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A. AN AUTOMATIC SPECTRUM MATCHING PROGRAM

The automatic analysis technique that will be described in this report is an extension

of a computer analysis procedure that has been reported previously.1,2 This program

is the same as that devised for manual matching of speech spectra 3 except that the deci-

sion functions, i. e., the strategy, are carried out by the program. The strategy used by

the automatic program was designed to parallel, as far as possible, that of experi-

menters who were experienced in the use of the manual program.

In matching vowel spectra, in general, two situations can arise, and a separate

strategy has been developed to accommodate each situation. The first, which is the

most difficult but the rarest, occurs when no previous data about the spectrum are avail-

able. In this case, the strategy attempts to obtain a rough approximation to the formant

frequencies (within 200-300 cps). The second situation exists when approximate values

or the results of a previous match of a neighboring sample are available to the program.

When the first strategy is used, the approximate locations of the formant frequencies

are found by assembling comparison spectra from a small set of stored curves. A given

comparison spectrum is constructed from a stored set of first-formant (Fl) curves with

resonances 100 cps apart and six F2 curves with resonances 200 cps apart. The latter

curves include the effect of a fixed set of higher poles. All 36 possible pairs of F1 and

F2 combinations are compared with the speech spectrum, and the values yielding the

lowest squared-error score are chosen to be the initial approximation. The frequencies

of F3 and F4 are assigned values that depend on F 2, and average bandwidths are assigned

to each formant. Once such a set of values has been determined, the analysis program

will make use of the second strategy.

When the second strategy is in effect, there are eight parameters that can be varied

by the automatic program: the frequency and bandwidth of Fl, F2, F3, the frequency

of F4, and the value of a real-axis zero, corresponding to a "tilt" or glottal-spectrum

correction curve. The formant parameters are changed simultaneously at every trial,

while the tilt is changed every third trial. The program carries out the following
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Fig. XV-1. Comparison of input spectrum and internally generated spectrum for the
case in which there is (a) an error in formant frequency, and (b) an error
in formant bandwidth.
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operations: (a) compute the frequency increment, 6F i , and the bandwidth increment,
th

5b i , for the i formant; (b) constrain the increments to prevent unreasonable behavior;

(c) tilt; (d) generate trial spectrum; (e) repeat steps 1-5 until a best fit has been

achieved.

The basic part of the program is the evaluation of the two functions for computing

the frequency and bandwidth increments. The frequency-increment function is based on

an examination of the error curve in the vicinity of the formant frequency that character-

izes the trial spectrum. Idealized curves corresponding to a frequency error and a

bandwidth error are shown in Fig. XV-1. If we let SL = weighted sum of difference-

curve values for a specified frequency range to the left of the trial formant frequency,

and SR = the same weighted sum to the right of the trial formant frequency, then the

frequency increment is given by
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Fig. XV-2. Cumulative distribution curve of difference between
formant frequencies obtained by automatic and manual
analysis procedures.
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SL - SR6f. K .bw ,1 K j

where K is an empirically derived constant that is the same for all formants, and bw.

is the bandwidth of the analyzing filter nearest the trial formant frequency. The band-

width increment is obtained from a similar function, except that a table look-up is used

to specify values of a function 8pi = f(SL+SR). Constraints are placed on the 6f. so that

each 5f. tends to zero with successive trials. The best fit is for the case in which the
1

squared-error score has a minimal value; recognition of the best match is simplified

by placing a limit on the number of trials.

The new automatic program (MATCH IV) has been used to specify the formant fre-

quencies for three adjacent spectral samples taken from each of a large number (360)

of vowels spoken by three male talkers. These data were compared with data on the

same spectral samples obtained as part of an earlier study 4 by the manual matching

procedure. Some idea of the performance of the automatic program as compared with

the manual matching procedure is given in Fig. XV-2. This figure shows, for example,

that 75 per cent of the time the values of F1 and F 2 as obtained by the automatic methods

are within ±20 cps of those obtained by the manual procedure. Results such as these

suggest strongly that the automatic procedure leads to valid data on formant locations.

A. P. Paul
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B. DATA DERIVED BY AN AUTOMATIC SPECTRUM MATCHING PROGRAM

The automatic analysis program described in Section XV-A has been used to extract

formant frequencies throughout the vowel portions of a number of utterances. The speech

materials were drawn from a library of utterances that have been described previously. 1

The measurements were made in eight stressed vowels occurring in 15 different sym-

metrical non-nasal consonant environments. The words were spoken by three male

talkers. The computer was instructed to determine the formant frequencies for all
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Fig. XV-3. (a) Example of data on the frequencies of first two formants obtained by the
automatic analysis program. Spectral samples occurring 120 per second.
The light lines at samples 33 and 61 represent vowel boundaries obtained
from visual examination of spectrograms. (b) Approximations to the data
in (a) obtained by fitting parabolic curves to the plotted points within the
vowel boundaries. The two curves are completely described by the param-
eters F 1 0 , F 2 0 , T 1 , and T 2 , together with the curvature values for the

parabolas.

