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Abstract—We introduce the Execution Migration 

Machine (EM2), a novel data-centric multicore 
memory system architecture based on computation 
migration. Unlike traditional distributed memory 
multicores, which rely on complex cache coherence 
protocols to move the data to the core where the 
computation is taking place, our scheme always 
moves the computation to the core where the data 
resides. By doing away with the cache coherence 
protocol, we are able to boost the effectiveness of 
per-core caches while drastically reducing hardware 
complexity. 

To evaluate the potential of EM2 architectures, 
we developed a series of PIN/Graphite-based models 
of an EM2 multicore with 64 x86 cores and, under 
some simplifying assumptions (a timing model 
restricted to data memory performance, no 
instruction cache modeling, high-bandwidth fixed-
latency interconnect allowing concurrent 
migrations), compared them against corresponding 
directory-based cache-coherent architecture models. 
We justify our assumptions and show that our 
conclusions are valid even if our assumptions are 
removed. Experimental results on a range of 
SPLASH-2 and PARSEC benchmarks indicate that 
EM2 can significantly improve per-core cache 
performance, decreasing overall miss rates by as 
much as 84% and reducing average memory latency 
by up to 58%.1 

I. INTRODUCTION 
In the last few years, the steady increases in processor 

performance obtainable from higher and higher clock 
frequencies have come to a dramatic halt: there is 
simply no cost-effective way to dissipate so much 
power. Instead, recent development has favored 
multicore parallelism: commodity processors with four 
or even eight cores on a single die have become 
common, and existing technology permits many more; 
indeed, general-purpose single-die multiprocessors with 
as many as 64 cores are already commercially 
available [1]. Even larger multicores have been built [2, 
3], and pundits confidently predict thousands of cores 
per die by the end of the decade [4]. Quite simply, 
multicores scale. 

 
1 Equal contributors. 

Designing a scalable memory subsystem for a 
multicore, however, remains a major concern. 
Increasing the number of concurrent threads requires a 
large aggregate memory bandwidth, but off-chip 
memory bandwidth is severely constrained by the 
number of pins on the package: a conundrum known as 
the off-chip memory bandwidth wall [4, 5]. To address 
this problem, multicores integrate large private and 
shared caches on chip: the hope is that large caches can 
hold the working sets of the active threads, thereby 
reducing the number of off-chip memory accesses. 
Private caches, however, require cache coherence, and 
shared caches do not scale beyond a few cores: even 
today, the large 32MB last-level cache in recent Intel® 
8-core processors is split physically into tiles distributed 
across the chip [6], and accessing remote cache lines is 
significantly slower than accessing local ones. 

Since shared caches do not scale, many private 
caches are the only practical option in large-scale 
multicores. In practice, this means some form of 
memory coherence, as the success of alternate 
programming paradigms based on exposing core-to-core 
communication to the programmer has been limited to 
scientific computing and other niches where 
performance or power considerations warrant the 
increased programming complexity. The key question, 
then, is: how can we provide the illusion of shared 
memory in a way that scales to thousands of cores? 

Bus-based cache coherence, which provides the 
illusion of a single, consistent memory space, clearly 
does not scale beyond a few cores. Directory-based 
cache coherence is not subject to the electrical 
limitations of buses, but requires complex states and 
protocols for efficiency even in today’s relatively small 
multicores. Worse yet, directory-based protocols can 
contribute significantly to the already costly delays of 
accessing off-chip memory because data replication 
limits the efficient use of cache resources. Finally, the 
area costs of keeping directory entries are a large 
burden: if most of the directory is kept in off-chip 
memory, accesses will be too slow, but if the directory 
is stored in a fast on-chip memory, evictions from the 
necessarily limited directory cause thrashing in the per-
core caches, also decreasing performance. 

Yet on-chip multicores provide a tremendous 
opportunity for optimization in the form of abundant 
interconnect bandwidth. Even existing electrical on-chip 
interconnect networks offer terabits per second of cross-
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section bandwidth [7] with latencies growing with the 
diameter of the network (i.e., as the square root of the 
core count in meshes), and emerging 3D interconnect 
technologies enable high-bandwidth, low-latency on-
chip networks [8]. Optical interconnect technology, 
which offers high point-to-point bandwidth at little 
latency and with low power, is fast approaching 
miniaturization comparable to silicon circuits, with 
complete ring lasers no larger than 20µm2 [9]; multicore 
architectures featuring an on-chip optical interconnect 
have been proposed [10, 11], but have so far been based 
on traditional cache-coherent memory architectures. 

