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A. NEGATIVE CONDUCTIVITY

Investigation of the conditions for a plasma to exhibit negative conductivity1 in the

presence of a magnetic field has been continued. Previously the conductivity of a weak

plasma, solved from the Boltzmann equation by the standard perturbation method,2 led

to the absorption coefficient in the presence of a magnetic field

a 4 dv t, b,  Of cosO VI 8f af
-6T ' vdv,'n(w,w~v b (1)

2 0 voo 8v av± v av uw m

where

9 (w, Wb, ) is the emission of a single particle in the plasma.

f is the unperturbed distribution function.

c is the velocity of light.

o is the angle of propagation with respect to the magnetic field.

vI is the particle velocity component along the magnetic field

v± is the particle velocity component perpendicular to the magnetic field.

The term f cos arises from the interaction of the zeroth-order par-
8 v1  

8v c

ticle velocity with the magnetic field of the propagating plane wave whose angular fre -

quency is w. Previously the consideration of negative conductivity was limited to a

discussion of the absorption coefficient for an isotropic but non-Maxwellian velocity dis-

tribution. Under these circumstances, this term is zero. We now examine the effect

of the inclusion of this term in detail when the particles are considered to be nonrela-

tivistic, and we also infer the effect on its inclusion when the effect of relativistic mass

change is included in the search for negative conductivity.

This work was supported in part by the Atomic Energy Commission under Contract
AT(30-1)1842; in part by the Air Force Cambridge Research Center under Contract
AF-19(604)-5992; and in part by the National Science Foundation (Grant G-9330).
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A further word about the motivation of this calculation which was considered by

Sagdeev and Shafranov 3 but in a different light than we do now. Recently, Chow and

Pantell 4 have reported both amplification and oscillation at the cyclotron frequency in

a configuration in which they employed a high-energy electron beam drifting in a wave-

guide. The beam energy was approximately 3000 volts and most of its energy was in

the direction transverse to the magnetic field. The gain mechanism was explained by

the consideration of the interaction of the ac magnetic field of a uniform plane wave upon

the motion of the beam electrons. In this report we investigate the Chow-Pantell

"fast-wave" amplification mechanism, using the equation for the absorption coef-

ficient.

To simulate the distribution function of electron beam, we use

= f exp 2 e xp
n ( 2  22 2vI 2 2v 2

r2rv1 y

2 2
where v 1 , viH are the mean-square thermal velocities in the transverse and longitudinal

directions, respectively, and vl , I are the mean or drift velocities of the beam or

plasma electrons in the transverse and longitudinal directions. An electron beam will

be described as

v_ >> v2 and v > v

The emission of a collisionless plasma is given by

Kev 2 2 w- kv,, cos 0

E-- (1+ cos O) - - 1 ,
o b /

where K is a constant, and k = o/c. Using these quantities in Eq. 1, we obtain

4 2 2 00 3
16r c (+cos 0) Ke 3 dv

a =Ke fv dv

w mE

20 v + vl cos 0 I  -kV cos
d -r f+ c 6 2]- . (2)
oo 2 c 2 b

v1i cos 0
The term c is always negligible as compared with unity, and so we have dropped

it from the integral in this context.

The integral over v,, may be performed for propagation angles less than 900 to obtain
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00 3 ( 1+B)-v
a = + A v f dv (3)

Here, for compactness, we have defined

16 Tc (1+cos2 ) 0)b wb 2
A =n eK b exp - -v, / 2

2mE k cos 01 k cos

and

-vil 2

k cos 0 v1 Ic s 01.

c 2
VII

We now perform the integration on vi to find in two limiting, but not too restrictive,

cases.

Case I: , = 0

In this case, in order to conserve particles, we must multiply the distribution func-

tion by 2, and integrate to find

(-2) 3/2 21/2
a =A(+B) v F (5/2)

2
Vx

Since A is always positive, gain can only be obtained if B < - 1. This can occur if

b2W b -W VII
+ v1 > x c,

k cos 0 2

a condition that can only occur when the thermal spread along the magnetic field is very

small compared with that transverse to it, for the quantity on the left of the inequality

may be several times the longitudinal thermal velocity (otherwise A becomes negligibly

small). If we set the left-hand side of this inequality equal to V v , then we have the

condition for gain (negative a ):

2 -2v >c v . (4)

As an example, let the temperature in the longitudinal direction be 0. 01 ev; then

the transverse temperature should be approximately 100 ev. A longitudinal energy of

1 ev requires a transverse temperature of approximately 1000 ev. We expect that under
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these conditions relativistic effects should have been included.

Case II: V >>VI

The integration yields, to a very good approximation,

16T 4 (1+cos2 ) Ke (wb/k)c w -w

2 2  k cos 0
w mE 2 Trv

2

X- 2 v exp -- v /2v, . (5)

This yields gain if

ob-_ VI, cos O
Wb-> V 1 Cos (6)

w c

which might be called a "slippage" condition.

Recall that in the derivation of Eq. 5 we considered that the propagation direction
-2

did not include 0 = w/2. In fact, when 0 . - 2 I we must take into account relativistic
c

effects in the delta function. That is, we must replace wb with wb 1- 2 , and
oj c

2

complications result. In the first place, if we assume that-- <<-cos 0 and retain the
2c 2  c

relativistic effect in the transverse energy, we find that over a wide range of thermal

energy in the longitudinal direction the dominant effect is not the relativistic term but

the interaction with the ac magnetic field. An estimate of this range may be obtained

from the width in v. of the result of integrating Eq. 2 on vii . That is, the factor

w-w b 1- 2

exp - 2c - ,/2vl
k cos 0

should have a smaller width than that of f_ for the variation of the former with v. to be

important during the secnod integration. This yields the condition

(- 22 2
vI> 8vl c cos 0 (7)

which if it is satisfied means that relativistic effects must be included. We see that
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condition (4) implies that we must include relativistic effects when considering gain in

Case I.

