
IX. NOISE IN ELECTRON DEVICES

Prof. H. A. Haus
Prof. P. L. Penfield, Jr.

Prof.
W. D.

R. P. Rafuse
Rummler

A. OPTIMUM NOISE PERFORMANCE OF MULTITERMINAL AMPLIFIERS

The problem to be considered is the optimization of the output signal-to-noise ratio

of a multiterminal pair linear noisy amplifier driven by a multiterminal pair linear noisy

source. We shall begin by making some assumptions about the properties of the source

and amplifier networks.

The source network (Fig. IX-1) has n terminal pairs and its terminal properties
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Fig. IX-1. Arbitrary lossless imbedding of source and amplifier networks.
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will be described on an impedance basis. It is characterized by an impedance matrix,

Z, and by the complex Fourier amplitudes of two sets of independent open-circuit volt-

ages, the source voltages and the noise voltages. The voltage sources are completely

characterized by their cross-power matrices1 EE and EE , where E is a column

vector of the complex amplitudes of the open-circuit noise voltages, En is the Hermitian

transpose of this vector, and the bar indicates an ensemble average. We use similar

definitions for the signal voltages; rms values will be used for voltage amplitudes

throughout this report. Both of the voltage matrices are positive definite or positive

semidefinite. We shall assume that the Hermitian part of the source impedance matrix

is positive definite. A positive definite impedance matrix implies that only a finite

amount of power may be extracted from the source.

The amplifier network (Fig. IX-l) will also be described on an impedance basis with

an impedance matrix Z a and an open-circuit noise voltage vector Ena The only require-

ment that we shall make for these quantities is that the characteristic noise matrix l

N= -- Z +Z a E ET
2 a a na na

have at least one positive eigenvalue. This is tantamount to assuming that the amplifier

network is an active network that is capable of providing power gain.

We now wish to drive this amplifier with the source network in the most general way.

To achieve this, we imbed the n-terminal pair source and the m-terminal pair amplifier

in an n + m + 1 terminal pair lossless network (Fig. IX-1) and ask for the best signal-

to-noise ratio that can be obtained at the single-output terminal pair. We require that

the m-terminal pair amplifier provide net gain.

The equations characterizing this combined network are:

V b = ZIb + E (1)

V=ZI +E (2)
a aa na

V Z aa Z ab Z -I -Ia aa ab ac a a

Vb Zba Zbb : Zbc -I b Tz - (3)

V Z " Zcb Z +I Ic ca cb cc c c

where ZT + Z = 0. Through algebraic manipulation we can obtain a relation involving

only Vc , Ic, and the sources, and from this we find the exchangeable power at the output

terminals which is due to all of the sources



(IX. NOISE IN ELECTRON DEVICES)

xtE E x +xtE Etx +x E x
1s s 1 1 n n 1 na na2 (4)

eo 2xt(Z+Zt)xl + 2xz(Za+Zta )x 2

where

t-1

aa ab ac
Sa ba bbJ Zbc

[L bbJL beI L2 J

Where, x1 is an n-dimensional vector and x 2 is an m-dimensional vector. Both of these

vectors may be varied arbitrarily by varying the lossless network.

From Eq. 4 we see that the signal power that is exchangeable at the output is

xt E Etx
p s 1 s s 1 , (5)

eo 2xI(Z+Zt) + 2x(Za+Za )X 2

and the ratio of the exchangeable signal power to the exchangeable noise power is

xE Ex

0o1 s s 1 (6)

xEEx +xE E x
IEnEx l +2 na nax2

The problem may now be restated in terms of Eqs. 5 and 6. We wish to vary x1 and x 2

(by varying the lossless network) to optimize (S/N)o and keep Peo constant. Gain will be

obtained by varying x 2 only through those values for which xt (Za+Z )x is negative.