In this manuscript, we take the view that future 
multicore architectures will feature thousands of 
computation cores and copious inter-core bandwidth. To 
take advantage of this, we propose to do away 
altogether with the latencies and implementation 
complexities of cache coherence protocols. Instead, we 
argue, each core should be responsible for caching a 
segment of the address space; when the thread running 
on a given core refers to an address resident in some 
other core, the computation itself must move by having 
the two cores swap execution contexts. Supported by 
extensive simulations running the SPLASH-2 and 
PARSEC benchmark suites on both our architecture and 
a traditional cache-coherence architecture with an 
equivalent interconnect network, we make the case that 
the complete absence of data sharing among caches, far 
from limiting performance, actually improves cache 
efficiency by evicting fewer cache lines on average and 
increasing the effective size of the combined on-chip 
cache. 

The novel contributions of this paper are: 
1. We introduce execution migration at the 

instruction level, a simple architecture that 
provides a coherent, sequentially consistent view 
of memory without the need for a cache coherence 
protocol. 

2. We evaluate our scheme on actual applications in 
a current x86-based shared memory system: our 
functional memory subsystem model is built on 
PIN/Graphite [12, 13] and runs a set of SPLASH-2 
[14] and PARSEC [15] benchmarks with the 
correct output. 

3. We show that, assuming a high-bandwidth, low-
latency interconnect, on-chip cache hierarchy miss 
rate under execution migration improves many-
fold (e.g., from 4.4% to 0.5% with 80KB of 
caches per core), and, as a result, average memory 
access latencies significantly improve (e.g., 16.5 
to 6 cycles/access with 80KB of caches per core). 

4. We describe how, provided a scalable 
interconnect network, EM2 elegantly scales to 
thousands of cores while significantly reducing 
silicon area compared to a traditional cache-
coherent design. 

The performance of EM2 is tightly coupled to 
available network resources and, given sufficiently large 
caches, a directory-based cache-coherent architecture 
outperforms EM2 on a low-performance, high-latency 
network even though it suffers more cache hierarchy 
misses. Table 1 shows the minimum cache sizes needed 
by an equivalent directory-based cache-coherent 
architecture to outperform EM2 on a few sample 
benchmarks. With a low-performance network (50-
cycle per-message latency), context migrations in EM2 
are expensive, and large per-core caches allow the cache 
coherent architecture to reduce main memory accesses 
and perform better; with a high-performance network 
(5-cycle per-message latency), however, the significant 
reduction in cache hierarchy misses in EM2 balances out 
the cost of context migrations and EM2 outperformed 
cache-coherent architecture with all of the cache sizes 
we tested. For example, the swaptions benchmark 
performed better under EM2 when caches were 32KB or 
less per core; on a high-performance network EM2 
always performed better. 

The remainder of this paper is organized as follows: 
Section II below reviews related research; in Section III 
we delineate the operation of execution migration, and 
in Section IV describe the effects and architectural 
tradeoffs versus directory-based cache coherence. 
Section V outlines our experimental methodology and 
Section VI compares real-world application 
performance of execution migration against a traditional 
cache-coherence scheme using a detailed architectural 
simulator. Section VII offers concluding remarks and 
outlines future research. 

 
Table 1: Per-core cache sizes at which EM2 
outperforms cache coherence for a low-performance 
interconnect network (packet latency of 50 cycles) and 
a high-performance network (packet latency of 5 
cycles). With a slow network, EM2 outperforms cache-
coherent designs only when small cache sizes combined 
with data sharing cause high miss rates in the latter, 
but with a fast network, EM2 performed better on all of 
the cache sizes we tested. 
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II. RELATED WORK 
A. Computation migration 
Migrating computation to the locus of the data is not 

itself a novel idea. Hector Garcia-Molina in 1984 
introduced the idea of moving processor to data in 
memory bound architectures [16]. In recent years 
migrating execution context has re-emerged in the 
context of single-chip multicores.  Michaud shows the 
benefits of using execution migration to improve the 
overall on-chip cache capacity and utilizes this for 
migrating selective sequential programs to improve 
performance [17]. Computation spreading [18] splits 
thread code into segments and assigns cores responsible 
for different segments, and execution is migrated to 
improve code locality. Kandemir presents a data 
migration algorithm to address the data placement 
problem in the presence of non-uniform memory 
accesses within a traditional cache coherence 
protocol [19]. This work attempts to find an optimal 
data placement for cache lines.  A compile-time 
program transformation based migration scheme is 
proposed in [20] that attempts to improve remote data 
access. Migration is used to move part of the current 
thread to the processor where the data resides, thus 
making the thread portion local. This work shows that 
computation migration puts far less stress on the 
network than shared memory counterpart. Our proposed 
execution migration machine is unique among the 
previous proposed works because we completely 
abandon data sharing (and therefore do away with cache 
coherence protocols). Instead, we propose to rely solely 
on execution migration to provide coherence and 
consistency. 