Calculation of the gain in Case II as given by Eq. 7 is under way and will be compared

with the data of Chow and Pantell.

S. Gruber
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B. ELECTRON TEMPERATURE DECAY IN HELIUM PLASMA AFTERGLOW

The transient microwave radiation pyrometerl with the modifications described below

has been used to study the build-up and decay of the electron radiation temperature 2 in

a pulsed gas discharge in helium gas.

The modifications are: a lower pulse frequency (200 sec-1 instead of 1000 sec-

and a provision to alter this rate with a minimum of difficulty; discharge current pulses

variable from 5 psec to 1250 psec in duration instead of only 200-300 4sec; discharge

current amplitude variable from 5 ma to 1200 ma instead of a maximum of 300 ma; and

provision for measuring the radiation temperature throughout the whole of the build-up

and decay of the plasma, instead of only the period beginning 2 Isec after the termina-

tion of the discharge current. These modifications were intended to eliminate transients

in the discharge caused by breakdown, to investigate these transients, and to better

determine the initial conditions of the afterglow period.

The first observations were of the temperature of the developing discharge as a func -

tion of time. The general features for 2. 45 mm pressure and a 1. 3-cm diameter dis-

charge tube are:

(a) A very high temperature (~50, 000o) is initially observed which drops to a mini-

mum (~15, 000 ° ) at 200-300 isec, and then increases sometimes oscillating before

settling down at approximately 500 psec (~26, 000 ° ) .

(b) When temperature decay was observed with a pulse length between 200-300 1sec

the temperature actually increased before decaying; this indicates that the temperature

oscillations are probably caused by moving temperature gradients.

(c) The actual leveling-off of the temperature at 500 psec refers to a point at which
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the discharge characteristics are no longer repeatable from pulse to pulse so that fluc -
tuating phenomena will average to zero. Observations of the density fluctuations indicate

that the amplitude of the fluctuations is just as large in the nonrepeatable region.

These density gradients were observed visually, and by detecting the power reflected

from the discharge from a 7500-mc source incident normal to the discharge tube. For

short duration discharge pulses, the areas of brightness appeared to be at fixed positions

in the tube, probably near the point where they were at the instant of termination of the

discharge. These positions moved toward the cathode as the pulse was lengthened. We

take this as an indication that these temperature and density gradients are moving from

anode to cathode.

Other temperature -decay measurements were made to supplement earlier measure-

ments.1 Investigation of these curves (old and new data) showed that for low electron

densities the temperature in the late afterglow decayed exponentially with time with a

time constant that agreed fairly well with the diffusion time for helium metastables over

the pressure range 0. 2-1 mm.3

These equations govern the helium afterglow (we assume only ambipolar diffusion

loss for electrons):

dn n
e e 

(
dt e

dn nm - - nn V , (2)
7 se e m

dt m

dT bn T1/2(T-TG)
e T1/2(TT) ee e 2dt (T-TG) 2  + - n E V + H (3)

dt e e 3k se m m
e

where

n = metastable density
ne = electron density

T = electron temperature

TG = gas temperature

v = electron average velocity

T , T = metastable and electron volume loss time constantsm e
a = proportionality factor for electron-atom collisions (constant Pc )

b = proportionality factor for electron-ion collisions (includes in (T 3/2 /n 1/Z
e e

factor)

k = 1. 38 X 10- 2 3 joules/deg. K
se = cross section for superelastic collisions

Em = energy released in superelastic collision (~20 ev)
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H = other heating phenomena.

The initial metastable density nmo is given by

6N n
o eo

n = (4)mo 1
(6+o- v )n +-

se o) e0 -
mo

where 5 is the metastable production cross section averaged over the electron distri-

bution, and No is gas particle density.

If we neglect electron-ion collisions and assume only metastable heating, the asymp-

totic solution for the temperature when the metastable heating decreases more slowly

than the electron temperature would in the absence of heating is

2o- E
T= T + sem n

3ka m

and indeed the electron temperature will decay with the metastable time constant.

When the electron density becomes appreciable, the analysis is not so straightfor-

ward. In this case the equation is rewritten

1 dT bn T1/2(T-TG
= e +aT /2(T -T + e e e (5)m 2 dt e T 2

-E v T
3k se m e

All of the quantities on the right are determined either from the temperature-decay

curve or from independent measurements, and thus the metastable decay can be calcu-

lated. This decay is then compared with the decay predicted from Eq. 2. The agree-

ment is encouraging, but the analysis is still not complete. Better measurements of

n are awaited.
e +

The heating resulting from He + He -- He 2 + e should also be considered, since

calculations show that it could contribute significantly to the heating. This term would

have the form

pn
H oC --- ,n

e

where

p = gas pressure,

n = density of excited helium states of sufficient energy to participate in the

reaction.

Calculations at 1-mm pressure gave surprisingly good agreement between the ini-

tial metastable density calculated by Eq. 4 and the metastable density calculated from
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Eq. 5 and extrapolated to time zero. This is actually an independent check on the super-

elastic heating assumption, since 5 of Eq. 4 does not enter into Eq. 5.

We see that the apparently correct temperature decay for the electrons observed at

low pressures4 may well have been a real observation, since there are pressures for

which the asymptotic decay will be the "unheated" form rather than the "heated" form.

This is encouraging, since the heavier noble gases that will be investigated with

slower energy decay times may have a larger range of pressure over which the

"unheated" decay is the asymptotic form.
J. C. Ingraham
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C. ELECTRON ENERGIES FROM THE LANGEVIN EQUATION

Allis I has derived expressions for the instantaneous drift and total energies of an

assembly of electrons from the Langevin equation. The case for a uniform applied mag-

netic field and a single component of ac electric field perpendicular to the magnetic field

was solved. In this report these results have been extended to include the contributions

of all three ac components plus a dc component of electric field parallel to the magnetic

field.

