t, = t7 A changes to ﬂ

Ao = A1+ AN o Wewill take A )\ sufficiently small



.
so that the character of the motion is not appreciably
different for values of >\ between A 1 and A 2, and we will
set '

Aozok o X (%0, (3)

where A for convenience is to be held constant during this

time t2 - t3, The change in o) is

” (L)
Aol = j_e’_e‘:_ 3%
Since we are taking A to be constant, we can write this in

the form
t
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The right side is the time average of aoﬁ/ﬁéAl during the time
tp - t1. If we assume that we can calculate this average for

a fixed A Dbetween ’\l and AZ ( 4N sufficiently small),
then if the time t2 - t; is made sufliciently long ( i small),
the ergodic theorem states that the right side of (5) may be
made to approach a constant of the motion, and hence is a

funétion of ol ¢
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For adiabatic variations in ) , the change in & 1is

therefore governed by the differential equation

X = £, g

whose solution will depend oaly on the initial value of & .
The essential point in the application of the ergodic
theorem is that if ,A changes sufficiently slowly, the particle
will have time to pass many times throuzh all parts of the phase

space corresponding to its value of , , and hence the time
average of 2 /a,\ will not depend on where the particle is
at any particular time, It is therefore necessary that the
time required for a significant change in A must be many
oscillation periods. How many will depend upon the details of
the motion and the nature of the function BN/’&A PR v
point on the invariant curve is almost fixed, or almost
periodic with low periodicity, it may be necessary to go through
very many oscillations in order to sample the entire invariant
curve in the time average of J&,/J))\ .« It is élear that since
the oscillation period becomes infinite on a separatrix
separating two different types of motion in the phase plane,
the transition from one type of motion to ancther can never be
adiabatic,

As a simple application of the above theorem (suggested

by Fe T. Cole), we consider a simple harmonic oscillation



with a harmonic driving term:

X -f*&)j)(:Ac,mwt. (8)
The Hamiltonian is
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H:.{B_-} o‘i;x ._Ax(,‘.(;ocut. (9)
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The solution, if the parameter A is constant, is

Accowt (10)
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where C, 6 are arbitrary constants, The first terwms have the
same peridiclty as the Hamiltonian, The transient terms
represent & motion around an ellipse with frequency w3 the
center of the ellipse represented by the steady state terng,
moves with frequency (w» , and hence the ellipse returns
periodically to the same position, The transieat ellipse:
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is an invariant curve. 4ccording to the adiabatic theorem
proved above, the area of this curve remains constant for slow
chan;es in the parameter A, that is, the transient amplitude
remains constant, We can verirly that the conclusion is correct

in this case by noting that if we set
A = at, (13)

then Eq. (8) has the exact solution
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where C, @ are arbitrary comtants, If a is vanishingly small,
the last terms are negligible, and the motion consists of the
steady state plus a transient of constant amplitude, in agreecment

with the adiabatic theorem,