B. Data placement in distributed memories 
The paradigm for accessing data is critical to shared 

memory parallel systems; Table 2 shows the four 
possible configurations. Two of these (moving data to 
computation) have been explored in great depth with 
many years of research on cache coherence protocols. 
Recently several data-oriented approaches have been 
proposed to address the non-uniform access effects in 
traditional and hybrid cache coherent schemes. An OS-
assisted software approach is proposed in [21] to control 
the data placement on distributed caches by mapping 
virtual addresses to different cores at page granularity. 
When adding affinity bits to TLB, pages can be 
remapped at runtime [5, 21]. The CoG [22] page 
coloring scheme moves pages to the “center of gravity” 
to improve data placement. The O2 scheduler [23], an 
OS-level scheme for memory allocation and thread 
scheduling, improves memory performance in 
distributed-memory multicores by keeping threads and 
the data they use on the same core. 

Hardware page migration support was exploited in 

PageNUCA and Micro-Pages cache design to improve 
data placement [24, 25]. All these data placement 
techniques are proposed for traditional cache coherent 
or hybrid schemes. EM2 can only benefit from improved 
hardware or OS-assisted data placement schemes. 
Victim Replication [26] creates local replicas of data to 
reduce cache access latency, thereby, adding extra 
overhead to improve drawbacks of traditional cache 
coherence protocol. 

Execution migration not only enables EM2, but it has 
been shown to be an effective mechanism for other 
optimizations in multicore processor. [27] migrates the 
execution of critical sections to a powerful core for 
performance improvement. Core Salvaging [28] exploits 
inter-core redundancy to provide fault tolerance via 
execution migration. Thread motion [29] exchanges 
running threads to provide fine-grain power 
management. 

III. EM2: THE EXECUTION MIGRATION 
MACHINE 

The essence of traditional cache coherence in 
multicores is bringing data to the locus of the 
computation that is to be performed on it: when a 
memory instruction refers to an address that is not 
locally cached, the instruction stalls while the cache 
coherence protocol brings the data to the local cache 
and ensures that the address can be safely shared (for 
loads) or exclusively owned (for stores). Execution 
migration turns this notion on its head, bringing the 
computation to the locus of the data: when a memory 
instruction requests an address not cached by the current 
core, the execution context (current program counter, 
register values, etc.) moves to the core where the data is 
cached. 

In this scheme, the physical address space in the 
system is divided among the cores, for example by 
striping (see Figure 1), and each core is responsible for 
caching its region of the address space; thus, each 
address in the system is assigned to a unique core where 
it may be cached. (Note that this arrangement is 
independent of how the off-chip memory is accessed, 

 
Table 2: Different paradigms of distributing data and 
computation, and the resulting architectures.  
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and applies equally well to a system with one central 
memory controller and to a hypothetical system where 
each core has its own DRAM). When the processor 
executes a memory access for address A, it must 

1. compute the “home” core for A (e.g., by masking 
the appropriate bits); 

2. if the current core is the home, 
a. forward the request for A to the cache 

hierarchy (possibly resulting in a 
DRAM access); 

3. if the home is elsewhere, 
a. interrupt the execution of the current 

core (as for a precise exception), 
b. migrate the architectural state to the core 

that is home for A, 
c. resume execution on the new core, 

forwarding the request for A to its cache 
hierarchy (and potentially resulting in a 
DRAM access). 

Because each address can be accessed in at most one 
location, many operations that are complex in a 
traditional cache-coherent system become very simple: 
sequential consistency and memory coherence, for 
example, are trivially ensured, and locking reduces to 
preventing other threads from migrating to a specific 
core. 

