
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-019 April 17, 2010

Instruction-Level Execution Migration
Omer Khan, Mieszko Lis, and Srinivas Devadas

 1

Omer Khan1, Mieszko Lis1, and Srinivas Devadas
Massachusetts Institute of Technology, Cambridge, MA

Abstract—We introduce the Execution Migration

Machine (EM2), a novel data-centric multicore
memory system architecture based on computation
migration. Unlike traditional distributed memory
multicores, which rely on complex cache coherence
protocols to move the data to the core where the
computation is taking place, our scheme always
moves the computation to the core where the data
resides. By doing away with the cache coherence
protocol, we are able to boost the effectiveness of
per-core caches while drastically reducing hardware
complexity.

To evaluate the potential of EM2 architectures,
we developed a series of PIN/Graphite-based models
of an EM2 multicore with 64 x86 cores and, under
some simplifying assumptions (a timing model
restricted to data memory performance, no
instruction cache modeling, high-bandwidth fixed-
latency interconnect allowing concurrent
migrations), compared them against corresponding
directory-based cache-coherent architecture models.
We justify our assumptions and show that our
conclusions are valid even if our assumptions are
removed. Experimental results on a range of
SPLASH-2 and PARSEC benchmarks indicate that
EM2 can significantly improve per-core cache
performance, decreasing overall miss rates by as
much as 84% and reducing average memory latency
by up to 58%.1

I. INTRODUCTION
In the last few years, the steady increases in processor

performance obtainable from higher and higher clock
frequencies have come to a dramatic halt: there is
simply no cost-effective way to dissipate so much
power. Instead, recent development has favored
multicore parallelism: commodity processors with four
or even eight cores on a single die have become
common, and existing technology permits many more;
indeed, general-purpose single-die multiprocessors with
as many as 64 cores are already commercially
available [1]. Even larger multicores have been built [2,
3], and pundits confidently predict thousands of cores
per die by the end of the decade [4]. Quite simply,
multicores scale.

1 Equal contributors.

Designing a scalable memory subsystem for a
multicore, however, remains a major concern.
Increasing the number of concurrent threads requires a
large aggregate memory bandwidth, but off-chip
memory bandwidth is severely constrained by the
number of pins on the package: a conundrum known as
the off-chip memory bandwidth wall [4, 5]. To address
this problem, multicores integrate large private and
shared caches on chip: the hope is that large caches can
hold the working sets of the active threads, thereby
reducing the number of off-chip memory accesses.
Private caches, however, require cache coherence, and
shared caches do not scale beyond a few cores: even
today, the large 32MB last-level cache in recent Intel®
8-core processors is split physically into tiles distributed
across the chip [6], and accessing remote cache lines is
significantly slower than accessing local ones.

Since shared caches do not scale, many private
caches are the only practical option in large-scale
multicores. In practice, this means some form of
memory coherence, as the success of alternate
programming paradigms based on exposing core-to-core
communication to the programmer has been limited to
scientific computing and other niches where
performance or power considerations warrant the
increased programming complexity. The key question,
then, is: how can we provide the illusion of shared
memory in a way that scales to thousands of cores?

Bus-based cache coherence, which provides the
illusion of a single, consistent memory space, clearly
does not scale beyond a few cores. Directory-based
cache coherence is not subject to the electrical
limitations of buses, but requires complex states and
protocols for efficiency even in today’s relatively small
multicores. Worse yet, directory-based protocols can
contribute significantly to the already costly delays of
accessing off-chip memory because data replication
limits the efficient use of cache resources. Finally, the
area costs of keeping directory entries are a large
burden: if most of the directory is kept in off-chip
memory, accesses will be too slow, but if the directory
is stored in a fast on-chip memory, evictions from the
necessarily limited directory cause thrashing in the per-
core caches, also decreasing performance.