The computation is long and tedious, principally because only the real part of the

complex drift velocity must be squared to obtain the drift energy. All phase angles

appear explicitly. Therefore we shall sketch only enough of the derivation to define the

notation and state the results corresponding to Allis' Eqs. (12. 8) and (16. 4) for the drift

and total energies.

The momentum and energy equations for a single electron are:

mv = -eE + eB X + mA(t) (1)

d 1 (2)u-d (1mv2 = -ef- V+ mA(t) - . (2)

dt\

Here, A(t) is the stochastic force caused by collisions with gas molecules. Take the

time average of the stochastic terms over several collision times to be
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mA(t) = -v (3myc d (3)

mA(t) V = -Xv (u-U) , (4)

where Vd is the instantaneous electron drift velocity, and u the instantaneous energy

(assumed not to change appreciably during the time of averaging), and U is the average

gas energy, vc is the collision frequency for momentum transfer, and X is the energy

loss parameter.

The velocity of an electron is

V= V + Vd =v + (o+V7 ), (5)r d r o ac

where V is the random velocity, Vd the drift velocity that splits into a steady part v,
r do

and an alternating part Vac. Similarly, the energy is the sum of the random plus drift

energies

1 2 1 2
u = Ur + ud 2 mvr +-2mv d  (6)

Taking the ensemble averages of Eqs. 1 and 2 over many electrons at time t and setting

the ensemble averages of the stochastic terms equal to the time averages of Eqs. 3 and

4, we eliminate the random velocity.

my d = -eE + eB X Vd - cm d  (7)

u = -eE Vd - Xvc(u- U) . (8)

Equation 7 can be sloved for the steady-state drift velocity, by using complex

notation:

E(t) = E + Ea(t)0 ac

B = i3B, Wb = eB/m

v = -I Eac = 1 exp [j(wt+ 1 )] + i2 v2 exp [j(t+ 2 )] + i 3 v 3 exp [j(wt+ 3)]

0 = -E = i3Vo = -1io E

E 2
The E i and v. are all real. Let 5 = 52 - 61 and E = E be a measure of the ellipticity

1 2 1E

of the electric polarization in the transverse plane. Right circular polarization, which

is responsible for electron resonance, occurs for 6 = -2, E = 1. The ac mobility tensor
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has been given by Allis,1 but we shall write it in a different form, making the phase

angles explicit:

IT e

i e

-EL e

XT e

0

0

l e

where

e o
11T = m

e Wb

m 0r p

e

mR2

e
0o m

tan T =

2
r

2 2
c b

V2 + (o+ob2

2
v

c

222

v (v +w+Wb)

v

tan -

t b

tan = -

(2w- b )

V +c - b
c b

The real drift velocity is

Vd = 1 [E cos (wt+6 1-,-) - IE 2 cos (wt+6 2 -) ] I

(10)+ 2 [-IE1 cos (wt+6 1 -4 ) + 1LTE2 cos (wt+6 2 -T)]

+ i3 [1o0E o +lE 3 cos (wt+6 3 - l11)] .

The drift energy may be written

(9)

2+co
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1 2 1 2 1 2
u (t) (t) + u (t) m(v +V ) -my + my - +- mv

dt)= Uo(t)+ Uact) 2 o m(oac 2 o o ac 2 ac

= u + u cos (wt- ') + ac + u cos 2(ct-i)
o o 1 ac C 2o-I

where

1 2+m . =
u (t) = -m + my =
o 2 o o ac o

1 2
o o

U = my v V
oUm o

+ u
Oil

+ ul, cos 2( t- I ),

cos (t- %1 )

2
e 2

= e E

2m 2 o
c

e 2 E EoE3

3 m
c o

1 2
Uac(t) =-mv = Ua + u1 cos 2(t- I ) + Uilac 2 ac ac I

(1+E ) - 4 ww b E sin 6

2 2
r I

cos 2(wt-,' I )

2 2
e E 3

+ 3

4mQ2

(11)

(12a)

(12b)

(12c)

(12d)

(12e)

2
e

UI-
4m

[ 2 2 2 2

b

[( 2 ) 2 2

C b'

- 40 Wb]1

[(1+E ) -4E2 sin 6]
1/2 2

E 1
(12f)

2 2
+ 4v 2b

2 2
1 2 3u , =-my 3 =
4 4mQ2

tan 241

2wv
c

2 2 2
v + o b - w

c

2
E sin 26

21 + E cos 26

(1 2g)

(12h)
2wv 2

c E sin 261+
2 2 2 2

v +w - 1 + E cos 26
c b

(12i), = , - 63 .

Equations 11 and 12 reduce to Allis' Eq. (12. 8) when Eo = E 3 = E = 6 = 0.

To integrate Eq. 8 for u(t), we must first determine the power input from -eE v d

using the real parts of E and vd. The result is

89

1 2 2)

e2
ac 42 ru =

ac 4m
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-eE(t) Vd(t) = 2 V Ud(t) - m [ac(t)+Vo]
cd ac 4 ac 0 (13)

where T = 2Tr/w is the period of the ac field. The second term on the right is the reactive

power, stored as electron kinetic energy. The reactive power was omitted by Allis.