This basic sketch intentionally leaves a broad range 
of design choices. For example, migration (step 3.b 
above) could preempt the execution on the target core or 
be subject to scheduling; similarly, the context currently 
executing on the target core could be either kept on the 
same core or transferred elsewhere. While we defer the 
question of the best precise migration algorithm to 
future research, we focused our investigation in this 
paper on two simple models: one where the two 
contexts are swapped, and another where the migrated 
thread simply moves to the destination core and shares 
the computational resources with the threads already 
present there (see Section V.D). Similarly, the questions 
of dividing the address space among the cores (step 1 
above) and finding the best assignment of virtual to 
physical addresses also potentially offer interesting 
tradeoffs; in this paper, we evaluated two simple 
striping schemes based on cache-line size and the 
operating system page size (see Section V.B). 

IV. DISCUSSION 
Although at first blush migrating the execution 

context on every memory access to a non-local region 
of memory might seem expensive, a careful analysis of 
a traditional directory-based cache coherence protocol, 
supported by experimental data, reveals that migration 
can in fact outperform cache coherence. 

A. Costs of directory-based cache coherence 
Last-level cache misses in a directory-based cache-

coherence scheme incur three significant costs: the 
latency of potentially retrieving the data from off-chip 
memory, the latencies associated with the directory 
protocol itself, and decreased cache effectiveness due to 
data sharing and directory size limits. For example, in a 
last-level cache miss under a simple MSI directory 
protocol, 

1. the last-level cache must contact the relevant 
directory; 

2. if A is not cached in the directory, the directory 
must (a) potentially evict another directory entry, 
contacting all sharers of that entry and waiting for 
their invalidate responses, and (b) retrieve the data 
for A from off-chip memory; 

3. if A is already in the directory and the request is for 
exclusive access, or if A is exclusively held by 
another core, the directory must contact all sharers 
and wait for their invalidate responses; 

4. finally, the directory must respond to the 
requesting cache with the cache line data for A. 

The communication cost and the latency of the off-
chip memory access, while significant, are dwarfed by 
the potential deleterious effect on private caches. When 
an already full directory services a request for a new 
address (step 2 above), it must replace an existing entry 
and invalidate its address in all processor caches even 
though the caches themselves did not need to evict the 
line. Perversely, growing the per-core caches (or adding 
more processors) without significantly increasing the 

 
Figure 1: Address-based cache distribution in EM². Each 
cache (left) is responsible for caching a specific, unique 
region of main memory (right). In our experiments, main 
memory is divided into 64-byte or 4KB blocks assigned to 
consecutive caches; the assignment wraps around and block 
N+1 is again assigned to the first core. 
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directory size only compounds the problem and 
increases the cache miss rate, as the larger caches hold 
more unique addresses and cause more directory 
evictions. Indeed, 6 of the 16 applications we tested 
suffered worse performance on a realistic cache-
coherent 64-core system when the per-core cache size 
increased. Figure 2 shows two examples of this effect: 
on both benchmarks, the number of cache hierarchy 
misses per memory access in the system increased when 
per-core caches grew beyond 48KB. 

The magnitude of this effect is application-dependent 
and the selection of an appropriate directory 
configuration is not straightforward; at worst, each 
directory may have to grow as much as all processor 
caches combined, clearly an unrealistic scenario. If 
directory limits can impede performance at 64 cores, 
what will we do when we get to 1,000 cores?  

In addition, directory-based cache-coherent 
multicores suffer from other secondary effects. Most 
directly, directory sizes needed to retain good 
performance—especially as core counts and cache 
capacities grow—use significant area and power, which 
could instead be allocated to more cores or larger 
caches. The complex cache and directory controller 
logic requires area and power as well as significant 
verification effort. At an architectural level, an 
implementation of directory-based cache coherence 

forms an intricate system with many complex 
interactions, making it difficult to reason about and 
evaluate design tradeoffs. 

In the end, all of these costs stem from one central 
feature of cache coherence: each cache line may be 
shared among many cores. This presents a significant 
opportunity, as eliminating sharing can result in 
improved performance, complexity, silicon area, and 
power. 

B. Performance of execution migration 
On most workloads, execution migration significantly 

improves memory performance: in our benchmarks 
simulating a realistic 64-core architecture with 5 
memory controllers and various per-core cache sizes on 
a high-performance on-chip interconnect (see Section 
V.B), the number of off-chip memory accesses in EM2 
decreased by 75%–89% relative to the cache coherent 
architecture. As shown in Figure 3, the improved 
memory performance is directly attributable to the 
significant reduction in last-level cache misses. In turn, 
this is caused by (a) a significant increase in effective 
cache capacity when compared to the cache-coherent 
architecture because each address is cached in at most 
one location, and (b) the consequent longer lifetime of 
cache lines in the absence of cache evictions caused by 
such external requests as exclusive-access requests from 
other cores or directory evictions. 

