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Computations on the effects of non-linear restoring forces
have been made by digital computors on the CERN, Princeton, and
Brookhaven projects. One of the recent regults from Brookhaven
is that in the equation x™n(@) x + <~ (8) x3 = 0 the motion is
stable until f & otxi /n = 40% at the displacement, x,. This
represents a rather large posslble non-linear restoring force which
may be used, Courant has emphaslzed a crucial question in the use
of such non-linearitles =« namely if there is a slow time variation
of n due to saturation of the iron in the magnet or remnance or
eddy currents, will the resulting displacement of the resonance
frequency require the limiting amplitude of the oscillations to
grow beyond allowable bounds in the effort to detune the oscillation?
A crude estimate is made here of the size of £ required to track
a secular varilation, A n/n, without much growth of amplitude.

The approximation used considers the orbit in an alternating
gradlent machine to be a periodic motion roughly like a sine wave
and with e representative phase which progresses in equal steps
on every revolutlion about the machine., We will use the sine wave
even though non-linesr restoring forces will distort the wave shape
somewhat since we are mailnly ilnterested in Just the phase change
after each revolution. The exact wave shape will influence the way
successive revolutlons connect; but for a start, neglect this,

We will start with a perfectly clrcular orbit in a perfect
machine and convert it to the orbit in a real machine with one
field bump by edlebatically increasing the strength of the bump to
its full size, The result 1s still an orbit which repeats itself
exactly revolutiou by revolution, This is the so-called equili-
brium orbit which finds its wey through a bumpy field and repeats
itself - the existance of which was gointed out by Courant and Snyder.
Let the oscillation of the particle be represented by the projection
on the vertical of a vector, a, which rotates with the betatron
frequency., For one passage over a narrow magnetic bump of length W
and strength AH, a w (W4 H)/ H _ for the Z motion of a con-
ventional betatron, or a ® 2(WA H)/H Yn/2 for an A,G, Fleld where
~vT/2 replaces the yVn and the factor of 2 in front is Courant's
safety factor representing the fact that A.G, orbits stray about
twice as far as pure sine wave orbits of the same wave length,

If the orbit contailns N wavelengths plus an additional
phase, z/ in one revolution, then the a rotates N times plus id
gadians efore another a is generated by the next passage over the
ump e
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In between pasages over the bump the oscillation is:iescribed by
the N rotations plus ¥ of the resultant of all the a3 vectors.

If we let 4 H grow from zero, aj will be infinitesimal and succes-
sive a's will be larger so the vector diagram becomes a spiral
somewhat like Cornmu's spiral,
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If now 4 H is held constant, the resultant rotates 2rN 4 ¥ each
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and then a 1s added to it to make the new resultant which has the
same angle it had at the start
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thus the motion repeats exactly on each revolution in a machine
with a bump. The orbits connect like this:

—/¥/ The repetitive equilibrium orbit
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N = 3 wavelengths around + 7U- radians.
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We now want to calculate the magnitude of X o? the amplitude
of oscillation,

(1) Xo= &/ = a/e, T -27N =a/ & - N )

T = time of revolution
@y= angular frequency of X oscillation
4%23 angular velocity of particle going around orbit,

We see the integral resonances resulting from zeros of the
denominator,

We want to separate <), into 3 parts, a constant &2 which may
be taken to be a resonant w for the case of linear resto;ing forces,
plus a & (t) which describes the secular chapge in &, and plus the
. function of X which gives the non-linear restoring forces° First
calculate the term describing non-linear forces, If we have an
oscillating orbit for linear restoring forces, the true orbit with
non=linear forces drops away from it by a distance S which can be
estimated as follows:s

In X fa)z X+ F(X) = 0 break the acceleration into- two parts
X Whnere X, + Q)z X = 0 is the part of the equation giving
Ke pu%e sine solution. *The remnant,

s-// ﬂdtdt' -f]F(x)dtdt'

gives approximately the over shoot, S, caused by the non-linear term
in one period, tj.

If F(XX = o< x3 then » 27

/7 /- X3
S = —dxw sindwt dt dt' = -5-317_2)_3_
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and X_ sind ¥ = 8 where 4 ¥ 1is the discrepancy of phase per oscile-
lation caused by turning on the non-linear restoring force. .
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(2) 4V & s/x = - +T gi%ﬁ- and in terms of change of &/

X
3) aw=*% 9‘—3:‘;— this factor 2/3 (3/8 in next approximation)

. is crucial in estimating the value of )fg which is needed tq detune
" a secular change in n or «) . Thus <, = & +§(t)+ % ‘iii and
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But &, /% = Vn/2
2 2
And £ = oLXn Y 1 where Xn is the maximum Xo or the point for
which 7C is evalueted.,

(5) Then - 22, -
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If 4n>0,

then one moves away from the resonance' but if
A n<« 0, the resonance is approached for the case of ¥> O

~in (1)
We want to see roots of the cubic equation
Yy _ X 43 ; 4 nt) x =__2a
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The roots are at the intersection of the straight line and the
cubic thus:s
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and if at X we want a very modest amplitude, Xo =2a = Xn ory2,30°,
then ‘

- 8 J/4n1 8
7ﬁ 4 6 'n * 6 T/

So a 12% change of n would require only a 17% non-linear term,
(See Joos "Theoretical Physics" p. 93 Non-Harmonic Vibrations.)

If F(X) is odd, we get either a lengthening or a shorténing of the
wavelength of the betatron oscillationj but if F(X) is an even func=-
tion, the non-linear terms to a first approximation do not changeévx.

As A n increases we reach points where #fapproaches 27T and
where the number of wavelengths suddenly becomes Nj+ 1 or successively
N.-+K, K=0, 1, 2y 3 6o and  Jjumps back to a small angle. The
W%ole multiple resonance response Turve is given if we remenber that
actually X s—a _ instead of a/¥ then (5) becomes

2 sin ¥/2

a
g 2sinE / (-41-1-;3+3 —f—éﬂ— -?—% )

(6)

and the slope of the linear line suddenly jumps back by 4%/ nj at
each new resonance and the graph line continues rocking as A n
progresses until the next jump back, There may be a phase oscillation
(added free oscillation) generated at each jump since the energy
taken from or given to the driving force source may not be exactly
right during the jump. If A n is negative, no jumps are necessary,
The response curve then looks thus:
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The tendency will be for all oséillations to get trapped with the larg-
est number of wavelengths because of synchrotron phase oscillations
which carry the beam back and forth over regions of different n. Some
of the features of this type o motion in non-linear fields were pointed
out by H.R., Crane who stimulated the development of this subject;




