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A. ENERGY AND POWER IN MEDIA WITH TEMPORAL AND SPACIAL

DISPERSION

In the last report1 we have shown that for a linearized description of a homogeneous

and time-invariant medium the time-average energy density and power density associ-

ated with the medium can be identified from a variation of Maxwell's equations with

respect to both frequency and propagation vector. We shall now give a different proof

of this identification of energy and power, and some illustrative examples.

Maxwell's equations for the macroscopic electric and magnetic fields in the pres-

ence of material media may be written as

aH -
VX E + o o - Jm (1)

7 X H - JE = J (2)

and Poynting's theorem has the form

-. (EX H) - I~- ° E = H • J +E J (3)
at 2 o 2 o n e

In these equations the presence of the medium is represented by the vectors Jm
and J . In a linearized description of the medium only the first-order fields enter

e
into Eqs. 1 and 2, and J and J are linear functions of the first-order fields. We

shall consider only media for which Je is a function of E, and Jm is a function of
st

H. We Fourier analyze the fields in time and space with dependences e , s = v + jw,
- -rand e -  = T + jF, respectively. We have, in general,

* This work was supported in part by the National Science Foundation under Grant
G-9330; in part by the U.S.Navy(Office of Naval Research)under Contract Nonr-1841(78);
and in part by Purchase Order DDL B-00337 with Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology with the joint support of the
U. S. Army, Navy, and Air Force under Air Force Contract AF 19(604)-7400.

111



(XI. PLASMA ELECTRONICS)

J = sHo Xm(Y s ) • H (4)

Je so e(-, s) • E (5)

Here, the susceptibility tensors Xm and Xe are obtained from the linearized description

of the interaction between the medium and the electromagnetic fields. In the steady

state the Fourier components may be chosen with time dependence ejo t and the suscepti-
bility tensors become m(7,w) and 2e(7,cw). The time average of Eq. 3 gives

2 ( Re EX*) =-Re( H* +E -J

1 * .=a - -* .=a

m e m eSjx H + E Xe • E (6)=a awhere Xm and ×e are the anti-Hermitian parts of (m(,) and fe(y ), respectively.a .- aIf JXmand jXe are positive definite, the right-hand side of Eq. 6 represents the time-

average power density loss, and the medium is passive. If either j.a or J.a is negative

definite, the medium is active in the sense that time-average electromagnetic power is

being generated. If j and j are zero, the medium is "lossless. " However, poten-

tially, it may still be either active or passive (or even unstable), the choice depending

upon its energy state.

The energy and power in a lossless medium can be determined as follows. In the
absence of loss the Fourier components of the fields may be chosen with time depend-

ence ej o t and e - Jp r, and the medium tensors are (m(c,w) and e (p,w). Consider a

very slightly lossy medium, and let the Fourier space components be e - y' r with

<< 11 (7)

and assume that the electromagnetic fields are driven with time dependence e s t and
that

v << o . (8)

Maxwell's equations, Eqs. 1 and 2, become

'X E - s oH = s 4oTm  H (9)

SXH+s EE = - sEe E (10)

Dot-multiplying Eq. 9 by H and the complex conjugate of Eq. 10 by -E, adding the re-

sultant equations, and taking the real part, we obtain
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2 (Re-E XH L o Xvto0 E

SRe s H -H+ s E ] (11)
2 o m 0 j

Under the condition of Eq. 8, the time-average electromagnetic power flow can be

identified with 2" * (Re-E XH ) as in Eq. 6. With the assertions of very small loss,

and Eqs. 7 and 8, we evaluate the right-hand side of Eq. 11 to first order in both v and

a. Thus

x(', O) = (W~,) +- i-jv) + (j). (12)
11o" ap

Then, substituting Eq. 12 in Eq. 11, we obtain

2= (wM) = 2 +wem+w +pd, (13)

where

1 --
e = Re E X H (14)

1 2
wm T o H (15)

e o 2 (16)
e 4

1 Xm - 1 -* .E7
IPM 4  H . -- 1E E (17)

wM = °  H +-E E (1)0 4 o

-( --h 1 - a -a
w = 4o - H + E E (18)

d = ko m JX (19)

where h and X are the Hermitian parts of m and . Equation 13 expresses the con-

servation of energy to first order in the quantities m' Xe v, and a. The last term is
=a

readily identified with the time-average power density in the first-order loss Xm andm
.e It also follows that wM and PM must be associated with the time-average energy

density and power density, respectively, of the medium.

The group velocity is found as before, I and equals the energy velocity,

aw Pe + PM (20)
a Wm + w +w M

We shall now illustrate our results with two very simple and well-known examples.
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1. One-Dimensional Warm Plasma

Consider a lossless stationary plasma having an equilibrium temperature T, and

with only the longitudinal wave of interest. From the linearized force equation and con-

tinuity equation the first-order current density and electric field are related by

2

P
-E 2( 2 2 E, (21)

where

2 ykT
vT = (22)

m

is the mean-square velocity fluctuation. With the susceptibility of Eq. 2 1 in Eqs. 17 and

18, we obtain

2 2
2pv2

PM 4-Eo 2E _ 2 2 2)2 (23)

2 2 2 2 +v )

W = -E E 2 2 2T 2)2 (24)

For any real value of p the time-average energy density is positive. Hence these waves

are passive. The dispersion equation for these waves is

2 2
( -w

p
P = + (25)vT

Using Eq. 25 in Eqs. 23,24, and 21, we obtain

2
1 2E VT

PM 4 oE 2 2-- (26)

p

wM oE 12 2 1 (27)

8ao PM 2"a- w w v T .  (28)
8 e M T
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Equation 26 gives the time-average acoustic power density, and Eq. 27 gives the time-

average kinetic and poteneial energies associated with these waves.

2. One-Dimensional Electron Beam

Consider a lossless, cold, electron beam having an unperturbed velocity vo, and look

for the longitudinal waves. The linearized force equation and continuity give

2

P
J = -j 0  2 E, (29)

o (-v ° )

where E and J are in the direction of v . Equations 17 and 18 then give

2
2wv w

PM 4Eo E (W op3 (30)

2S(W +V P)
1 2 P

wM =TEoE ( 03 (31)(w-vop)

Equation 31 shows that for real values of P > w/v 0 the time-average energy density assoc-

iated with the medium is negative, and hence such waves may be active. The dispersion

equation for the waves is

p
v 

(32)
o

which gives the fast and slow space-charge waves. Hence the slow space-charge wave

may be active. Using Eq. 32 in Eqs. 30, 31, and 20, we find that

1 2 2ow
PM 4 Eo E  ( ) (34)p

w =-E El (34)

M 4e o (+ ( )

ap o

Equation 25 shows that the fast space-charge wave is passive, and the slow space-charge
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wave is active. They carry positive and negative kinetic power that is given by Eq. 33

in the direction of the unperturbed velocity vo given by Eq. 36.

A. Bers

References

1. A. Bers, Properties of waves in time- and space-dispersive media, Quarterly
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pp. 89-93.

B. ELECTRON BEAM-PLASMA INTERACTION EXPERIMENTS

The study of plasma heating by the electron beam-plasma interaction has continued

with emphasis on the use of long beam pulses and a magnetic-mirror confining field.

The oscillations are initiated by the interaction between the electron beam and the plasma

generated by ionizing collisions of beam electrons and residual gas atoms. The initial

interaction, which was discussed in a previous report,1 takes place within a few micro-

seconds and results in a considerable increase in the rate of plasma production above

that caused by the unperturbed electron beam. We believe that the large increase in

ionization results in a change from the initial (cyclotron) oscillation mode to a second

mode, whose most prominent characteristic is that the expected frequency of oscillation

is near the plasma resonance frequency. This mode would be expected to play a domi-

nant role in the interaction, as higher plasma densities are reached during longer beam

pulses.

An increase in the beam pulse length from a few microseconds to the range 20-

300 I sec has resulted in a more intense interaction in many respects. By adjusting the

operating conditions, we can produce initial effects in the first few microseconds of the

pulse which are similar to those observed with short pulses.l As the beam current con-

tinues to flow, however, it appears that the second mode becomes dominant for periods

as long as 300 lpsec. During this time, X-rays are produced at energies well above the

dc beam energy, and a large ionization rate is evidenced by changes in the electrode

currents. This report will present preliminary measurements and observations of these

phenomena. The experiments were made with two systems, which will be identified by

letters A and B. System A has been described previously, l and System B will be

described in this report.