Critically, as the number of cores on a die grows, the 
performance advantage of execution migration 

 
Figure 2: Impact of directory size on cache performance 
on two SPLASH-2 benchmarks. When caches grow too 
large in relation to the directory, frequent evictions from 
the directory lead to cache thrashing. The results show 
total cache hierarchy misses per memory access in a 64-
core cache-coherent model with 5 memory controllers 
and a 64KB directory for each controller (see Section V.B 
for configuration details). 

 

 
Figure 3: Reduction in memory latency in execution 
migration (EM) vs. cache coherence (CC) is due to a 
much lower cache hierarchy miss rate. (The figure shows 
an average over all benchmarks). 
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architecture increases. While the performance of a cache 
coherence scheme is limited on the one hand by the 
number of sharers per cache line (and the consequent 
invalidates caused by exclusive-access requests) and on 
the other hand by directory sizes (and the consequent 
invalidates caused by directory evictions), cache miss 
performance in execution migration depends directly on 
the effective point-to-point bandwidth and latency 
provided by the on-chip interconnect, and is much 
easier to reason about. 

C. Costs of execution migration 
Since in most workloads memory instructions occur 

every few cycles and migrations can be frequent: for 
example, for one of the migration policies we evaluated 
(one-way, see Section V.D), an average of 45% of 
memory hierarchy accesses in the benchmarks triggered 
migrations (Figure 4). This, however, is under an OS 
model that assumes a cache-coherent architecture, and 
does not allocate memory pages appropriately for an 
EM2 architecture. Thus, for example, the stack area and 
the working set are likely to be allocated in different 
cores, causing frequent migrations between the two, 
especially with the heavy stack utilization of an x86 
architecture. Efficient page allocation under EM2 is, 
however, beyond the scope of this paper a subject of 
further research. 

The main memory access cost incurred by execution 
migration architecture is that of transferring an 
execution context to the home cache for the given 
address. Per-migration bandwidth requirements, 
although larger than the cache line required by cache-
coherent designs, are not prohibitive by on-chip 
standards: in a 32-bit x86 processor, the relevant 
architectural state amounts, including a TLB and an 
instruction cache line, to about 2 Kbits [29]. Although 
on-chip networks today are not generally designed to 
carry that much data, on-chip communication scales 

well; indeed, a migration network is easily scaled by 
simple replication because all transfers have the same 
size. Furthermore, execution migration is uniquely 
poised to take advantage of the high bandwidth, low 
latency, and low power potential of quickly maturing 
on-chip optical interconnect technologies [10, 11]. 

Another potential cost of execution migration is the 
loss of some instruction locality: when an execution 
context is moved, the instruction cache in the 
destination core might not contain the instructions for 
the transferred thread. In our model, we mitigate this 
effect by including one 64-byte instruction cache line in 
the 2Kbit execution context that is migrated between 
cores (discussed in Section V.B below). While further 
discussion of instruction caching in execution migration 
falls outside of the scope of the present paper, we note 
that (a) many numerically intensive applications 
(including most SPLASH-2 and PARSEC benchmarks) 
run the same instructions in each thread, and the 
instructions cached are likely to be similar, and (b) 
instruction caches store read-only data and therefore do 
not require cache coherence logic, and instruction data 
can easily be replicated by, for example, transmitting 
the current cache line along with the execution context 
as we do in our model—over time, instruction caches on 
each core will store the instructions that operate on the 
data cached in the same core. 

V. METHODS 
A. Modeling methodology 
We use Pin [12] and Graphite [13] to model the 

proposed EM2 architecture. Pin enables runtime binary 
instrumentation of parallel programs, including the 
SPLASH-2 [14] and PARSEC [15] benchmark sets we 
use for evaluation, while the Graphite program analysis 
pintool provides models for a tile-based core, memory 
subsystem and network. Graphite provides the 

 
Figure 4: Minimum required execution migration rate for various benchmarks. 
Specific implementations (e.g., swap) may have a higher migration rate. 
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infrastructure to intercept and modify the memory 
references and present a uniform, coherent view of the 
application address space to all threads; this allows us to 
maintain functional correctness in our EM2 architecture 
models. 

