A Perturbation Treatment of Non-Linear Restoring Forces

> F. Cole and F. Rohrlich State University of Iowa Iowa City, Iowa

Midwest Accelerator Conference

It has been suggested by Crane and others that the variation of wavelength with amplitude afforded by non-linear restoring forces might be used to overcome the resonance difficulties in AG synchrotrons. This note reports on a preliminary investigation of the possibility of such an effect using a simple first order perturbation treatment.

Consider the equation for the uncoupled radial or vertical motion,

$$x'' + nE(\theta) x = \propto \mathcal{H}(\theta) x^3 + \propto F(\theta)$$
 (1)

where $E(\theta)$ and $\mathcal{M}(\theta)$ have period $\frac{2 \mathcal{N}}{N}$ and $F(\theta)$, the driving force due to misalignments, etc., has period $2 \mathcal{N} \cdot \mathcal{N}$ is a small constant.

Note that this is not a realistic equation of motion; one cannot construct a magnetic field with a linear and a cubic term. In order to satisfy Maxwell's Equations, mixed terms in the horizontal and vertical displacements must eventually be added.

(1) satisfies the initial conditions

$$x(0) = x_0$$
 $x'(0) = x_0'$
(2)

We attempt to find a solution of the form

$$x = x_0 + \propto x_1 + \propto 2 x_2 + \dots$$
 (3)

where

$$x_{0}(0) = x_{0}$$
 $x_{0}'(0) = x_{0}'$
 $x_{1}(0) = 0$
 $x_{1}'(0) = 0$

for $i \ge 1$

(4)

This choice of X_i and X_i ($i \ge 1$) is most convenient and assures that the initial conditions (2) are independent of ∞ .

Substituting (3) into (1), we find to first order in the two equations

$$X_0 + nE(\theta) X_0 = 0$$
 (5a)
 $X_1 + nE(\theta) X_1 = 4 (\theta)X_0^3 + F(\theta) = (\theta) (5b)$

The equation (5a) is of the type of Hill's equation. For the case of stable oscillations, it has as fundamental solutions.

$$y = e^{i\beta \theta} p (\theta)$$

$$y = e^{-i\beta \theta} p (\theta)$$

$$0 < \beta < N (\beta real)$$

$$p(\theta + N (\theta))$$

$$p(\theta)$$

$$p(\theta)$$

where

and

The solution which staisfies the initial conditions (4) may be written

$$x_0 = 2 \text{ Re (ay)} \tag{7}$$

wher "a" is a complex constant. The right hand side of Eq. (5b) is now a known function. For the initial conditions (4), it has the solution

$$X_{1}(\theta) = \int_{0}^{\theta} G(\theta, u) \int_{0}^{\infty} (u) du$$
 (8)

where

$$G(\Theta, \mathbf{u}) = -\mathbf{1} \left[y(\Theta)y*(\mathbf{u}) - y*(\Theta)y(\mathbf{u}) \right]$$
 (9)

It can be seen by direct substitution that (8) satisfies (5) with $G(\theta,u)$ given by (9), provided that y is so normalized that

$$\lim_{u\to 0} \frac{d}{d\theta} G(\theta, u) = 1$$

Both,
$$G(\theta, u)$$
 and $\int (u)$ are real. Eq. (8) can be written $x_1(\theta) = 2 \text{ Im} \left\{ y(\theta) \int_{0}^{\theta} y *(u) \left[(u) du \right] \right\}$

$$x_1(\theta) = 2 \text{ Im} \left\{ y(\theta) \int_{0}^{\theta} y *(u) \left[\mathcal{M}(u) X_0^3(u) + F(u) \right] du \right\}$$

$$= 2 \text{ Im} \left\{ y(\theta) \int_{0}^{\theta} y *(u) \left[\mathcal{M}(u) \left(a^3 y^3 + 3a/a l^2 y/y/^2 + c.c. \right) \right] \right\}$$

where we substituted the solution. (7).