1. Operation with Long Pulses in System A

In System A, electron-beam pulses of from 20 lpsec to 200 p.sec duration were used

to investigate the beam-plasma interaction. The plasma is created by beam ionization

of the background gas, which is argon or hydrogen. The operating pressures are varied
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IC

Light

Fig. XI-1. System A. (Argon sweep rate = 5 [tsec/cm; beam voltage = 5 kv;
current calibration = 1 amp/cm.) Collector current I (upper trace)

c
and light intensity (lower trace) for varying beam pulse lengths. The
break in the current occurs approximately 3 tsec after the initial rise
of current. The value of current before the break is the "vacuum"
value, that is, the collector current at low pressures when no oscilla-
tions are present.

from 10-4 mm Hg to 10-3 mm Hg. The confining magnetic field is mirror-shaped, with

a mirror ratio of 1. 6. The induction in the central portion of the mirror field is varied

from 100 gauss to 1000 gauss.

The accompanying photographs are examples of our general observations. Figure

XI-1 shows the early breakup of the beam, which is very much like that observed in the

short-pulse studies.1 The breakup is more noticeable at low magnetic field strengths.

Figure XI-1 and, to a lesser degree, Fig. XI-2 illustrate the increased collector cur-

rent, which sometimes increases to twice the value of the "vacuum" collector current.

This increase is best illustrated by the third trace in Fig. XI-1. The wall current,

defined as the difference between the input gun cathode current and the collector current,

exhibits the usual electron flow at the time of beam breakup. Its behavior at later times,

however, depends on the type of gas used. With argon, the wall current changes sign,

indicating ion flow to the walls, in accompaniment with an increased electron flow to the

collector. With hydrogen, Fig. XI-2a, there is no observable ion flow to the walls and

little increase in the collector electron current. Figures XI-2b, XI-3, and XI-4 illus-

trate the bursts of X-rays detected with a polyvinyl plastic scintillator and photomulti-

plier. The scintillation detector output generally decreases when the collector current
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Fig. XI-2. System A. (Hydrogen sweep rate 10 Lsec/cm; beam voltage = 10 kv;
current calibration 1 amp/cm.) (a) Behavior of the light and collector
current pulses in hydrogen. The minimum magnetic induction along the
beam path varies from 120 gauss in the top trace to 500 gauss in the
lower trace. (b) X-ray indication by a plastic scintillator for conditions
of third trace in part (a).
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X - ray
b Light

Vb
Ic

C

Fig. XI-3. System A. (Hydrogen sweep rate = 10 psec/cm; beam voltage = 10 kv;
current calibration = 1 amp/cm.) X-ray, light-beam voltage (Vb) and

collector current (Ic ) oscillograms for varying magnetic induction:

(a) 670 gauss, (b) 823 gauss, (c) 1060 gauss. These oscillograms
illustrate that X-rays persist long after the beam is turned off.

and light output increase, as shown by Fig. XI-2b. The X-ray intensity persists for long

periods after the beam pulse is turned off, as shown in Fig. XI-3. Low-frequency

modulations of the X-ray intensity are also observed, as illustrated in Fig. XI-4.

A preliminary absorption experiment was performed to estimate the energy of the

X-rays. Several sheets of aluminum with thicknesses varying from 0. 030 in. to 0. 250 in.

were interposed between the Plexiglas viewing port of System A and the scintillation

detector. The relative intensities of the X-rays detected for different aluminum sheets

were measured. If we assume that

(a) the oscilloscope display of the scintillation detector output is directly propor-

tional to the energy of the X-rays, and

(b) the X-rays are confined to a "narrow beam" of monochromatic wavelength,

then relative intensity measurements yield the absorption coefficient, which can be used

to estimate the unknown X-ray wavelength. The slope of the semi-log plot of relative

intensity versus shielding thickness of aluminum gives a mass absorption coefficient of

/p = 2. 0 cm2/gm. This corresponds approximately to an X-ray wavelength of 0.497 A,
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X- roy
Light

b Vb

C

Fig. XI-4. A set of oscillograms similar to those of Fig. XI-3, taken at lower
magnetic induction (in the range 250-350 gauss). The traces in sets
(b) and (c) illustrate low-frequency modulations of the X-ray intensity.

or to an energy of 25 kev. This result is interesting because 0.497 A corresponds to the

wavelength of the K emission lines of tin, which is present in the bronze wall of the

vacuum chamber and in the solder coating on this wall.

Two other properties of the X-rays which are important and deserve some comment

are the "afterglow" tail shown in Fig. XI-3 and the low-frequency modulations of inten-

sity illustrated in Fig. XI-4. The long decay of the X-ray intensity was found at many

operating conditions when a weak mirror field was formed. Roughly, exponential decays

with time constants as long as 80-120 sec were observed.

The low-frequency oscillations may be indicative of excitation of ion oscillations.

The frequency of the oscillations such as these shown in Fig. XI-4 is apparently unre-

lated to the magnetic field. The source of these oscillations will be sought in future

work.
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The beam pulse length that was necessary for producing all of the phenomena sum-

marized in Figs. XI-1 to XI-4 is, at most, Z00 isec. Experiments with longer pulses

revealed no changes in the general behavior.

2. Operation with System B

A system considerably larger than System A has been constructed for further study

of beam-plasma interactions. The main features of System B, which is shown sche-

matically in Fig. XI-5, are:

(i) A stainless-steel tube 7 inches in diameter and 75 inches long.

(ii) A magnetic-field system composed of: (a) a solenoid that extends along 49 inches

of the waveguide; (b) iron pole pieces that produce a mirror field with a ratio of approxi-

mately 3. 2 to 1; and (c) a maximum "uniform" field of 1730 gauss extending for 23 inches

along the beam path.
-6

(iii) A magnetically shielded electron gun of perveance 10-6 (1 amp at 10 kv).

(iv) A vacuum system capable of producing a base pressure of less than 10-6 mm Hg.

(v) A pulser that produces up to 12-kv pulses that may be as long as several hundred

microseconds with a variable repetition rate.

(vi) Provision for measuring beam collector current, rf fields, X-ray intensity, light,

and currents that cross the magnetic field to reach the wall of the stainless-steel tube.

Light
r. f.Light

X -ray

Ic

Fig. XI-6. System B. (Hydrogen sweep rate = 50 jisec/cm; beam voltage = 11.4 kv;
pressure = 0. 15 . Hg. Time runs from right to left. Current cali-
bration = 1 amp/cm.) (a) Light, X-ray and collector current oscillo-
grams. Magnetic induction (B ): 324 gauss in upper set, 540 gauss in

lower set. (b) Light and rf envelope. Magnetic induction (Bo ) : 486 gauss

in upper set and 324 gauss in lower set. RF frequency: 13.4 kmc in upper
set and 12. 7 kmc in lower set.
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In preliminary experiments we have observed the collector current, X-rays, light,

and rf fields. Oscillograms are shown in Fig. XI-6. The experiments were run at pres-

sures between 1. 5 X 10 - 4 and 3 X 10 - 4 mm Hg in hydrogen gas. At higher pressures

gun cathode emission was reduced. This limitation will be corrected by differential

pumping of the gun chamber.

The collector current is characterized by two types of oscillations. A large-

amplitude, 10-mc oscillation begins as soon as beam current is collected. The current

oscillates between +1 (ions) and -2 (electrons) amps, for example, when the dc collector

current is -1 ampere. These oscillations may last for 100 sec. As the pulse length

is increased beyond 100 psec, the 10-mc oscillations suddenly stop and are followed by

a low-frequency, low-amplitude fluctuation. Typically, the current varies ±10 per

cent at frequencies of approximately 100 kc. This fluctuation continues until the end of

the pulse. An example of both types of behavior is shown in Fig. XI-6a. Coincident

with the beginning of the low-frequency collector-current fluctuation is the production

of light and X-rays, as shown in Fig. XI-6a. Large, pulsating bursts of light and rf

are shown in Fig. XI-6b. The X-rays may continue after the beam pulse has ended, but

the light and rf do not. The rf frequency in Fig. XI-6b is 14.3 kmc. Assuming that

this frequency is the plasma resonance frequency, under the assumption that a strong

interaction is predicted at this frequency, a density of 2. 5 X 1012 electrons/cm 3 is indi-

cated. In these experiments the light attributable to the plasma is visible out to the walls

of the stainless-steel tube. Insulated collector electrodes are being placed near the wall

in order to determine the nature of the currents arriving there. In particular, we are

interested in observing whether or not any low-frequency, higher-order angular modes

can be detected.

L. D. Smullin, W. D. Getty, B. A. Hartenbaum, H. Y. Hsieh
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C. A MAGNETOHYDRODYNAMIC SMALL-SIGNAL POWER THEOREM

A small-signal power theorem will be derived that is useful in the study of a magneto-

hydrodynamic active waveguide problem.