Equation 13 is substituted in (8) and we revert to complex variables to solve

u + \v (u-U) = 2v (U +ac ) + 2ui(vc+j) exp [2j(wt-4i)]C c ac o II

+ 2u,, (vc+j ) exp [2j(wt-' )] + uo (2v +jw) exp [j(wt-' )]i (Vc nh cf (14)

Let u -U = A + BI exp [2j(wt-) ep [(wt-, )] + C exp [j(wt-,' I )] and solve for
the coefficients, then

iI + 2i dA= 2 ac o d

X X
(15a)

2u I (Vc+jW)
B =

(Xvc+2jw)

ull
B1 = B

1l~u BI

u (2v +jW)
C = +

(Xv +jc)

2
2uI c - 2j
X= e

X 2 2)

2u
011

A
( 2

4v - jio
e

1+ )
C)

tan 2
I v

c

(2- k)

2w2w 2
2X+ 2
c

w (2- k)
tan oill

2v 2

2v

c

(15b)

(15c)

(15d)

2w
v

c

1

2

Vc

(15e)

Vcc

1

2

2v2
c

(15f)
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Finally, we express the real energy in the form of Allis' Eq. (16. 4) as

2Ud I aI cos 2(wt-4 -i) + a, cos 2(wt-t-, )

( 1 + 4 ) ( + 9 )
cX2 V 2 Vc

a os (t- -
a+ I ' Q __ (16)

+ 2 2

U U: U
where a -, a = - and a - . Equation 16 reduces to Allis' Eq. (16. 4), when

ud Ud ud
E = E = E = 6 = 0 and the reactive )ower is omitted. Reactive power can be neglected

in (15) and (16) by neglecting w/ve as compared with 1 but not w/\v , regardless of the

actual value of w/v •
C. D. Buntschuh
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D. HARMONICS OF ELECTRON-CYCLOTRON EMISSION FROM LOW AND

INTERMEDIATE PRESSURE DISCHARGES

An increase in the radiation at the electron-cyclotron harmonic frequencies has been

observed in the microwave emission from the positive column of a low-pressure, high-

current, mercury-vapor discharge immersed in a magnetic field,1 in which the degree

of ionization was less than 0. 1 per cent. Similar emissions have been observed in inter-

mediate pressure argon and helium discharges of low ionization and in a low-pressure

fully ionized argon arc.

The discharge experiments at the intermediate pressures were perfofYned with the

same equipment used in the earlier low-pressure mercury experiments. The plasma

frequency was greater than or equal to the measuring frequency. The collision fre-

quency was estimated to be in the range 0. 02 < v/w < 0. 2. The amplitudes and shapes

of the harmonics were studied in argon as functions of discharge currents, pressure,

and measuring frequency.



(X. PLASMA PHYSICS)
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1 9

1 .70
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MAGNETIC FIELD (L L)

Power radiated from the positive column as a function of the
axial magnetic field. Discharge current, 1 amp; argon pressure
in discharge, 0. 6 mm Hg; measuring frequency, 2980 mc.

Under suitable conditions (see below), three or four harmonics other than the first

or fundamental were observed. The amplitude of successive harmonics decreased until

the higher harmonics were not distinguishable from the background emission. (See

Fig. X-l.)

The low-pressure argon arc experiments were conducted with the vacuum are facil-

ity. In these experiments, the arc current was varied from 3. 5 amps to 20 amps. The

argon gas pressure was held constant at several microns of mercury. The ratio of the

collision frequency to the observation frequency, w, was approximately 5 X 10 . The

magnetic field was varied from 95 gauss to 1500 gauss. An X-band radiometer was

employed to measure the radiation at 9000 mc within a narrow frequency band 8 mc

wide. An X-band horn received the radiation from a four-inch length of the arc. The

horn was oriented to receive radiation propagating at right angles to the applied mag-

netic field.

The second through the tenth harmonics were observed in the arc experiments. The

magnetic field could not be increased sufficiently to observe the first or fundamental

harmonic. The amplitudes of the harmonics relative to the background emission do not

I . r0
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Fig. X-2. Power radiated from a 4-inch section of the argon arc as a function
of the axial magnetic field at arc currents of 4 and 20 amps, argon
pressure 2 microns of Hg, and a measuring frequency of 9037 mc/s.

decrease with increasing harmonic number. In most cases the second and third har-

monics are less pronounced than the higher harmonics. (See Fig. X-2. )

1. Dependence on Discharge Current

In the intermediate-pressure experiments the harmonics appear at discharge cur-

rents of 0. 4-0. 6 amperes. The amplitude of the harmonics remains approximately con-

stant for currents in the range 0. 7 -1. 0 amps; no measurements could be made at higher

currents.

In the arc experiments, the amplitudes of the harmonics were approximately con-

stant over the range 4. 0-20. O0 amperes. Figure X-2 shows the emission at 4 amps and

at 20 amperes. The background emission is greater for an arc current of 20 amps than

for a current of 4 amps because of the larger electron temperature at higher currents.

It appears in both the intermediate-pressure experiments and the arc experiments

that once the electron density is high enough, the harmonics are not strongly dependent

on the density.

3 rd 4 AMPERES

20 AMPERES

0.10
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Fig. X-3. Characteristics of the second harmonic as a function of measuring

frequency. The angle of propagation is 0 = sin- 1 w /; discharge

current, 1 amp; discharge pressure, 0. 6 mm Hg in argon. (a) Ampli-

tude of second harmonic relative to the background, P 2 /Po0 . (b) Rela-

tive area under harmonic, estimated as A - (P 2 /Po). A is the width of

the harmonic at 3/4 amplitude.

,,
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2. Pressure Dependence in the Intermediate-Pressure Discharges

The amplitude and shape of the harmonics was found to be independent of pressure

in the range 0. 3-0. 8 mm Hg. The electron-neutral collision frequency has been esti-

mated to vary by a factor of two in this region, so that the peaks are not predominantly

pressure -broadened.

As the pressure is increased to 2 mm Hg, the harmonics decrease in amplitude and

disappear into the background. The widths of the peaks remain about the same as in the

lower pressure region.

At pressures below ~ 0. 3 mm Hg, the harmonics are obscured by an increase in the

background radiation.