In this paper we do not model non-memory 
instructions or the memory effects of the instruction 
cache; since we do not model instruction delay, we also 
do not model the timing effects of execution other than 
memory latency. This choice allows us to focus on the 
data-centric component impact of our architecture on a 
generic multicore processor. 

For the interconnect, we chose to model a fixed-
latency high-bandwidth network model where all 
messages experience the same latency, which allows us 
to reason cleanly about the role of the interconnect in 
the memory system performance; consequently, we did 
not model congestion in the interconnect network. 
Indeed, this is not an unreasonable assumption. On the 
one hand, maturing optical interconnect technologies 
enable high-bandwidth, low-latency communication, 
and have reached miniaturization levels required for 
CMOS integration [9]. On the other hand, the 
technology for high-bandwidth electrical interconnect is 
already available, and our requirements are not far 
beyond the capabilities of existing NoC interconnects. 
For example, the mesh network of the 1GHz TILE64™ 
multicore processor provides 1.28Tbps of bandwidth to 
each core [7]; this translates to a bandwidth of 
0.32Kbit/cycle one-way in each of the four ports, and 
means that a 2Kbit execution context can leave (and 
another arrive at) the core every 6–7 cycles. With an 
average of 45% of memory accesses causing migrations 
(cf. Section IV.C), a rate of one memory access every 
3–4 processor cycles can be maintained. While this 
back-of-the-envelope calculation is necessarily 
approximate (and does not consider, for example, 
network congestion), it clearly shows that our 
bandwidth requirements are technologically feasible. 

B. System configurations 
We ran our experiments using a set of SPLASH-2 

and PARSEC applications: FFT, Radix, Water, Ocean, 
LU, FMM, Barnes, Volrend, Raytrace, Cholesky, 

Blackscholes, Swaptions and Canneal; the remaining 
benchmarks from the two suites cannot run because of 
the Graphite system limitations in handling certain 
system calls. Each application was run to completion 
and used the recommended input set. 

For each benchmark, we simulated a 64-core 
processor with six different memory subsystem 
configurations and four cache configurations  (Table 
3). While we concentrated on comparing EM2 with a 
realistic cache-coherent MSI design with five memory 
controllers and 64KB directories for each controller 
(“CC realistic” in the figures), we reasoned that the 
complex design-specific interactions between 
directories and core caches might obscure the true 
potential of the cache-coherent paradigm, and repeated 
all experiments with an idealized version with a 
memory controller on each of the 64 cores and 512KB 
directories (“CC ideal” in the figures); the total memory 
bandwidth in the system remained she same (64 GB/s). 
The simulated application memory space is striped 
across the memory controller based on either cache line 
granularity (64 bytes) or OS-page granularity (4KB). 

Finally, we assume a fixed-latency network with 5 
cycles for communication between any two cores. EM2 
requires more network bandwidth per message than 
cache coherence, since the execution context (such 
architectural state as registers, TLB, and an instruction 
cache line, about 2Kbits in an x86 [29]) is larger than a 
cache line (perhaps 64 bytes). Since we postulate a 
high-bandwidth network, we assumed enough 
bandwidth that the larger context messages will not 
incur extra latency; to characterize the effect of a less 
powerful network, however, we repeated our 
experiments in a model where latencies correspond to 
the message sizes and EM2 has latency 4× larger than 
the cache-coherent architecture. 

C. Measurements 
We collected the experimental results using a 

homogeneous cluster of machines. Each machine within 
the cluster has an Intel® Core™ i7-960 Quad-Core (HT 
enabled) running at 3.2GHz with 6GB of PC3-10600 
DDR3 DRAM. These machines run Debian Linux with 
kernel version 2.2.26 and all applications were compiled 

Table 3: Memory system configurations used in experiments. 
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with gcc version 4.3.2. 
For each simulation run, we tracked the cache 

hierarchy miss rates, perceived memory latencies, and, 
for the EM2 simulations, migration rates; we averaged 
per-core numbers weighted by the total memory access 
count for each core. In figures where data is aggregated 
over all benchmarks, we averaged per-benchmark data 
with each benchmark given equal weight to reflect a 
varied computation load. 