We consider a case in which a fluid flows colinearly with a uniform de magnetic field.

Ignoring the electric displacement current, we find that the appropriate linearized equa-

tions of the system are:
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Maxwell's equations

VXH =J (1)
a oH

VxE= at (2)

Ohm's law

J = r (E+TX B +V XB), (3)

The momentum equation

D-
p -v + Vp = JX B (4)0 Dto

The conservation of matter equation

D
Dp = - Po (Vv), (5)

The equation of state

2
p = c p, (6)

s

D a
where D- 8t +o V. Variables with a subscript zero represent de quantities;

variables without subscripts represent small-signal quantities.

Stating Poynting's theorem in the usual manner, we have

- 8 H H(
V ' (E X) + o 2 + E • J = 0. (7)

The E J term indicates that electromagnetic energy is not conserved. How much

of the unconserved electromagnetic energy is transferred to mechanical and thermo-

dynamic forms of energy and how much of it is dissipated in ohmic losses can be deter-

mined by the evaluation of the E - J term through the remaining equations. The alge-

braic procedure involved in the transformation is rather complicated and will be sum-

marized here.

If the vector product of Eq. 3 and B is combined with Eq. 4 in a scalar product,

the result is

E J = Vt  B 8)

where the subscript t represents the portion of the vector which is transverse

to the magnetic field. Through the use of Eqs. 2-6, Eq. 8 can be transformed.
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a PP V 1at 2 o 2p o  Bo

t B20 o B S O 
pp V 0pV B pB+ v V+ P( o . V) + (9)

o p-o o

When this expression is substituted in Eq. 7, the result is

V (EXH+ SK ) + (wm k j = 0, (10)(EX +S)+(Wm+Wk)+

where

v - pp v]
SK  p -o p B+V + p( + P B
SK BpB o P B 0

o o o

1
w B-Bm 2 .

and

pp v 0
w k =-P V.v + (V *v)P + B V2 o o 2Po B

In the limit of infinite conductivity, Eq. 10 takes the form of a conservation principle,

expressing the fact that the time rate of change of a "stored energy" density integrated

over a volume is the same thing as an integration of a "power flux" over the surface

of the volume.

Our use of Eq. 10 for a fluid interacting with an external circuit requires an exami-

nation of its validity at a fluid-vacuum interface. We shall show that the power flux

term is continuous across the fluid surface. (See Fig. XI-7.)

The requirement for continuity of the power flux is

((1)xF(1)+-K SK) = E(2)x (2). , (11)

where

- T ( _V(1) _ o ,(1) , (12)
K  B

o

since i is a transverse vector. The validity of Eq. 11 is established by the boundary

conditions. A force balance at the fluid surface requires

p(1) (1) . (1) = (2) . (2). (13)
o o

The fact that the fluid is a perfect conductor requires that no total magnetic flux cross
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the fluid surface; this requirement can be expressed as

(1) .ff (2) . n

B(1) B(2) (14)
B0  0

The requirement that the electric field transverse to the interface be continuous in a

frame of reference moving coincidentally with the interface transforms into the station-

ary frame of reference:

NX [(2)+ X!(2) X (2) Nx E(1) (1) i +VX(1) (15)

Using Ohm's law in the limit of infinite conductivity, we find that

XR(1)+SK T = (p+i(1) (1)) V (1) ) n;

0
and using boundary condition (15) and Ohm's law, we find that

E(2) (2)XTI (2) (2) ) B (2))
o B(2)

o

which, when considered in conjunction with the other boundary conditions, establishes

the validity of Eq. 11.

We can integrate Eq. 10 over a volume through which the beam passes. (See

Fig. XI-8.) Using Gauss' theorem, we obtain

EX H.ds + SK d + S m dv + w K dv = 0 (16)

total surface S1+S2 total volume beam volume

In harmonic solutions, the time average of the last two terms of Eq. 16 vanishes and we

ds

UNPERTURBED (2) FLUID
FLUID SURFACE n SURFACE

- S BEAM S 2

a = (1)

FLUID Bo

Fig. XI-7. Perturbed fluid surface. Fig. XI-8. Integration volume.

find that, to obtain time-average electromagnetic energy from the volume, the kinetic

power term must decrease from the entrance to the exit of the volume.
J. R. Cogdell
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D. MAGNETOHYDRODYNAMIC GENERALIZATION OF KELVIN'S THEOREM

A generalization of Kelvin's theorem to the magnetohydrodynamic case has been

carried out using the magnetohydrodynamic equations of motion. A similar theorem

was derived from a Hamiltonian formulation by P. Penfield1 and, in fact, his theorem

suggested the present approach. Because the Lin variables and certain Lagrange mul-

tipliers do not appear in the present theorem, it may prove to be more directly

applicable to specific physical problems. The equations of magnetohydrodynamics are:

The force equation

d - Vp J (1)
v -- +v . V = -- + (1)dt at p p

Ampere's law

VxB= J (2)

The continuity equation

dp = -pV (3)
dt

The equation of state

p = p(p) (4)

Ohm's law for a perfectly conducting fluid

E +VXB = 0 (5)

Faraday's law

VxE= aB (6)
8t

Combining Eqs. 3, 5, and 6, we obtain Wal6n's theorem which is convenient for our

purpose

t.;I)= "VV. (7)

In order to generalize Kelvin's theorem, it is necessary to introduce a quantity akin to

the vector potential that is used to prove the conservation of the generalized momentum

in classical electrodynamics. This quantity has arisen in Penfield's work, and is
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related to the current density as

j = + V x (~ X). (8)

The divergence of W- is chosen:

V - = 0, (9)

so that the divergence-free character of J is ensured. Note that the relation between

7 and J is the same as the one relating the current density and polarization for moving

polarized media.2 Whereas a stationary polarized material cannot support a dc current,

the present situation may allow for one if -7 grows linearly with time.

For any physical current distribution, J(F, t), F is not determined uniquely by (8)

and (9). In order to check the extent to which two different space-time functions T and

72 may describe the same current density distribution J(F, t), we define their difference

"d = W1 - 2. (10)

It follows from Eqs. 8 and 9 that

V. Fd = 0 (11)

and

d +d V X (Fd XV) = 0. (12)
at

Accordingly, Fd satisfies the equation

dt d *di = 0 (13)

for any surface imbedded in the fluid and traveling with the fluid. If we set 1 = "2 = 0,

at t = 0, it follows that 'd = 0 at t = 0. From Eq. 12 we conclude that Wd has to stay

zero at all times and therefore the additional requirement

T = 0; t = 0 (14)

is sufficient to specify 7 uniquely.

We turn to the derivation of the generalized Kelvin theorem. We use the vector iden-

tity

S7 V=- vv -V X (7XV) . (15)

Furthermore, if the pressure is a function of the density alone, or vice versa, p = p(p).

Vp/p may be written as the gradient of a scalar function. Using (7) and (8), we can show

that the magnetic force density can be written in the form 3
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J X B 11f xB 9 * vXB BXB B

p t P p P

Introducing (15) and (16) into Eq. 1 and taking the curl of the result, we obtain

a
i + V x (i xV) = 0

Here, u is defined as

U= VX v - XB
P

(16)

(17)

(18)

In the absence of a magnetic field, B = 0, Eq. 18 reduces to the conventional Kelvin

theorem. A similar theorem appears in Penfield's work. 4 If we replace Penfield's 1

by my and assume a uniform entropy distribution (Vs=0), we find that

1 (
m

1 X. Va. -m ] P
(19)

where the X.'s are Lagrange multipliers, and the a.'s are Lin's variables. Penfield's

Eq. (6. 193) is identical with our (17), with his U given by (19). Our theorem is Pen-

field's theorem in a sharpened form because the term V . Va. has dropped out
J J

and thus has been demonstrated to satisfy by itself Eq. 17.

H. A. Haus
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E. THE EFFECT OF INTERNAL CURRENTS ON THE PLASMA DENSITY

DISTRIBUTION

Radial density profiles were measured in a highly ionized, finite, cylindrical plasma

confined by an axial magnetic field. We found that the shape of the density profile dif-

fered considerably, the shape depending on whether the end plates of the cylinder were

insulating or conducting. The purpose of this report is to explain, at least qualitatively,

this difference.