3. Frequency Dependence in the Intermediate -Pressure Discharges

The amplitudes and shapes of the harmonics were also studied as a function of the

measuring frequency. Because the plasma is in a waveguide, the angle of propagation

of the radiation relative to the waveguide axis (and hence the magnetic field) changes

with the frequency. If we is the cutoff frequency of the waveguide, the angle of propa-

gation is 0 = sin-1W /.
c

In these experiments the ratio of the plasma frequency to the measuring frequency

changes. It is believed, however, that the observed changes in the characteristics of

the harmonics are primarily due to the change in angle of propagation. The frequency

was varied between 2300 me and 3800 me, corresponding to angles of propagation between

between 650 and 330

We found that the amplitude of a given harmonic remained approximately constant

relative to the background amplitude. That is, the amplitude of the harmonic divided

by the amplitude of the background is roughly independent of the measuring frequency.

(See Fig. X-3a.)

For frequencies above 3500 me, the amplitude of the background drops. The plasma

is considered to become transparent in this region. In the frequency region studied,

the power drops by a factor of two, but the amplitude of a given harmonic relative to the

background is still about the same as in the lower frequency region.

We also found that as the frequency was lowered (and the angle of propagation

increased), the peaks broadened, so that the power in a given peak increased relative

to the background. (See Fig. X-3b. )

4. Increased Background

For magnetic fields higher than some critical field, the background radiation from

the plasma was found to increase. In the intermediate-pressure experiments this

increase amounted to approximately 20 per cent. In the low-pressure arc experiments

this increase was from 20 to 100 per cent in different cases. The transition from the
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Fig. X-4. Power radiated from a 4-inch section of the argon arc as a function of
the axial magnetic field, showing a region of increased background radi-
ation and an increased third harmonic. Arc current, 5. 5 amps; argon
pressure, 2 p. Hg; measuring frequency, 9037 mc.

normal background to this increased background occurs very rapidly within a magnetic

field change of approximately 3 per cent.

When the pressure in a 1-amp argon discharge is lowered to approximately 0. 3 mm

Hg, this transition occurs in the vicinity of the second harmonic. For lower pressures,

the harmonics are obscured by the increase in background, although apparently still

present.

We found that if the pressure was increased at a constant discharge current, the

transition moved to higher magnetic fields. When the pressure is held constant and the

discharge current decreased, the transition again moves to higher magnetic fields.

Since in the first case the electron density is increased and the electron temperature is

lowered, the increased background radiation appears to depend on the electron temper-

ature rather than on the electron density.

Figure X-4 shows the increase in the background radiation from the argon arc oper-

ating at 5. 5 amperes. This occurs over a range of magnetic fields spanning the third

and fourth harmonics.
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Fig. X-5. Power radiated from a 4 -inch section of argon are at
the third harmonic of the electron cyclotron frequency
for various values of are current. Argon pressure,
2 p. Hg; measuring frequency, 9037 me.

Figure X-5 shows the power radiated at the third harmonic at various values of are

current, from 3. 5 to 20 amperes. At 3. 5 amps the increase in the background radiation

obscures the third harmonic. At 5 amps the transition region has moved to lower mag-

netic fields (higher harmonic number at fixed measuring frequency) and the situation

is as previously shown in Fig. X-4. As the are current is further increased, the

background returns to normal. It is interesting to note that the size of the har-

monic is much greater in the increased background region than in the normal back-

ground region.

The harmonics are still not understood. We may, however, rule out several

possibilities.

The electron energy is too low for the harmonics to arise from relativistic electron

velocities.
velocities.
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At the intermediate pressures, the electron drift velocity is small compared with

the random velocity, and the distribution function must be almost isotropic. The har-

monics are therefore not due to instabilities arising from anisotropic electron pressure,

nor from an interaction between fast electrons and the plasma.

The voltage-current characteristics of the plasma indicate that we are outside the

Lehnert-Kadomtsev instability.2, 3

The electron distribution function has not been measured in the argon discharges,

but measurements in the mercury discharges used in the earlier experiments1 indicate

that it is non-Maxwellian. Measurements are planned for the study of the harmonics

in the afterglow of a pulsed discharge, in which the distribution will rapidly approach

Maxwellian.

E. B. Hooper, Jr., J. D. Coccoli, G. Bekefi
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E. ONE-MEGACYCLE BRIDGE FOR PLASMA MEASUREMENTS

A 1-mc bridge capable of measuring plasma conductivity has previously been

reported. The bridge is used in measuring the impedance of a coil with a cylindrical

plasma column coaxially located, and has a sensitivity of better than 1 part in 108

Periodic attempts were made to correlate bridge measurements with theoretical pre-

dictions and the results were always negative. A recent review of the problem indicated

that the trouble was connected with the means in which the rf fields of the coil were

coupled to the plasma.

The coil is wound with 36 turns on a bobbin that is 3 5/8 inches diameter and

10 inches long. The intent of the physical arrangement is to couple the 1 -mc solenoidal

E field to the plasma column from which one can predict the interaction. The conserv-

ative electric field of the coil, however, can be comparable to the solenoidal field, and

careful shielding techniques must be used. In effect, the shields must completely elim-

inate capacitive coupling of the coil to the plasma but retain the inductive coupling. The

previous scheme of having axial brass strips located between the coil and the plasma and

properly grounded was insufficient to completely eliminate the capacitive coupling.

The scheme that has now been adopted is to use a thin conducting cylinder coaxial

with and between the coil and the plasma column. This cylinder will act as a perfect

electrostatic shield, and will not perturb the magnetic field as long as the skin-depth
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at 1 mc is large compared with the thickness of the cylinder wall. The shield was made

by painting a glass cylinder with an Aquadag solution and increasing the thickness of the

layer until the desired results were obtained. An additional scheme was used to increase

the axial conductivity of the cylinder over that of the azimuthal conductivity by imbedding

thin axial aluminum strips in the Aquadag paint. Grounding one end of the cylinder thus

insured that the whole cylinder was at rf ground potential.