D. Migration algorithm 
We use two migration algorithms for our 

experiments. In the swap scheme, when the computation 
context migrates from, say, core A to core B, the context 
in B is moved to A concurrently. On the one hand, this 
ensures that multiple threads are not mapped to the 
same core, and requires no extra hardware resources to 
store multiple contexts. On the other hand, the context 
that originated in B may well have to migrate back to A 
at its next memory access, causing a thrashing effect. 
Swap also puts significantly more stress on the network: 
not only are the migrations symmetrical, the thrashing 
effect may well increase the frequency of migrations. 

The one-way scheme assumes that multiple contexts 
can be mapped to any single core and, therefore, would 
only perform the migration from A to B. This reduces 
the strain on the network and the total number of 
migrations, but requires hardware resources at core A to 
store multiple contexts. While it may appear that A 
might now have to alternate among contexts and 
become a computational bottleneck, observe that 
threads executing on A are also accessing the memory 
cached by A, and would be subject to additional 
migrations in the swap scheme. 

In the one-way scheme, the number of threads 
mapped to a single core becomes an important 

consideration, as it affects both the hardware resources 
required to store the contexts and the computational 
power required at each core. In our experiments cores 
mostly did not exceed 8 concurrent threads at any given 
time (see Figure 5). While a more detailed evaluation 
of this design space is beyond the scope of this paper, 
we observe that including multiple computational units 
on each core, as in simultaneous multithreading [30], 
could potentially allow all threads to run in parallel; for 
example, one might imagine a design where one-way 
migrations are the default and swaps are used whenever 
a maximum number of threads mapped to a core 
exceeds its computational resources. 

VI. PERFORMANCE EVALUATION 
A. Memory performance 
This section discusses per benchmark results. 

Comparisons are drawn based on three data points: two 
cache coherence implementations and an EM2 
implementation (cf. Section V); unless otherwise noted, 
the results reflect 4KB main memory striping and a 
high-performance interconnect. 

Figure 6 illustrates that in EM2 the cache hierarchy 
miss rate generally directly determines memory 
performance. For water-nsquared, which has good 
spatial locality, this is also the case in the ideal cache-
coherent model with enormous directories, but under the 
realistic CC model memory performance suffers from 
the directory size bottleneck; since EM2 can cache more 
addresses in total and is not encumbered by a directory, 
it performs better. Volrend suffers in both CC regimes 
because extensive sharing reduces cache utilization; 
since the per-core caches in EM2 never share, the total 
number of addresses cached at any given time is much 
larger and leads to better performance. 

 
Figure 5: The maximum number of threads concurrently executing on any core in the one-way migration scheme. Most 
cores never have more than 8 threads executing at the same time. 
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The blackscholes benchmark in Figure 7 is highly 
parallel with a relatively small primary working set 
(64K), and performs well with ideal CC and EM2. The 
radix sort kernel showcases how directory sizes can 
significantly limit performance: the realistic CC  model 

performs worse as the per-core caches grow (Figure 7). 
Since the main working set does not fit in the cache, 
increasing local cache sizes allows threads to cache 
more unique addresses; this, in turn, leads to frequent 
capacity-based evictions from the directory (and, 

 
Figure 6: Execution migration significantly reduces the cache hierarchy miss rate, and 
consequently outperforms either cache coherence model. Note that the cache miss rates for both 
EM schemes are the same, and the difference in latency is only due to migration frequency. 

 
Figure 7: Blackscholes (left) relies heavily on local caches, and memory performance is low on 
the five-memory-controller CC model until a large cache can hold the working set. Radix (right) 
under realistic CC performs worse with bigger caches because directory cache evictions cause 
thrashing. (Cache miss rates are the same for both EM schemes). 
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consequently, the local caches). When directory space is 
very large (ideal CC), performance improves steadily 
with cache size, and is even better in EM2 as cache lines 
are never shared and a large portion of the working set 
can be cached. 

The SPLASH-2 suite includes two implementations 
of matrix LU decomposition: one written in a more 
straightforward style, and one where blocks accessed by 
the same thread are allocated contiguously to optimize 
parallel cache performance. Again, the underlying 
problem is sharing, and, under a cache-coherent 
architecture, the performance benefits of the 
restructured (contiguous) implementation are 
impressive: cache miss rates drop from 4%–8% to 
nearly zero (Figure 8). Since EM2 eliminates the 
sharing of data among different cores, cache miss rates 
are low and overall memory performance is very good. 

It’s worth stressing that EM2 allowed good 
performance regardless of how much effort was 
expended in optimizing the benchmark itself for cache 
performance. While program optimization for the 
memory hierarchy will always be important in a small 
number of critical applications, EM2 often offers good 
performance without the expense of optimization, and, 
when optimization is necessary, provides an architecture 
where reasoning about cache performance is much 
easier.  