Then, by adjusting only the relative lengths of the vectors x 1 and x2 , we may obtain any

negative values of PS and any positive values of PS for which

xtE Etx

eoo eP I
2x (\Z+Z,)x

1

Solving Eq. 5 for 2xt(Za+Za)x2 and multiplying and dividing the second term in the

denominator of Eq. 6 by this quantity, we obtain

xtE Etx

k1' (8)

xE Ex +1 n n I1
:t (Z+Z l - xtEsEtx

S s s
P eo
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in which, because of the preceding assumptions, both of the quantities in brackets

are positive. If we now begin our optimization by varying x 2 and holding xl and

Ps constant, we see that our constraints require that we vary xE Et x whileeo 2 na na 2

we keep x, Z +Z)a , at a constant negative value in order to have Ps con-2 a eo
stant. But this is just the problem of finding the stationary values of the quantity

-x 2 n a Et ax2/2x (Z+Z)x2. The stationary value of this quantity which gives the best

signal-to-noise ratio is the least positive stationary value, which, in turn, is the least

positive eigenvalue of the characteristic noise matrix, N = -1/2 Z +Zt)- E E . Wea a na na
(1)shall denote this eigenvalue by X1, and its corresponding eigenvector by x2 1)

Using this notation in Eq. 8, we have

xtE E t xs ss 1 (9)

oxntE Etx + X Zx(Z+Zt)x1  xt Estx
1 n n 1 ps tx s

eo

We may vary xt in a completely arbitrary fashion and keep 1 and PS constant. P

may be held constant by simultaneously varying the length of x2; these variations have

no effect on X1 . Then the stationary values of the signal-to-noise ratio are found to be

the eigenvalues i. of the equation

EE E' - E E + 2X Z+Zt) - E Et x 0. (10)
ss nn 1 ps s] 1

eo

Or, if we let

1+-
PSeo

then

EEx - L[E E + 2X1 (Z+Zi) x 0. (12)
ss n n 11

(i)The eigenvectors x1  of Eq. 12 are also eigenvectors of Eq. 10. Therefore, for each

eigenvalue ti there is a corresponding -i, which may be determined from 'i by use of

the equation

S= 1 (13)

1
PS
eo
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Fig. IX-2. Reduction of amplifier to a one-terminal pair device.
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Realization of the optimal network.
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We can show that the maximum signal-to-noise ratio, -l , corresponds to the largest

eigenvalue pl of Eq. 12, by taking the derivative of Eq. 13 with respect to p.. Since

do- 1 
(14)

(14)Ps
eo

ar is an increasing function of p. everywhere.

By referring to Eq. 13, we can make several statements concerning the optimum

noise performance of multiterminal pair amplifiers. If two amplifiers that have the

same best value k1 of their characteristic noise matrices are driven by the same posi-

tive definite source, and if under these conditions one of the amplifiers has a positive

output impedance (positive exchangeable power) and the other has a negative output

impedance (negative exchangeable power), then the best signal-to-noise ratio obtainable

with the latter cannot be better than that obtainable with the former.

Along these same lines, we can state that since large amounts of output power are

available only for large positive values of output exchangeable power or for negative

values of exchangeable power, the best signal-to-noise ratio that can be obtained at large

values of available output signal power is approximately p.1 , which is the largest eigen-

value of the matrix

E Et + 2X Z+Zt E Et
n n 1 s s

The foregoing optimization can be generalized somewhat to include more than one ampli-

fier and lossy imbeddings. In particular, it can be demonstrated that an arbitrary pas-

sive dissipative interconnection of any number of independently noisy amplifiers with a

given positive definite noisy source cannot produce a higher signal-to-noise ratio at large

values of available power than the optimal lossless connection of the best amplifier with

that source. This is most readily proved by regarding the imbedding network as a loss-

less interconnection of its canonic form with each of the amplifiers. We may then regard

all of the amplifiers and the set of noisy resistors arising from the canonic represen-

tation of the imbedding network as a new amplifier. This new amplifier has as the eigen-

values of its characteristic noise matrix all of the eigenvalues of the characteristic noise

matrices of each of the amplifiers and the resistors. Here, as before, we pick the least

positive one of these eigenvalues, which proves the statement made above.

Realization of the Optimal Network

The simplest realization of the optimal amplifying device may be derived in a

straightforward manner. We may reduce the amplifier to a one-terminal pair network

with a lossless network consisting of ideal gyrators and ideal transformers as shown in
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Fig. IX-2. If we adjust the gyrator coefficients so that G = x , where 2, is the n

element of the vector x 2( ) , we obtain the one-terminal pair amplifier shown in Fig. IX-3.
S ( 1 )

A similar reduction may be performed on the source network with G n = xl,n

The optimal network is then the series connection shown in Fig. IX-3. Its signal-to-

noise ratio at large values of available power is given by "1'
An optimal unilateral device may be obtained by using the reduced source and ampli-

fier networks shown in Fig. IX-3 in conjunction with an ideal lossless circulator.

W. D. Rummler
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