Using (6) for y and y*, the integrand may be written in the form

with

$$\sum_{s} e^{is\beta u} p_{s}(u) \qquad (10a)$$

$$p_{0}(u) = 3 \text{ At a } |a|^{2}|p|^{4}$$

$$p_{1}(u) = 0$$

$$p_{2}(u) = \text{ At a } |a|^{2}|p|^{2} p^{2}$$

$$p_{3}(u) = p_{4}(u) = \dots = 0$$

$$p_{-1}(u) = p \text{ F}(u) \qquad (10b)$$

$$p_{-2}(u) = 3 \text{ At a } |a|^{2} p \text{ P}^{2}|p|^{2}$$

$$p_{-3}(u) = 0$$

$$p_{-4}(u) = \text{ At a } |a|^{2} p \text{ P}^{4}$$

$$p_{-5}(u) = p_{-6}(u) = \dots = 0$$

For s even, p is periodic of period $2\,\text{T/N}$. We split the range of integration into an integer number of cells and the fraction of a cell left over

$$\int_{\Theta}^{\Theta} = \int_{Z}^{\infty} \frac{k/N}{k} + \int_{\Xi}^{\Theta} \frac{k/N}{k}$$

where k is the number of cells traversed. The last integral is always finite and we neglect it for our discussion of resonance effects. For the first integral we use the relation

$$\int_{0}^{2 \pi k/N} e^{i u} q(u) du = \frac{e^{2\pi i u/N} -1}{e^{2\pi i u/N} -1} \int_{0}^{2\pi/N} e^{i u} q(u) du$$
(11)

q(u) of period $2 \gamma / N$

For s odd, the only non-vanishing term is P-1, which has period 2 7. We assume without loss of generality that k'= k/N is integral and use the same relation for the integral involving

$$\int_{0}^{2\pi k^{1}} e^{-1\beta u} p_{-1} (u) du = \frac{e^{-2\pi i \beta k^{1}} -1}{e^{-2\pi i \beta} -1} \int_{0}^{2\pi} e^{-i\beta u} p_{-1} (u) du (12)$$

Using (10), (11), and (12), and keeping only the terms which might give resonance,

$$X_{1}^{\text{res}}(\theta) = 2 \text{ Im} \left\{ y(\theta) \left[\sum_{\text{seven}} \frac{e^{2\pi i s \beta k/N} - 1}{e^{2\pi i s \beta/N}} - 1 \int_{0}^{2\pi/N} e^{is \beta u} \right] \right\}$$

$$p_{s}(u) du + \frac{e^{-2\pi i \beta k} - 1}{e^{-2\pi i \beta}} \int_{0}^{2\pi} e^{-i\beta u} p_{-1}(u) du \qquad (13)$$

The first term in the square bracket is due to the nonlinearities, the second one due to the driving term.

latter will give resonance when
$$\beta = m = integer$$
.

$$\lim_{\beta \to m} \frac{e^{-2 \pi i \beta k/N}}{e^{-2 \pi i \beta} - 1} = k/N$$

Thus, without the non-linear term (that is, with /=0), the solution increases linearly with the number of revolutions. This is the well-known integral resonance of the AG machine.

On the other hand, the non-linear terms seem to give rise to resonance where s β /N = m', an integer, since then, in an analogous way, the factor in front of the first integral has the value k. Thus, without the driving term (that is, with F= 0) the perturbation solution of the non-linear equation increases linearly with the number of cells traversed (and thus with the number of revolutions).

We wish to investigate the conditions under which these linear increases will cancel - to the first order in . Probably the exact (at least for extstyle < 0), but the initial linear rise indicated by this first order perturbation solution is correct.

Let us enumerate the cases where s / N = m

1.
$$s = 0$$
, any β

2.
$$s = \pm 2$$
, $\beta = \pm \frac{m'N}{}$

2.
$$s = \pm 2$$
, $\beta = \pm \frac{m!N}{2}$
3. $s = -4$, $\beta = -\frac{m!N}{4}$

For all other s,