The experimental arrangement, shown in Fig. XI-9, has cylindrical symmetry about

its center line. A hollow-cathode discharge, running down the axis of the cylinder, acts
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SIDE WALL

HOLLOW- CATHODE "
DISCHARGE, D = 0.4 CM

2L = 16 CM

Fig. XI-9. Experimental arrangement.

as a source of plasma for the entire region. The properties of the discharge itself have

been described elsewhere l ; and for the purposes of this discussion, the discharge

simply supplies an axially uniform plasma density no(~ 3 X 1013/cc) at some small radius
ro(~ 0. 2 cm). The side wall of the cylinder is a floating conductor; the end plates may

be insulators or conductors and are always electrically isolated from the side wall. The

density measurements were made (with Langmuir probes) along a radius at the mid-

plane of the cylinder as shown by the dotted line in Fig. XI-9.

The results of such density measurements are shown in Fig. XI-10. The radial coor-
dinate has been normalized to unity at the side wall, and the density normalized to its
value at 1 cm from the axis (this is the smallest radius at which probe curves can be
made without overheating the probe).

The data shown in Fig. XI-10 are typical of many sets of data taken for various values
of axial magnetic fields. The previously indicated difference in the shapes of the profiles

is obvious.

From a phenomenological viewpoint, it is obvious that the conducting end plate differs
from the insulating plate only in that current can flow within it. Therefore, the effect

of the nature of the end plates on the density distribution at the mid-plane should be

related to the different current patterns existing throughout the plasma volume and par-
ticularly at the mid-plane.

In order to verify this hypothesis, it was necessary to measure the spatial current

distributions within the cylindrical volume. This is very difficult to do withotit creating

an excessive disturbance of the plasma. Consequently, we decided to measure the cur-

rent distribution at the walls of the cylinder and, from these results, attempt to infer
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(B = 1025 gauss; n0 3 X 10 cc).
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Fig. XI-11. Schematic arrangement used for measuring wall currents.
The structure is cylindrically symmetric about the z-axis.

the internal distribution. To do this, the side wall and end plates (when conducting)

were divided into conducting sections separated by narrow insulating sections. The

sections were connected through dc ammeters. This arrangement, shown in Fig. XI-11,
simulates a continuous conductor and also provides a means for measuring the current
flow between sections. In this arrangement, as before, the side wall is externally
floating and isolated from the end plates.

From the magnitude and direction of the currents measured in the ammeters, and a

knowledge of the area of the sections, the average current density entering (or leaving)
each plate from the plasma can be calculated. A full set of current measurements was
made for various values of magnetic field. Typical results for the direction of the cur-
rent at each wall section are shown by the arrows at the walls on Figs. XI-12 and XI-13,
for insulating and conducting plates respectively. Typical values for the magnitude of
the side wall currents are 0. 01-1. 0 ma/cm 2 and for the end plate currents (when plates
are conductors) 1. 0-50 ma/cm 2 over a range of magnetic field. In all cases, both side
wall and end plate currents decrease with increasing axial magnetic field. The measured
asymmetry in wall current patterns (shown in Figs. XI-12 and XI-13) is probably due
to the inherent asymmetry of the hollow cathode discharge source which, in this case,

carries a current of 40 amps.

Given the directions of the currents on the walls of the cylinder, one can speculate

about the internal current patterns. Such speculations, however, must include the fol-

lowing considerations: since the side wall, the end plates, and the source are electri-

cally isolated, the net current entering each must be zero. Also, the flow pattern should

be approximately symmetric about the midplane of the cylinder. Based on these con-
siderations, two basic current patterns have been deduced. These are indicated by the

dotted lines in Figs. XI-12 and XI-13. The patterns shown are not unique; however,

they are reasonably simple and are sufficient to account for the observed difference in
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Fig. XI-12. Proposed current pattern for insulating end plates.SII L
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Fig. XI-13. Proposed current pattern for conducting end plates.

in density profiles in the two cases. Upon examination of Figs. XI-12 and XI-13, several

characteristics should be noted for later discussion. For insulating end plates

(Fig. XI-12), the radial current at the mid-plane (Z = 0) is negative for all values of

radius (r). For conducting end plates, there is a value of r at the mid-plane r = r * which" \ -
is such that for r > r , the radial current is negative, and for r < r the radial current

is positive. This effect is due to current flow in the conducting end plates.

2. Theory

Let us now consider the mathematical analysis of the problem in order to examine

the way in which these current patterns affect the plasma density distribution. We
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consider a singly charged highly (but not fully) ionized plasma in which the ions and elec-
trons interact, and in which the ions (but not the electrons) interact with the neutral gas.

This model is reasonable for an argon plasma produced by the hollow-cathode discharge.
This plasma is ionized in excess of 50 per cent; the electron temperature (1-2 ev) is
such that the electron-atom collision cross section is very low (near the Ramsauer mini-
mum), and the ion-atom interaction is by charge exchange - a process that has an appre-
ciable cross section. We shall assume, for simplicity, that the plasma is isothermal.
Moreover, we shall assume that the axial magnetic field is sufficiently large so that the
cyclotron frequency for both electrons and ions is much larger than their respective
collision frequencies with other particles. The plasma geometry has azimuthal sym-
metry.

Under these conditions, it can easily be shown (either by solution of the contiuum
momentum equations or by direct expansion and solution of the Boltzmann equation 3 )

that the following expressions are valid for the radial, steady-state, ion and electron
particle currents (Ir i and e ), respectively.r r

r 2 - + D (neE - Tin (1)
r r e r ar

r e D n2  (
r = - D (2)
r ar

where

D = (Ti+Te) (3)
2B

m.v .
D 1 10 (4)Dg eB 2  (4)eB

In these expressions, n is the plasma density, B is the axial uniform magnetic field,
e is the electronic charge, -1 is the Spitzer resistivity, T i and T e are the ion and elec-
tron temperatures, respectively, m. is the ion mass, v. is the ion-atom collision fre-
quency, Er is the radial electric field, and r is the radial spatial coordinate.

We define the radial current density:

j = e(ri-r e )  
(5)

and by subtracting Eq. 2 from Eq. 1 we find

S Dg (neEr - T . (6)
Hence, we can rewrite Eq. 1 asr

Hence, we can rewrite Eq. 1 as
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i an
2

r -D ar + J/e. (7)

Since we have a steady-state analysis, made outside the source region of Fig. XI-9, the

following continuity equations are valid in cylindrical symmetry:

a i
18 1 Zr r + 0 (8)
rar r az

1 a ajz
w-r +(9)rar r jr + a 0 (9)

If we substitute Eq. 7 in Eq. 8 and use Eq. 9, we obtain

2 ai i

1 8 8 n2 Z 1 8 Jr ajZ/e
D a an z - r (10)rar r r a8Z r ar e a8Z

Consider now Eq. 10 evaluated at the mid-plane of the cylinder, that is, at Z = 0. To

proceed further, we must evaluate (8F Z/8 Z)Z= 0 . To do this, we assume that Bohm's

criterion is valid for the axial ion current at the end plates, and we make a linear inter-

polation for the purpose of estimating (8ar/a Z) 0 . This procedure gives

(8 /)Z=0 m (11)

Substituting Eq. 11 in 10, we obtain, at Z = 0,

I d dn 2  1 I d 1 (Jz
r 7Kn T= r eD aZ (12)

rdr dr eDrdr r eD Z o '

where K = m.

Let us define

J(r) = (13)
eD a\ 8z/

Then Eq. 12 becomes

1 d dn2

dr = Kn - J(r). (14)

It is precisely the difference in the function J(r) in the two cases (conducting or insu-

lating end plates) that gives rise to the difference in density profile. Therefore we now

proceed to estimate J(r) for the two cases.

For insulating end plates, jZ = 0 at the end plates, and jZ = 0 at the mid-plane, from
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symmetry considerations. We shall assume that jZ = 0 for all Z, which leads to the

conclusion that, for insulating end plates, J(r) = 0. This result would require that all of

the current lines in Fig. XI-12 be radial, which is probably not true. However, it is

reasonable to assume that J(r) is very small compared with what it would be for con-

ducting end plates. This less restrictive assumption only requires that the current lines

in Fig. XI-12 be almost completely radial in the neighborhood of the mid-plane, and this

is sufficient for the argument that follows.

When we consider conducting end plates, we can no longer say that jZ vanishes on

the end plate, although we can still use the symmetry argument at the mid-plane. We

can obtain information, however, from examination of Fig. XI-13. Note that for r < r ,

(a jZ/8 Z)o < 0; and for r > r , (8 j Z/ Z) > 0. It is impossible to obtain numerical val-

ues for derivatives of the internal currents, but it is not unreasonable to assume that a

plot of J(r) vs r, for conducting end plates, might appear as shown in Fig. XI-14.