spectral samples within the vowel boundaries. The time locations of these boundaries

had been established earlier from visual examination of spectrograms. 2

Typical results of the automatic analysis, showing the frequencies of the first two

formants for one utterance, are given in Fig. XV-3a. The curves depicting F 1 and F 2

as a function of time for the symmetrical consonant environments used in this study

usually have a form similar to that shown in this figure. Each formant begins at some

value that is presumably dependent upon the vocal-tract configuation for the initial con-

sonant. The curve then proceeds toward a maximum or minimum value associated with

some target configuration, and finally tends toward a value determined by the vocal-

tract configuration for the final consonant.

Examination of data from a number of vowels has suggested that the plotted points

for each formant of each vowel might be approximated by two parabolic segments, one

for the initial portion of the vowel and the other for the final portion. Each segment is

of the form

279

% 1111 11111111111111111111i

000o
o  he'd ud S I
o

o

- 0000000000000000000000

- 00000000000000000000000000

0

0 1111 1111

1.0

1..

0

O
LL

U-

0.5

-)

a
0:U-

-'I 1



-100 0 100
TIME (MSEC)

Fig. XV-4.

:D

0

LL

W

LU

Fig. XV-5. Fr

fol
for

Example of parabolic curves used to specify vowel formant
data. The parameter is the "curvature value."
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equency F 2 0 vs curvature value for various vowels preceded and

lowed by the consonant /d/. Each point represents average data
three talkers.
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F i = ai(t-Ti)2 + Fi0.,

where F i represents formant frequency, t is time, and ai, T i and Fi0 are parameters

that are selected to give a best fit; (i = 1 for the first formant and i = 2 for the second

formant). The parameter Fi0 represents the maximum or minimum value reached by

the formant, and T. indicates the point in time at which this maximum or minimum value
1

occurs. The parameter a i is a measure of the curvature of the formant, and can be

positive or negative. Figure XV-3b shows the parabolic curves that give good fits to

the data points plotted in Fig. XV-3a. The parabolic curves used in Fig. XV-3b were

selected from a set of curves similar to those shown in Fig. XV-4. The parameter

values on these curves will be called arbitrarily "curvature values."

Curvature values and frequencies of Fl and F2 can be related either by examining

data from various vowels in a given consonantal context or by examining data from a

given vowel in various contexts. These two ways of organizing the data are illustrated

in Figs. XV-5 and XV-6.

In Fig. XV-5 the maximum or minimum frequency of F2 is plotted against the curva-

ture value of F2 for each of eight stressed vowels preceded and followed by /d/. There

are systematic changes in curvature values from negative to positive as the frequency

of F2 decreases from high to low values, and this change differs slightly for the long

and short vowels. The point of intersection of the two functions with the point of zero

curvature value is approximately 1700 cps; when the frequency of F2 for a vowel is less

than 1700 cps its curvature value is positive, and conversely it is negative when F 2 is

greater than 1700 cps. In other words, the value 1700 cps describes the articulatory
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Frequency F 2 0 vs curvature values for one vowel in various

symmetrical consonant contexts as indicated. Each point
represents average data for three talkers. The straight line
was fitted visually to the data.
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context provided by the postdental stop consonant /d/, that is, the so-called F2 locus

of /d/ is at approximately 1700 cps. 3 ' 4

In Fig. XV-6 the maximum or minimum frequency of F2 for a given vowel is plotted

against curvature values associated with various consonantal contexts. The data display

a wide variation in curvature value, and there is a small but apparently systematic

increase in F2 as the curvature values become more positive. If the straight line can

be interpreted as representing a best fit to the plotted points, then the frequency 1220 cps

can be interpreted as the F2 value associated with the unperturbed vowel articulation,

that is, 1220 cps is the so-called F2 target value of this vowel. When the curvature

value is negative, the maximum value of F2 is less then the target value; for positive

curvature values, the minimum value of F2 exceeds target value. In articulatory terms,

this interpretation suggests that there is an effective inertia in the system that gives

rise to undershoot in the articulatory processes.

K. N. Stevens, A. S. House, A. P. Paul, Jane B. Arnold
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C. ERRATA

In the report entitled "Reduction of Speech Spectra to Descriptions in Terms of

Vocal-Tract Area Functions" by J. M. Heinz, published in Quarterly Progress Report

No. 64 (pages 198-203), the numbers referred to in the legend of Fig. XXII-7 were

omitted from the figure. They read as follows:

Fig. XXII-7a 244 (frequency)

-1 (interval size = 2-1 cm)

32 (number of interval)

Fig. XXII-7b 852

-1

32

Fig. XXII-7c 2192

-1

32. J. M. Heinz
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