Preliminary measurements were made on the positive column of a dc discharge,

DC DISCHARGE
ARGON, p = 2.6 MM
1. =MA-dJ

AR
wL

AwL
L

0 0
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Fig. X-6. Impedance changes measured on 1-mc bridge.
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1. 5 inches in diameter, and at a neutral pressure of argon at 2. 6 mm Hg. If one

assumes that the radial dependence of the plasma density is a zero-order Bessel func-

tion, the effective change in the resistance of the coil caused by the presence of the

plasma is given by

wv 2 2 B 2
2 4 c rf

AR = 0. 104 E w L R
o p p 2 2 I

v + rf

Here, the constant (0. 104) is obtained by averaging the density distribution over the field
2.

distribution, w2 is the plasma frequency on the axis of the column, L and R are the
p P P

length and radius of the plasma within the coil, vc is the collision frequency, and

B rf/Irf is the ratio of the rf magnetic field inside the coil to the rf current in the coil.

The change in reactance is given by a similar formula, so that AX/AR = o/v e
The bridge can measure small changes in impedance by virtue of modulating the

unknown quantity at 100 cps and using synchronous detection. Figure X-6 shows a plot

of AR and AX normalized to wL as a function of the percentage of modulation of the tube

current. The resistive part of the impedance change is seen to be sensibly linear, and

its slope is amazingly so within 25 per cent of the predicted value. The reactive part

of the impedance change, however, is too large and quite erratic. The ratio w1/v is

approximately 1000 and hence the plasma is practically all resistive. The nature of the

bridge circuit does mix up real and reactive impedance changes by rotating the measured

impedance by an angle 0 b, called the bridge angle. From the data, the angle appears

to be around 180, but calculations show it should be around 7'. This discrepancy is still

unaccounted for. The erratic behavior of the AX curve can be accounted for, since

small changes in the phase of the modulation cause a small fraction of the relatively

large resistive change to read in the reactive channel.

With the operation of the shielding techniques thus confirmed, we are now proceeding

with measurements on a plasma in a magnetic field near ion-cyclotron resonance.

D. R. Whitehouse, P. J. Freyheit
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F. DISPERSION RELATION FOR LONGITUDINAL PLASMA WAVES

The relations from which we shall start are Maxwell's curl equations and the zero

and first moments of the Boltzmann equation, or the continuity and momentum equations.
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V XE = -an/at (1)

V x = LJ + /at; J = e(r-F_) (2)
c

aN/at + V. F = 0 (3)

aF/1t + - V P [NE XB] = 0. (4)
m m

Here, the plus sign refers to electrons and the minus, to ions; F is the particle flux;

and N is the particle density. Equation 4 will be linearized by taking F x B = F X B o ,

where B is the constant applied magnetic field, and NE = N E, with N the undisturbed

(constant) particle density. For our purposes, it is sufficient to set P = NKT I

and to hold T constant. Under adiabatic conditions, the contribution of this pressure

term will be changed only by a factor of y, which is the ratio of specific heats.

All quantities are now allowed to vary as ej(; t - k . ) for example, F(r, t) =

k ej(tt-. ) et )S( , N(F, t) = No + N I e By using these quantities, Maxwell's curl

equations become

kX E= B=ck B, (5)

where k = w/c is the free-space wave number.

2-
-jk x B = PoJ + j w/c E (6)

or, with o = 1/Eoc

k/k 0 x cB + J/jEow E 0. (7)

The equation of continuity now becomes

wN 1 = (8)

or

k cN = k r. (9)
o 1

The momentum equation is given by

jwF - jkN 1 kT/m ± e/m (N o E +FX Bo) = 0 (10)

or
f-~ k NkT/m ± j eBo/m X = ±j eNo/mw E. (11)

We now define: FeBo/m = B B T P, and rewrite the pressure term on the

101
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left-hand side of (11) as

k/w N 1kT/m = k/k N1c kT/mc Z =/k NLc 6,

where 6 = kT/mc 2 . Equation 11 now becomes

r- 6Nc k/k - jp X F = ±j eNE/mw. (12)

It is convenient to rewrite the basic equations (5), (7), (9), and (12) in terms of a

vector refractive index, n = k/k . With this substitution, they become

n X E = cB (13)

SX cB + + E = 0 (14)
jE0 w

cN 1 = F (15)

eN E
- 6N c- j, X F = j (16)1mw16)

The elimination of the perturbation density N 1 between Eqs. 15 and 16 yields

eN E
F - i(n) 6 - j X = ±j m o(17)

Equation 17 can be written in a more useful form by setting J = ±e and E 0 =
eNe No 2 2 2 2joE and by defining o w and

m p p
Finally, we have the momentum equation in the following form:

S )  - 2 E (18)J -n(n-J) 6 - jp x J=-a co E.

Since Eq. 18 has the same form for ions and electrons, the ± subscripts will not

be included in our discussion.

Eliminating B in Maxwell's curl equations, Eqs. 13 and 14, yields the wave equation

for E.

2
(E E) + (1l-n ) EE + (C++) = 0. (19)

The momentum equation and the wave equation, Eqs. 18 and 19, are now separated

into components along the k vector (indicated by subscript k) and transverse to the k

vector (indicated by subscript t). The axes for the transverse components are chosen

in the directions of it and Pk x pt. The unit vectors in these directions are designated
A A
I and m, respectively. Note that pt = P sin 0 and Pk = p cos 0 (see Fig. X-7).

In Eq. 18 the P X J term becomes
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B
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Fig. X-7. Coordinate system.