If we note that n(r) is always a monotonically decreasing function of r, we can esti-

mate the right hand side of Eq. 14, which is proportional to the curvature of n2 , for the

two cases. Such estimates are shown in Fig. XI-15. We see, from Fig. XI-15, that

for insulating end plates the curvature of n2 is always positive and is a decreasing func-

tion of r, whereas, for conducting end plates, the curvature starts positive, goes

through zero and then goes negative. This behavior corresponds exactly to that exhi-

bited by the data as depicted in Fig. XI-10.
S. D. Rothleder
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F. PRODUCTION OF ION BEAMS

An experiment designed to produce an ion beam of approximately 50 ma of molecular

hydrogen ions at 50 kv suitable for injection into a "corkscrew" device is near completion.

In order to fully utilize the trapping properties of a helical magnetic field, the injec-

ted beam must have both low divergence and low energy spread. The latter criterion is

met by a von ArdenneI ion source which, in addition to its high efficiency, will also give

the required current. However, the normal method of extraction from this source gives

a highly divergent beam of approximately 8 half-angle, but we hope to overcome this

by means of the extraction system shown in Fig. XI-16. The combination of the cusped

137



von ARDENNE
ION SOURCE

EXRACTION AND
FOCUSSING

SYSTEM DRIFT SPACE

CALORIMETER

GETTER PUMP

PLEXIGLAS
INSULATOR

ACCESS PORTS

500 liters/sec
OIL DIFFUSION PUMP
AND FREON COOLED

BAFFLE

Schematic view of apparatus for the production of low-divergence ion beams.Fig. XI-16.



(XI. PLASMA ELECTRONICS)

magnetic fields from coils 1 and 2 with the electrostatic accelerating field gives a con-

cave plasma boundary from which the ions are extracted; the result is an initially con-

vergent beam.

Some measure of success was obtained with the use of this general scheme, in August

1961, by the author at A. W. R. E. Aldermaston, where 30-kv beams of approximately

6 ma with divergence of 3 half-angle were produced. We hope that better performance

will be obtained with this system which includes a short-focus electrostatic lens, the

center element of which is in the magnetic-mirror field formed by coils 2 and 3. This

may result in (a) reduction of electron loss from the beam to the central element, and

(b) the trapping of some electrons in the center of the lens which will help to neutralize

the ion space charge in this region.

Both of these effects should reduce the space-charge blow-up of the ion beam.

In order to maintain a high vacuum in the vicinity of the extraction and focusing elec-

toodes, the center element of the lens is constructed of stainless-steel mesh and the

region pumped by a getter pump designed for this purpose.

If space-charge blow-up of the beam is still excessive because the lens draws too

many electrons from the beam, a magnetic lens will be used.

The construction of the experiment is almost complete, and the ion source has oper-

ated satisfactorily. We hope to try the extraction and focusing system soon.

E. Thompson
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G. LARGE-VOLUME SUPERCONDUCTING SOLENOID

1,2
The large-volume superconducting solenoid described in previous reports is now

in the final stage of construction. Some parts such as the main containing vessel, are

finished and vacuum leakproof tested. Most of the other parts are ready to be

assembled. Figure XI-17 shows the vessel in the helium leak test station of the

Research Laboratory of Electronics. Approximately 60 per cent of the 100 pounds of

niobium-zirconium that has been ordered is already on hand; the remainder is due to

arrive within the next few weeks.

During this period we have investigated the behavior of numerous small supercon-

ducting solenoids.

Although the situation is far from clear, various interesting bits of information

have been obtained.
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Fig. XI-17. Large-volume superconducting solenoid.

(i) Insulated-Wire Versus Bare-wire Solenoids

Several experiments were undertaken to see which one of these two concepts is the

more promising. Indeed, Berlincourt and his co-workers have recently reported super-

conducting solenoids wound with bare wire. We have found:

(a) Bare-wound solenoid implies much longer rise time than insulated wire sole-

noids - 20 minutes versus 1 minute. Also, the quenching current seems to be less

reliable for the bare-wire than for the insulated-wire solenoid.

(b) Some appreciable amount of the magnetic field is always lost by occasional

superconducting shorts, and therefore the magnetic constant ratio (MCR) is highly

unpredictable and the direct measurement of the magnetic field through the value of

the current is not possible.

(c) The release of the magnetic energy is much quicker for the bare-wire type than
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for the insulated-wire type, which makes the first concept less safe than the second

one.

Therefore we definitely shall use an insulated-wire solenoid for our large

apparatus. Various dielectric insulator materials have been tested: nylon fabrics

fused, polyurethane, formvar and polyester enamels. All of the enamels behave

quite well, but on the basis of hardness and strength we shall use polyester

enamel.

(ii) Voltage Surge Caused by Quenching

This factor can cause breakdown of the insulation and burning or annealing of the

superconducting wire. An internal shunt or rheostat built into the power supply appears

to be a simple and practical solution. In any case, the peak voltage is no more than

RES Iq, where RES is the shunt resistance, and Iq the quenching current (between 15 and

25 Amps for 10-mil wire). Moreover, the external shunt permits an easy control of the

rise time of the magnetic field, the time constant being L/RES. This is very helpful

for increasing the quenching up to its highest possible value.

With this arrangement, up to 30 successive quenchings have been made on a given

solenoid without any visible damage to the solenoid.

(iii) Energy Dissipation during Quenching

Solenoids up to 1 kJ of magnetic energy stored have been tested. It appears that the

release of this energy is much slower than we had thought, probably because of the high

thermal impedance of the winding. For solenoids immersed in helium, it takes from 1

to 3 minutes to cool down the solenoid after quenching it and to be in a position to start

it again.

The addition of a copper winding has been found to be quite effective for removing

part of the magnetic energy from the liquid-helium space. For a bifilar winding, this

effectiveness is close to 100 per cent. It seems that the addition of a few layers of

copper-wire winding inside and outside the superconducting winding is a compromise

between simplicity of construction and efficiency. This protecting coil is of great inter-

est for the safe and economical operation of a superconducting solenoid, since it limits

the effect of quenching voltage and also the amount and the rate of the magnetic energy

dissipated in the liquid-helium bath.

(iv) Penetration of the Magnetic Field inside a Superconducting Solenoid

Experiments seem to indicate that the field penetrates the inside space not by a

continuous and regular process but by jumps as recorded by an oscilloscope or a micro-

voltmeter. This phenomenon may be related to the early quenching of some solenoids,

because of the disastrous effect of fast current change on the superconducting state of

the material.
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(v) Decrease of the Current with the Size and the Strength of the Solenoid

Although this assertion presents as many exceptions as rules, it seems that there

is a definite trend toward low current density when the size and the strength of the sole-

noid increase. Let us take an example: a 0. 050-in. I. D., 3.0-in. long, 30-kGauss

solenoid is operable at a reliable current of 16 Amps; a 0.5-in. I. D., 3.0-in. long,

60-kGauss or 2. 0-in. I. D., 8. 0-in. long, 30-kGauss solenoid is limited to -10 Amps.

The cause or causes, thus far, are quite confusing and may include items such as

the quality of the material, the effectiveness of the dielectric insulation, the proximity

effect, the length of the superconducting wire, and the sensitivity of connections to the

magnetic field.

Since the design of our solenoid calls for 24 different spools, the length of wire in

each will be limited to approximately 18, 000 feet. The wire will be the insulated wire

with a polyester enamel, which seems to have less porosity than the nylon fused insu-

lation wire used in most of our experiments with small solenoids. The connection will

be positioned in the low-field region of the solenoid, that is, outside the magnet close

to the equatorial plane. A magnetic shielding will be provided to reduce the magnitude

of the stray field still further.

We hope that these arrangements will give maximum effectiveness and safety for

the operation of our large solenoid.
L. J. Donadieu
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H. ENERGY EXTRACTION BLANKET FOR A FUSION REACTOR

The configuration of the blanket system has been considerably refined since our last

discussion of this problem. The system to be used in detailed calculations is illustrated

in Fig. XI-18. The innermost thermal barrier will separate the fused-salt cooled region

from a low-temperature water-cooled shielding region. All neutrons and heat leaking

beyond this barrier will be discarded. The thickness of the high-temperature fused-salt

region will be determined by the neutron leakage, since neutron economy is more critical

than heat economy.

The coil shielding region will protect the superconducting magnetic coils from exces-

sive nuclear heating. The heating of the magnet and its 10 cm of stainless-steel
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structural support will have to be less than 10-5 of the total nuclear heat. Otherwise,

the energy required to cool the magnet will seriously affect the over-all energy balance.

Maintaining the coil shielding region at low temperature permits the use of efficient

neutron and gamma attenuators such as borated water and lead.