B. Impact of data striping 
To determine how the pattern in which main memory 

is distributed across cores affects the performance of 

EM2, we repeated all benchmarks with stripe sizes of 
4,096 bytes (equivalent to a common OS page size), 64 
bytes (a common cache line size), and 16,384 bytes. The 
results for 16,384-byte striping closely matched those 
for 4096-byte striping, and we omit them.  The results 
for 64-byte and 4096-byte striping are summarized in 
Figure 9: the 4,096 stripe size allows one-way EM2 to 
take advantage of spatial locality in memory references 
and keep threads mapped to cores for longer; in the 
swap version, threads are evicted by incoming 
migrations and the migration rate remains higher. On 
the other hand, if caches are small (on the order of 
32KB total), any non-trivial shared data structures that 
fit in one 4096-byte page are cached in the same cache 
with 4096-byte striping and are subject to more 
evictions; with 64-byte striping, they are distributed 
among many caches and evictions are less frequent. 

C. Impact of network latency 
While throughout the paper we assume a network 

with bandwidth sufficient to deliver the 2Kbit context 
migrations of EM2 as quickly as the 64-byte messages 
of a cache coherence protocol, we also modeled a 
network where bandwidth is low and context migrations 
take 4× more cycles than cache coherence messages, as 
much as the difference in message sizes. Figure 10 
shows that even under low-bandwidth conditions one-
way EM2 outperforms the directory-based cache-
coherence version. 

 
Figure 8: EM2 reduces the need to optimize code for parallel cache performance: while a cache-
optimal implementation of LU decomposition performs well in both CC and EM2, only the 
latter also allows a more straightforward implementation to perform equally well. (Cache miss 
rates are the same for both EM schemes). 
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D. Silicon area advantages of EM2 
In general, even compared to “ideal” cache 

coherence, EM2 requires significantly smaller cache 
resources to achieve the same memory latencies: for 
example, Figure 11 shows that even an “ideal” cache 
coherence design requires 144KB of caches per core to 
match the performance of EM2 with only 80KB of per-
core cache, which translates to significant silicon area 
and power savings. 

VII. CONCLUSIONS 
In this paper, we introduced EM2, an instruction-level 

execution migration-based memory scheme for large-
scale multicore processors. EM2 provides a coherent, 

sequentially consistent view of a uniform address space 
without the need for complex cache coherence protocols 
and the associated silicon area, while reducing the 
perceived cost of memory accesses: for example, on a 
set of SPLASH-2 and PARSEC benchmarks, EM2 

reduced cache miss rates by 84% and decreased 
memory latencies by 58% on average. 

While EM2 offers significant savings in silicon area 
compared to a directory-based cache-coherent 
architecture and an EM2 design can therefore offer more 
computation resources or larger caches in the same area, 
we conservatively assume equivalent cache sizes and 
number of cores for the cache-coherent architectures we 
compare against. Further research will quantify the 
savings and determine how to best allocate them. 

 
Figure 9: Spatial locality allows the one-way EM2 model to keep threads mapped to cores they 
need to access for longer periods when the main memory is striped in larger blocks. (The figure 
shows an average over all benchmarks; cache miss rates are the same for both schemes). 

 
Figure 10: Impact of network latency on EM2. (The figure shows an average over all benchmarks). 
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Throughout this paper we have assumed a high-
bandwidth, low-latency on-chip interconnect. Although 
currently there is little demand to optimize network-on-
chip designs for such high bandwidths, we argued that 
they are not beyond the capabilities of today’s electrical 
interconnects. At the same time, the advent of practical 
on-chip optical interconnect technology promises to 
make high-bandwidth, low-latency, low-power on-chip 
networks common. Either way, the high-bandwidth 
interconnect we require offers a fertile field for future 
research. 

The performance of EM2 is bounded by the number 
of migrations per memory access. While we show that 
even with a relatively high migration rate EM2 can 
outperform a directory-based cache-coherent design, 
reducing migrations would improve overall 
performance and lower the interconnect network 
performance demands; this motivates further research 
into better migration algorithms, appropriate main 
memory striping schemes, and OS support for keeping 
all data used by a thread on the same core. Indeed, the 
unique properties of the EM2 architecture open up 
abundant opportunities for operating system techniques 
and optimizations. 
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