A A APX J = (Pk t kk + J +J mm)
= tJmk - Pk mf + (PkJ-i tJk) m. (20)

In component form the momentum equation becomes

2 2 &
Jk - jp tJ - nSJk = -a EoEk (21a)

2J2 + jpkJm = -a EoE (21b)

- 2 E E (Zlc)

Jm J(k I-t k ) = -a oEm (21c)

The wave equation (19) becomes

EoEk + (J++J-)k = 0 (22a)

(1-n2) EoE + (J+-)t = 0 (22b)

Note that Eq. 22a, with which we shall obtain our dispersion relation, is the charge-

conservation equation: V + 8p/8t = 0. This follows from Maxwell's equations, or

from the particle continuity equations. In the latter case, substitution of Poisson's

equation gives V (Eo aE/at + J) = 0, which is (22a). Because of this, in the approx-

imation that follows, the only Maxwell equation that we shall use is Poisson's

equation.

103



(X. PLASMA PHYSICS)

The electromagnetic waves are eliminated by letting c - oo. Since this approxi-
2 22

mation implies that n2 = c /u2 o, where u is the phase velocity, Eq. 22b shows that

the transverse fields vanish, E t - 0. This can therefore be called the "longitudinal

approximation." Conversely, the longitudinal waves, called plasma waves, would be
2 2 2

eliminated by neglecting the pressure term n 5Jk in Eq. 21a, which implies that u2 > VT,

where VT = (KT/m)1/ 2 is the thermal velocity.

With the aid of the longitudinal approximation, (21b) and (21c) can be solved for J m
in terms of Jk" The resulting relation is

(23)S( 10 = _jptJk"
Jm 1- pk t k

Substitution of Eq. 23 in (21a) gives

2 2k a2
Jk(1-6n ) - pt /1-p = - a ok

(24)

(25)Jk [ ( 1- P2 ) - n26 (1-P 2) = a- 2(1-P) Ek

The charge -conservation equation, (22a), then becomes

2a Z (Ip O2 \
a+\1-0 cos O)1-

1-1p 2 1-P2 cos2 6

2 ( 2 COS2 0)
a \1-P3 cos 0/a-

EE k {
(1- -n 2 _ (1 - 2

cos 0

=0.

(26)

For E k * 0 and with the convenient substitutions, a2/6= A and (l-p2)/5(1-p2 cS 2 0)=

B, the dispersion relation is

A A
+ = 1,

2 2
B -n B_-n

and the particle-flux equations take the form:

eF k/oEk= -J oEk= A_/B n2

erf /E E J EE = -A /B - n
k ok k ok + +

Equation 27 has two

and plasma-ion waves.

be properly ascribed to

between the currents J+

of phase for the other.

(27)

(28a)

(28b)

solutions for n2 which are referred to as the plasma-electron

It is desirable to have a criterion by which these names can

the two waves, and such a criterion exists in the phase relation

and J_. The currents are in phase for one solution and out
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This relation can be easily demonstrated. The ratio of the electron and ion particle

flux is

_/F = -(A_/B_-n2) (B +-n2/A+), (29)

or, by use of the dispersion relation,

2
n - (B -A)

_/F = (30)
+ A+

2
The dispersion relation, when written as a quadratic in n , is

4 n 2 [(B -A+) + (B_-A_)] + (B+-A+)(B_-A_ ) - A A_ = 0. (31)

2 2 2
The two solutions for n are designated n 1 and n 2 . Therefore, the product of the

flux ratios for the two solutions is

(r /Fr) 1 (r_ /r+) = 1/A+ n n2 - (B+-A+) n + n2) + (B+-A+)2 (32)

22 2 2
Using the values of n 2 n2 and n2 + n 2 from the coefficients of Eq. 31, we find that

(F_ /F +) (F-/F+)2 = -A_/A+ = -T /T_. (33)

Therefore, when the particles or currents are in phase for one wave, they are out

of phase for the other. We call the plasma-electron wave the one for which the currents

are in phase and therefore the electrons and ions move in opposite directions. The

plasma-ion wave then has the opposite property, electrons and ions moving together as

they would in a sound wave. Equation 28 is used to determine this phase relationship.

The accompanying figure (Fig. X-8) shows the a 2, 1 plane divided into various

regions as described below. In each region a schematic polar plot of the phase velocity

N e
2 o

of the longitudinal waves is shown. The following definitions are used. a =
2

2 eB
p where 2 2 2 o

P, wherew = plasma frequency, a = a+ + a and; p = obi/w, where w b

U-)

cyclotron frequency. The resonance angles are 0R , the angles at which the phase veloc

ity goes to zero. They are determined by the equation

tan 2 0 = P2 1. (34)
R

The cutoff angle is 0 , the angle at which the phase velocity becomes infinite. For thise
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Fig. X-8. Polar phase velocity plots of longitudinal plasma

waves in the a2, 12 plane.
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angle the longitudinal waves couple to the electromagnetic waves. This angle is defined

by the relation

2 (a 
-

tan 0 = (35)
e (1-p 2)(1-2 - a 2 (1-P_

The regions of the a2 , 2 plane are designated by the commonly used numerical nota-

tion. The longitudinal waves are uncoupled from the electromagnetic waves in regions

(1, 3), (2, 4), (7, 9), (10), and (13), and coupling is present in regions (5), (6, 8), (11),

and (12). The following equations determine these regions.

The straight lines:

2 2 2
a 1, = 1, = 1

P+_ = m+/m_ - a 2 (1-m_ /m+), which subdivides regions (6, 8) and (11)

+P_ = m_/m+ - a 2(1-m+/m_ ), which subdivides region (12)

The hyperbola:

(-q2)( 1- 2- a2(1-P_ ) = 0.

In the polar plots the vertical line (0=0) is in the direction of the constant magnetic

field; the horizontal line (O=Tr/2) is at right angles to the field. Only one quadrant is

shown. The complete phase velocity surface is obtained by reflection about 0 = Tr/2 and

rotation about 0 = 0. Solid curves indicate that k /rk > 0, that is, ions and electrons in

phase; and dashed curves indicate that Fk /k < 0, that is, ions and electrons out of

phase. In order to improve resolution, the ratios T_ /T+ = 2 and m +/m_ = 3 were used

in the computations.