1. Heating and Heat Transfer

An unavoidable economic disadvantage of foreseeable thermonuclear reactors is a

very large ratio of peak-to-average power (here we mean spatial distribution, not time

distribution). This problem, inherent in systems composed of a reaction chamber sur-

rounded by an energy-conversion region, results in high capital costs for the available

output power. The questions of heating and heat transfer are therefore of major impor-

tance in the economy of thermonuclear power.

Codes in IBM 7090 Fortran language are being developed to calculate heating rates

in the blanket structure. Heating rates are of particular importance in two regions, the

first wall and the magnet coils. Cooling of the first wall will place an upper limit on the

PLASMA
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FUSED- SALT COOLANT 500 0 C

PRIMARY ATTENUATOR 6200C
(WITH FUSED- SALT COOLANT)

THERMAL INSULATION

.---- COIL SHIELDING } 50 0 C

THERMAL INSULATION

SUPERCONDUCTING COILS } -2690C

THERMAL INSULATION

BIOLOGICAL SHIELDING

Fig. XI-18. Functional arrangement of the blanket.
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114Fig. XI-19. Calculated and measured spectra for Cd
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energy density in the thermonuclear plasma, limiting the power output from a given

structure. Heating in the magnet will determine the necessary thickness of coil shielding

which represents an important contribution to the capital cost.

Since a large fraction of the nuclear heat is liberated by secondary gammas from

nonelastic neutron interactions, the heating-rate codes must allow estimation of the

spectrum of these photons in addition to providing accurate approximations to gamma
transport. The spectrum of photons from heavy nuclides is being calculated from the

statistical model, with the assumption of a continuum of levels of the emitting nucleus.

As shown in Figs. XI-19, XI-20 and XI-21, this approximation underestimates the energy

of the gammas. The model will be useful, however, in estimating the relative effect of
initial nuclear excitations that are either higher or lower than the binding energy of the
neutron (Fig. XI-22). It is for these cases that no experimental data exist.

Gamma transport is being approximated by two methods with the intention of com-

paring the results. The first method is a build-up factor approach, based on the

moments method calculations of Goldstein and Wilkins.2 Eight energy groups are being

used with infinite slab geometry approximating the actual cylindrical shells. Energy

absorption build-up factors for monoenergetic point isotropic photon sources are being

approximated by a sum of exponentials to permit their application to slab geometry.

Build-up calculations of this type do not break down at large distances from gamma

sources and are exact for infinite homogeous media. In heterogeneous media, for which

suitably averaged build-up factors must be used, heating in high Z materials is under-

estimated, while heating in low Z materials is overestimated. In addition, photon

energy is not necessarily conserved.

The second gamma transport approximation that is being employed is a one-group

method in which an averaged energy absorption coefficient is used as an attenuation coef-

ficient. The energy absorption coefficient for each absorber nuclide is averaged over

the energy spectrum of the emitted photons. This method incorporates the assumptions

that the photon spectrum is constant regardless of distance from the source and that all

scatterings are straight ahead. It is quite accurate near the gamma source, and auto-

matically conserves total energy. Beyond a few mean-free paths from the source, how-

ever, it can be expected to err seriously.

The build-up factor method is obviously the better one for calculation of heating in

the magnet. It may be inferior, however, for the estimation of first-wall heating.

2. Neutronics Calculations

Several revisions have been made in the digital computer codes developed for neu-

tronics calculations, and several new configurations have been explored. A low-energy

code, run in conjunction with the higher energy code mentioned in a previous report,
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allows calculation of neutron flux distributions in 50 lethargy groups extending from

14. 2 MeV to thermal energies with explicit treatment of resonance-induced volume and

surface absorption of neutrons. Also, the calculations may now be carried out by using

either the approximation to integral transport theory previously noted, or the "S " dif-

ferential transport approximation. Test cases that have been run to compare the results

of integral and differential transport calculations yield results that differ by 1 per cent,

or less, in tritium breeding ratio. The treatment, at present, is still limited to a 3-

region configuration, although a 5-region code is now being developed.

The extended codes have been applied to a physically practical system consisting of

a molybdenum first wall, 1-cm thick, a first-wall coolant channel, 5-cm thick, con-

taining 2LiF. BeF 2 , and a primary attenuator region, 30-cm thick, composed of 75 per

cent (by volume) 2LiF- BeF 2 and 25 per cent graphite. The results of these calculations

indicate that a tritium breeding ratio of 1. 15 (tritons regenerated per triton burned) is

attainable, provided that the neutrons appearing in this calculation as leakage through

the boundary of the primary attenuator re gion are not ultimatley lost.

Calculations reported previously3 indicated that an additional 30 cm of 75 per cent

fused salt and 25 per cent graphite will yield (n, t) reactions for essentially all of the

neutrons that appear as leakage in the present calculations.

Preliminary estimates of tritium loss rates in a power-generating fusion reactor

complex have been made. The largest single loss of tritium is associated with the need

to repeatedly recirculate and re-inject fuel particles because of the low burn-up

expected in the plasma. Assuming a burn-up of 0. 1 and 0. 99 recovery in the tritium

pumps, we expect a net loss of approximately 10 per cent in tritium. An additional

tritium loss of approximately 3 per cent is expected on account of radioactive decay of

the tritium inventory in the blanket and incomplete recovery of tritium from the fused-

salt mix. The total loss of tritium per pass is not expected to exceed 15 per cent. For

these reasons, the blanket configuration noted above (with an extended primary attenu-

ator) should just be able to offset anticipated tritium losses in the rest of the system

and to make the proposed fusion reactor independent of external sources of tritium after

start-up. The tritium breeding ratio can be further increased by using a somewhat

thicker molybdenum first wall, or by introducing beryllium in the primary attenuator.

In particular, calculations have shown that an additional 0. 09 in tritium breeding can

be gained by including the equivalent of 5 cm of beryllium in the primary attenuator

region behind a 1-cm molybdenum first wall.

Mention has been madel of the possibility of obtaining some tritium without loss of

neutrons from reactions of the form Li 7 + n - n + H 3 + He 4 . At the time when this pos-

sibility was first considered, no published data were available concerning the Li7(n, t)

cross reaction, and the 2 per cent contribution to the tritium breeding ratio previously

cited was based on estimated cross sections. Recently, measured Li7(n,t) cross
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sections over the energy range of interest have been declassified and published. These

values, which are rather larger than estimated, have been incorporated into the calcu-

lations discussed above. The resultant Li 7 contribution to the tritium breeding ratio

is approximately 0. 11 in the system discussed above. The calculations also show that

the ratio of consumption of Li 6 to Li7 will be approximately 8:1, so that the fused-salt

make-up will necessarily contain lithium almost fully enriched in Li 6 .

Auxiliary calculations have been made to estimate the maximum tritium breeding

ratio obtainable in blanket configurations that exclude fissile nuclides. The first case

considered was that of an 8-cm lead first wall followed by a 3-cm fused-salt coolant

channel and a primary attenuator of 75 per cent fused salt plus 25 per cent graphite.

This configuration tends to maximize (n, 2n) multiplication of neutrons and yielded a

calculated tritium breeding ratio of 1. 63.

In the second case, a beryllium first wall, 3-cm thick, was substituted for the lead

with the remainder of the system unchanged in an attempt to increase the Li 7 (n, t) con-

tribution to the tritium breeding ratio while taking advantage of the (n, 2n) multiplication

in beryllium. The calculated breeding ratio was found to be 1.42 of which only approxi-

mately 0. 11 is attributable to Li 7 reactions. This configuration is actually somewhat

less than optimum; the small gain attributable to Li 7 (n, t) does not compensate for the

greater loss in Be(n, 2n) multiplication necessitated by the use of a relatively thin first

wall.

Finally, a calculation was made on a hypothetical system involving no first wall, but

otherwise identical to those discussed above. In this case the Li7 (n, t) reaction con-

tributed 0. 13 to the tritium breeding ratio. In view of the competing cross sections in

Li 7 and in the other constituents of the fused salt, it appears evident that the Li 7 (n, t)
reaction will account for no more than 0. 12 of the tritium breeding ratio in any practical

blanket.

It should be noted that the three cases discussed here were all exploratory in nature

and that neither lead nor beryllium appears to be suitable for a first-wall material

because of physical limitations.

W. G. Homeyer, A. J. Impink, Jr., D. J. Rose
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I. DESIGN AND CONSTRUCTION OF PULSED PLASMA ACCELERATOR

The interaction of a traveling magnetic wave and a stationary plasma is now under

study. The magnetic wave (of up to 5000 gauss) travels at a velocity of 1. 7 x 107 cm/sec

through a region filled with a dense, highly ionized, low-temperature plasma. The

plasma generation and confinement schemes and the relevant plasma parameters have

been discussed in previous reports. l'2 The magnetic wave is generated by the passage

of a current pulse along a helical "delay line" surrounding the plasma. The design and

construction of a line capable of generating a 5-kGauss magnetic pulse will be discussed

in this report.