H. R. Radoski

G. COMMENTS ON PLASMA CONSTRICTION

In a previous report1 Magda Erickson developed from thermodynamic principles

a theory to explain an observed constriction in a plasma.2 The physical situation is as

follows. A plasma has applied to it a constant, uniform magnetic field. The plasma is

placed in a cylindrical microwave cavity that is excited so that an alternating electric

field is established transverse to the magnetic field. It is found that the plasma con-

stricts to a diameter that is such that the density of the plasma, or the plasma frequency,

depends on the value of the magnetic field and the applied frequency of the electric field.

For plane geometry, that is, for a plasma confined between two infinite parallel plates,
2 2 2

Magda Erickson obtained op = W - B' where p is the plasma frequency, and wB is
p B)pB
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the cyclotron frequency. For cylindrical geometry, that is, for a plasma confined in
2

a cylinder, the result was w = 2=(w-wB).
p B

The purpose of this report is to investigate this problem by using the transport equa-

tions and to show that Magda Erickson's results are easily obtained, although Ward's

comment 2 that "the cause of the constriction is still unknown" remains valid.

We shall use the continuity equation, the linearized momentum equation, and

Poisson's equation.

anl/at + v- Fr = 0 (1)

ar/at+ -- Vn + e/m nE +B X F = 0 (2)
m o

V E = 4re (n-n 1  (3)

Here, the plus sign refers to electrons, the minus, to ions; and wBT = eBo/mc, with

Bo = constant, applied magnetic field. The particle density is written n = n + n 1, where

n is the constant desnity, independent of space and time, and n 1 is the perturbed den-

sity (we have taken no = n . F is the particle flux vector, and, for simplicity, we

have written the pressure as nkT, where T is a constant temperature. In this report,

we shall assume that F is not a function of z, the direction of the constant magnetic

field, and that V X E 0.

Taking the divergence and the curl of Eq. 2 and using Poisson's equation, we obtain

the following relations:

2
S4Tre2n n

-/Bt + kT/mV n 1n V X F = 0 (4)
m T

avxF/at + B (V F) = 0. (5)

2
4"rn e

If we allow nl, F, and E to vary with time as e t and define w2 - , Eqs. 1,
m

4, and 5 combine to give the following relations for the spatial part of the perturbed

electron and ion densities.

2 2 2 2 - 2+
V n + -wB - w) n + w n =0 (6)m_ B_ p 1 p_ 1

kT+ 2 + 2 2 2

m B+ p 1 p+ 1

We shall not consider these equations in detail but simplify matters even more to
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see what essential information is contained in them.
+

We hold the ions stationary by letting m+ - oo; then n1 -0. We shall also consider2nT
the particular geometry of secondary importance, and neglect the kT/m_V 2 n1 terms.

The final Erickson results did not depend on temperature. We are left with the condition
2 2 2

W p_ - w , or if we define
p_ B_

2 _ 2 2 2 2 2
(. = a and OB = 
p B_

we obtain

2 = 2 - P2
a = ! -

In Table X-1 experimental results for cylindrical geometry and data calculated from

Erickson's formula for this geometry and from Eq. 9, which is her result for plane

geometry, are listed. The observed values of P and a2 were obtained from Erickson's

report.l The values of o2 (calculated) as previously determined have not been used in
2  P

obtaining a according to the Erickson formula. For the sake of comparison, we also

tabulate E = 100 X [a2(calculated) -

From the data of Table X-1 we

better, or at least as accurate, re

Table X-1.

a2(observed)Va 2 (observed).

conclude that the formula for the plane case gives

sults as that for the cylindrical case.

Data for plasma constriction.

2 2 2 2o obs cal =  cal

(gauss) (plane) (cylinder) (plane) (cylinder)

900 0. 8755 0. 2294 0. 2304 0. 2490 0.44 8. 54

920 0. 8949 0. 1927 0. 1992 0. 2102 3. 37 9. 08

940 0. 9144 0. 1438 0. 1639 0. 1712 13. 98 19. 05

960 0. 9339 0. 1254 0. 1228 0. 1322 -2.07 5.42

980 0. 9533 0. 1101 0. 0912 0. 0934 17. 17 -15. 17

2

Note that there is an innate difficulty in comparing'the two calculated values of a2

The ratio of the two values is a 2 (plane) /a 2 (cylinder) = (1+P)/2. All of the experimental

values of p were approximately 0. 9 and, therefore, the accuracy of the comparison

is poor.

As a final comment we shall consider the time rate of change of the total energy

density in the plasma, that is, the sum of the electric field energy density EF and the
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particle energy density E . We shall neglect temperature effects. We find that

d/dt E F = Re (joE2/8r) (11)

d/dt E = -(2/2 2) Re (jwE 2 /8r). (12)

The sum of Eqs. 11 and 12 is

d/dt (EF+E ) 1= (-w2 w -w2 ) Re (jwE 2 /8Tr). (13)

Hence, if we define the equilibrium condition as that for which the total energy den-

sity is a constant, Eq. 8 is obtained. This is not unexpected, for if we neglect the B
associated with E and dot E into Maxwell's curl B equation, we obtain a/at E2 /81T + E-J =
0, which is identical with Eq. 13.

H. R. Radoski

References

1. Magda Erickson, Electrostriction in plasmas, Quarterly Progress Report No. 57,
Research Laboratory of Electronics, M. I. T., April 15, 1960, pp. 15-20.

2. C. S. Ward, Anomalous constriction of low-pressure microwave discharges in
hydrogen, Quarterly Progress Report No. 55, Research Laboratory of Electronics,
M. I. T., October 15, 1959, pp. 5-8.

110