1. Design Considerations

Consider the line shown in Fig. XI-23. The magnetic field generating helix of radius

r is in intimate contact with a thin cylindrical dielectric shell of thickness d which,

in turn, is surrounded by a grounded conducting cylinder. If we demand that the dielec-

tric material be fully utilized (i. e., stressed to break down), then d may be expressed

in terms of the applied viltage, E, and the dielectric strength S. The capacity/unit

length, C, is given by

2ir E KS
C = o (1)

E

where K is the dielectric constant of the material.

It is apparent that if the separate turns of this helix are to act in concert to produce

GROUND "PLANE"

DIELECTRIC SHELL - -.. . . .. . :. d"... " ." .• . d

HELICAL
INNER

CONDUCTOR
(N TURNS/UNIT LENGTH)

Fig. XI-23. Dielectric shell model.

Fig. XI-23. Dielectric shell model.
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Table XI-1. Figures of merit for several dielectric materials.

Material K S (v/mil) KS (v/mil)

Nylon 3.5 470 1. 64

Polystyrene 2.5 600 1.50

Vinyl chloride 4.0 900 3. 60

Steatite 6. 5 300 1.95

Barium titanate 2. 5 X 10 125 >300

the magnetic field of the traveling wave, they must also interact with each other. The

inductance of the helix per unit length will depend on the parameters of the helix itself

and those of the wave that is being propagated. For a closely coupled coil, we expect

the effect of magnetic coupling to be important over lengths that are about that of the

rise length of wave, for it is precisely this region over which rapidly changing currents

make (mutual) inductive effects important. Considering that the minimum rise length

of a well-designed system will be of the order of the radius of the coil and assuming

very tight coupling, we take the inductance/unit length, L, to be

L = N f(r/a) = f r/a 2 , (2)

where N is the number of turns per unit of length, and J is the self-inductance of a

single loop.

If we consider a pulse long in spatial extent compared with the radius of the helix

and use Eqs. 1 and 2 to express the result in terms of quantities of interest, we find

B ,o 2wEoE/f . (KS) 1 /2 (3)

or alternatively

B = (2rrrE oV/a) . (KS), (4)

where V is the velocity of pulse propagation. The product of dielectric constant and

dielectric strength thus defines a "figure of merit" for our application. Inspection of

Table XI-1 (listing some representative values of this product) virtually compels the

use of some (Ba-Sr)TiO3 ceramic dielectric. We decided to use a compound (T-176A)

manufactured by the American Lava Company with a KS product of 475 kv/mil. Once

the dielectric properties are fixed, it is a simple matter to estimate the magnitude of

the traveling field that could be generated by the idealized system under consideration.

For example, if we choose V = 107 cm/sec., E = 25 kv, and let the size of the

remainder of the experimental system hold r = 4. 5 cm, we find
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B m 6000 gauss. (5)
max

There seems to be no question that a modified high-voltage delay line is capable of pro-

ducing fields of sufficient magnitude to ensure strong interaction with any reasonable

plasma column.

2. First-Order Analysis

The interaction of a traveling magnetic wave with a stationary plasma is a strong

function of V, the wave velocity because the particle energy in the moving frame of

reference defined by the pulse is dependent upon V 2 . The dependence of the interaction

on the magnitude of B may be either first-power (adiabatic reflection) of second-power

(magnetic-kinetic pressure balance). In either case, it is evident that we must be able

to predict the behavior of the traveling-wave line with much greater confidence than

could be inferred from the simple continuously distributed parameter model discussed

here. Two models, the first based upon the dispersion equation for wave propagation,

the second on a numerical solution of the coupled second-order equations of the system,

have been developed.

a. Dispersion Equation

As is well known, the dispersion relation for waves propagating in a simple lumped

LC delay line with no inductive coupling between sections is given by

w CL = 2(1-cos k), (6)

where L is the inductance of a single section, C is the capacitance of a section, and

the wave vector, k, is given by 27na/k for spacing a and wavelength X. For an induc-

tively coupled system, we may write 3

2 C [L+ 2 Lcos (nk)] 2(1-cos k), (7)

n=1
th

where L is the mutual inductance between n neighbors. It is apparent that we may
n

recover the form of the simpler case simply by redefining the inductance or, more

explicitly, by setting

o0L [i Lcos(nk)j L (8)

n=l

If we restrict ourselves to wavelengths that are long compared with the spacing of

the elements, yk is independent of wavelength and the simple expressions for velocity,

V o , and impedance, Z o , of a continuous line may be used.
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-1/2V = Vo

Z = , 1/2 Z

Inserting the expression for the inductance of circular coaxial loops yields

S = 1+ (a)

S ln( 1 2
O ~ ~Fh

00 3
where P(a) = T 2k C, C is the complete elliptic integral discussed by Jahnke and

n= 1

Emde, 4 k2 = 1/ + a n , and a = a/2r. In this expression, h is the "equivalent radius"

of the conductor. A plot of P(a) as a function of a is given in Fig. XI-24.

The validity of our low-frequency approximation is illustrated by the comparison
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Fig. XI-24. Plot of P(a) against a.
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Table XI-2. Comparison of experiment and theory for two test lines.

of predicted and experimental values of velocity and impedance for two low-voltage test

lines. This comparison for velocity is made in Table XI-2. Besides the rather good

agreement of experiment and theory, it is interesting to note that the application of

simple lumped-parameter theory leads to an overestimate of B 2 V- 2 (a measure of inter-

action strength) by more than an order of magnitude.

b. Inductance Matrix

Consider a line formed of N not necessarily identical LC sections. The line is to

be driven by a pulse from a capacitor bank of capacitance C o and inductance L o . The

line is terminated with a simple resistor, R (see Fig. XI-25). We may write two sets

of equations on the x.'s, the first time derivatives of the currents. M.. is taken to be
1 th th 1the mutual inductance of the i and j loops, so that, for instance, M55 is the self-

inductance, L 5 , of the fifth loop.

CV =C E - dt 2 x
o o o o o

V = V -Lx1 o o o

C 1 Vl

CN VN ;s

dt2 (Xo_ x 1)

dt 2(n-_l-n)

dt2(xN-1-xN)

N

V 2 = V 1 - Mj1 x

j=1

(I1a)

N

Vn = Vn-1

j=1

VN = VN-
1

j,n- xj

Mj,N- 1 x.J

N-
j= 1

VN+ = R dt x N
N+10 N

VN+1 = VN MjN x.

If we redefine the summations in Eqs. 1 lb by setting

M. = L 6(j)

n * 0,
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we may write, as a solution to both sets of these equations,

N

MJ. x. Sn ,

j=0

where

S E -1 dt2(x ) -
o o C o C

S -C dt2(x -2x +xn C J n-1 nn+1

dt (Xo-X1)

1 < n < N-1

SN = - dt 2 (xN- xN) - R dt XN.

Note that the appearance of the second forward difference functions of discrete variables

is not the result of an approximation, but rather the expression of the discrete physical

nature of the interacting elements. Writing Eq. 13 in matrix formalism immediately

suggests the solution

X = {M}- 1 , (14)

where {M}- 1 is simply the inverse of the inductance matrix.

The generation and inversion of the inductance matrix, and the solution of the N+1

simultaneous equations represented by Eq. 14, was programmed for the IBM 7090 com-

puter. The program will also compute, at selected time intervals, the axial magnetic

field at N space points. The numerical solution furnishes a detailed picture of magnetic

pulse propagation, the characteristic of greatest interest, and thus we are able, with

slight modification, to solve the "equations of motion" for the case in which N closed

conducting loops interact with the current-carrying elements of the system. This last

solution is beyond the scope of the simple dispersion equation method described above.

0 LO L1  i2 i n-2 Vn- i n-1 Vn in Vn+1

Cn-2 kn-1 n

CO

iN-2 iN-1 VN 'N VN+1

N-2 N-i LN

;:F -1- R

d
x -
n df n

Fig. XI-25. Schematic electrical design and nomenclature for numerical analysis.
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3. Accelerator Considerations

The original accelerator design called for as close an approximation as possible to
the idealized system of Fig. XI-23. However, the contractor for the ceramic dielectric
found it impossible to fabricate the large cylindrical shell called for by that design. The
next simpler scheme, build-up of the shell by stacking annular rings, turned out to be,
on the basis of experience garnered in the attempted fabrication of the shells, prohibi-
tively expensive. The final design was arrived at as an attempt to utilize very simply
constructed ceramic elements. The line is built up of 20 identical sections, each com-
posed of an inner, nearly complete, circular ring, an outer closed circular ring, and
10 dielectric elements connected between the rings (see Fig. XI-26). The capacitors
(1. 300" X 0. 780" X 0. 310") are silvered on the two large faces and soft-soldered to the
copper rings. This operation must be carried out at 100-120°C ambient temperatures
as the ceramic is extremely vulnerable to thermal shock. The ring-capacitor assembly
is then placed in a molded silicone rubber (G. E. RTV-20) cup and then vacuum-potted
in a silicone-base potting agent (G. E. LTV-610, see Fig. XI-27). This was chosen for
its exceptional electrical insulating properties with a dielectric strength in excess of
2 kv/mil in thick sections. The completed "pancakes" are then stacked with the inner
tabs connected in such fashion as to form a continuous helix of the inner conductors.
Input and terminating sections are added, and the whole assembly pressed into a very
tightly fitted cylindrical copper jacket. The outer tabs, connected to the closed rings, are
thus forced into contact with the outer jacket which then serves as ground plane for the
system. The completed accelerator (with relevant dimensions) is sketched in Fig. XI-28.

-ll1p i '
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Fig. XI-27. Potted elements. The presence of the very transparent potting agent is

just visible in the right-hand photograph of the completed element.

An intensive testing program, both of the dielectric itself and of the completed rings,

was carried out before and during construction of the accelerator. The most pertinent

result of this study was the observation that although the accelerator does have a moder-

ately high breakdown strength, it is extraordinarily and catastrophically sensitive to

rapid voltage reversals of exactly the sort that result from capacitor ringing or transient

voltage generation at impedance mismatches. In fact, it was found that properly termi-

nated rings, none of which failed after several hundred 25-kv pulses, failed after only

one or two pulses of as low as 6 kv, if an improperly matched terminating resistor was

substituted. The termination used on the accelerator was chosen to minimize, as much

as possible, all reflections from the end of the line. An identical resistance, connected

in shunt across the input terminals serves both to reduce feedpoint mismatch and to

effectively decrease the source impedance for any given value of source capacitance.

4. Closed Loops

The design of the individual elements adds a previously unconsidered complication

to the behavior of the accelerator. The outer grounded loops are inductively coupled

to the inner helix. Indeed, a closed conducting loop has been placed between each pair

of inner loops. The gross effect of the closed loops is to reduce the mutual inductance

between the inner rings, and at the same time to reduce the effective self-inductance

of any single ring. Although this has the happy result of decreasing the impedance of

the line and thus promising higher magnetic fields, albeit at a higher propagation veloc-

ity, closer inspection reveals that this bright forecast is a snare. The same circulating

currents that act to reduce the inductance coefficients also act to reduce the magnetic

fields at all points of the system. Analysis of a simple system closely related to the

158



INPUT CABLES - RG 8/U, 2 OF 4 SHOWN

BOTH ENDS SEALED
WITH CAST SILICONE
RUBBER

INNER CYLINDER:
64 MM ID PYREX TUBE

OUTER CYLINDER.
0.5 M THICK ROLLED
COPPER TUBE HELIARC
WELDED SEAM

MAIN ACCELERATOR SECTION; 20 LC
ELEMENT OF 1.35 AVERAGE THICKNESS

RESISTIVE TERMINATION

1 6.4

INPUT SECTION
(CONNECTION POINT FOR CABLES)

33.3

ALL DIMENSIONS IN CENTIMETERS

15.0

REGION BETWEEN ELEMENTS
AND INNER TUBE USED FOR
MAKING CONNECTIONS
BETWEEN INNER TABS - FILLED
WITH CAST POTTING AGENT.

Fig. XI-28. Major dimensions of completed accelerator.

7

M/

/ i

" -------~



(XI. PLASMA ELECTRONICS)

ha

W
W12

Fig. XI-29. Diagram for consideration of effect of closed inductive loops.

system under discussion shows that the net effect, which must always be detrimental,

is a reduction of the peak axial magnetic field by almost 25 per cent.

The effect of the closed loops may be rather simply integrated into the scheme of

closed and driven loops depicted in Fig. XI-29. Then, in the same matrix formalism

used before, we may write the equation for the voltages on the N driven rings as

V {M} X + {T} Y, (15)

th thwhere V. is the voltage across the i inner ring, M.. is the mutual inductance of the ith
th 1 1J

and j rings, and T.. the same for the outer closed loops. Here X and Y represent
1J

the time derivatives of the currents in the inner and outer loops, respectively. In simi-

lar fashion, we write the voltage equation for the closed loops

0 = U} + {W} Y, (16)

where {U} = {T}tr, and {W} is the inductance matrix for the outer loops. Solution of

(15) and (16) yields

V = M - TW- 1 U} X -{M'} X. (17)

Thus the equations of motion for V are soluble, as before, with the simple replace-

ment of M in Eq. 14 by M' as defined in Eq. 17. Furthermore, the currents in the

outer loops may be very simply computed, as the xc are already in hand, and

Y = - {W- 1U} X.

Table XI-3 presents a comparison of some elements of M and M' for the accelerating
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Table XI-3. Effect of closed loops on inductance coefficients.
(M scaled to units of mph.)

line. Note that the self-inductance, M 1 1 , has been reduced by 20 per cent and that the

mutual inductance between rings separated by only two intervening sections has been

reduced by more than a factor of two. A comparison of the experimental calculations

with an experimental measurement of the voltage on the terminating resistor is pre-

sented in Fig. XI-30. Even with the large increments chosen for the time integration,

the agreement is seen to be quite satisfactory. A complete "run" - voltage, current,
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Fig. XI-30. Terminal voltage of completed accelerator.
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j M1 j  Mj M'/M
1,j 1,j

1 105.0 84.52 .805

2 73.96 53.33 .721

3 40.89 23.85 .583

4 25.11 12.21 .486

5 16.30 6.84 .420

10 3.09 0.95 .308

20 0.42 0. 13 .300



1800

1600

1400

1200

1000

800

E 600

m 400

200

0

-200

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ACCELERATOR STATION (STATION SPACING 1.35 CM)

Fig. XI-31. History of magnetic pulse - high driver bank capacity.

1400

1200

1000

800

600

400

200

0

-200

-400

162

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ACCELERATOR STATION (STATION SPACING 1.35 CM)

Fig. XI-32. History of magnetic pulse - low driver bank capacity.



(XI. PLASMA ELECTRONICS)

magnetic field at 20 space points - takes approximately 4. 5 minutes of IBM 7090 time

to reach the cutoff value of 2. 5 jisec (2500 time intervals). This complexity enforces

the use of the largest possible time step.

The computed spatial variation of magnetic field at several instants of time is plotted

in Figs. XI-31 and XI-32 for 10 kv initial bank voltage and two values of bank capaci-

tance. The first case, high capacitance, approaches a uniform current distribution at

times intermediate between the pulse transit time and the time constant for capacitor

voltage decay. That the magnetic field does not also approach that of a long solenoid,

i.e., Blend s = 1/2 B cente r , is due to the field flattening effect of the closed loops. In

any event, most of the input power is wasted, in that any plasma reflection would take

place at the crest of the wave and little benefit accrues from the maintenance of a strong

field behind the crest. For this reason, and to avoid overheating of the terminating

resistors, the low-capacitance system of Fig. XI-32 has been employed in all experi-

ments thus far. The slight loss of peak field is easily compensated by increase of the

driving voltage.

5. Apparatus Note

One of the key elements in a high-voltage, high-current system is the main power

switch. A rather simple design, based on a suggestion by E. Thompson, has been built

and found to operate in exemplary fashion. The switch, a three-element overvolted gap,

Fig. XI-33. Sketch of three-element spark gap.
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is sketched in Fig. XI-33. When driven by a 10-kv positive signal on the trigger elec-

trode, the gap may be adjusted to operate over a series of overlapping ranges between
2-10 kv and 12-30 kv with time delays less than 1 lisec and very small jitter. It has been
fired over 5000 times at currents up to 45 kA with no sign of electrode wear.

6. Experimental Results

The interaction of the traveling wave with the hollow-cathode generated plasma is
being studied with pendula, photocells, magnetic loops, and electrostatic probes. Pre-
liminary experiments have thus far failed to show the presence of accelerated ions,

although there is no doubt that a very strong anadiabatic interaction of some sort is
taking place. At the time of the pulse, the light output of the plasma increases by sev-
eral orders of magnitude, there are large fluctuations in the current and voltage of the
arc, and there is evidence that large numbers of electrons are being heated to energies
of at least a kilovolt. Results of the more detailed experiments now taking place will
be published later.

L. M. Lidsky
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