Yet on-chip multicores provide a tremendous
opportunity for optimization in the form of abundant
interconnect bandwidth. Even existing electrical on-chip
interconnect networks offer terabits per second of cross-

Instruction-Level Execution Migration

 2

section bandwidth [7] with latencies growing with the
diameter of the network (i.e., as the square root of the
core count in meshes), and emerging 3D interconnect
technologies enable high-bandwidth, low-latency on-
chip networks [8]. Optical interconnect technology,
which offers high point-to-point bandwidth at little
latency and with low power, is fast approaching
miniaturization comparable to silicon circuits, with
complete ring lasers no larger than 20µm2 [9]; multicore
architectures featuring an on-chip optical interconnect
have been proposed [10, 11], but have so far been based
on traditional cache-coherent memory architectures.

In this manuscript, we take the view that future
multicore architectures will feature thousands of
computation cores and copious inter-core bandwidth. To
take advantage of this, we propose to do away
altogether with the latencies and implementation
complexities of cache coherence protocols. Instead, we
argue, each core should be responsible for caching a
segment of the address space; when the thread running
on a given core refers to an address resident in some
other core, the computation itself must move by having
the two cores swap execution contexts. Supported by
extensive simulations running the SPLASH-2 and
PARSEC benchmark suites on both our architecture and
a traditional cache-coherence architecture with an
equivalent interconnect network, we make the case that
the complete absence of data sharing among caches, far
from limiting performance, actually improves cache
efficiency by evicting fewer cache lines on average and
increasing the effective size of the combined on-chip
cache.

The novel contributions of this paper are:
1. We introduce execution migration at the

instruction level, a simple architecture that
provides a coherent, sequentially consistent view
of memory without the need for a cache coherence
protocol.

2. We evaluate our scheme on actual applications in
a current x86-based shared memory system: our
functional memory subsystem model is built on
PIN/Graphite [12, 13] and runs a set of SPLASH-2
[14] and PARSEC [15] benchmarks with the
correct output.

3. We show that, assuming a high-bandwidth, low-
latency interconnect, on-chip cache hierarchy miss
rate under execution migration improves many-
fold (e.g., from 4.4% to 0.5% with 80KB of
caches per core), and, as a result, average memory
access latencies significantly improve (e.g., 16.5
to 6 cycles/access with 80KB of caches per core).

4. We describe how, provided a scalable
interconnect network, EM2 elegantly scales to
thousands of cores while significantly reducing
silicon area compared to a traditional cache-
coherent design.

The performance of EM2 is tightly coupled to
available network resources and, given sufficiently large
caches, a directory-based cache-coherent architecture
outperforms EM2 on a low-performance, high-latency
network even though it suffers more cache hierarchy
misses. Table 1 shows the minimum cache sizes needed
by an equivalent directory-based cache-coherent
architecture to outperform EM2 on a few sample
benchmarks. With a low-performance network (50-
cycle per-message latency), context migrations in EM2
are expensive, and large per-core caches allow the cache
coherent architecture to reduce main memory accesses
and perform better; with a high-performance network
(5-cycle per-message latency), however, the significant
reduction in cache hierarchy misses in EM2 balances out
the cost of context migrations and EM2 outperformed
cache-coherent architecture with all of the cache sizes
we tested. For example, the swaptions benchmark
performed better under EM2 when caches were 32KB or
less per core; on a high-performance network EM2
always performed better.

The remainder of this paper is organized as follows:
Section II below reviews related research; in Section III
we delineate the operation of execution migration, and
in Section IV describe the effects and architectural
tradeoffs versus directory-based cache coherence.
Section V outlines our experimental methodology and
Section VI compares real-world application
performance of execution migration against a traditional
cache-coherence scheme using a detailed architectural
simulator. Section VII offers concluding remarks and
outlines future research.

Table 1: Per-core cache sizes at which EM2
outperforms cache coherence for a low-performance
interconnect network (packet latency of 50 cycles) and
a high-performance network (packet latency of 5
cycles). With a slow network, EM2 outperforms cache-
coherent designs only when small cache sizes combined
with data sharing cause high miss rates in the latter,
but with a fast network, EM2 performed better on all of
the cache sizes we tested.

 3

II. RELATED WORK
A. Computation migration
Migrating computation to the locus of the data is not

itself a novel idea. Hector Garcia-Molina in 1984
introduced the idea of moving processor to data in
memory bound architectures [16]. In recent years
migrating execution context has re-emerged in the
context of single-chip multicores. Michaud shows the
benefits of using execution migration to improve the
overall on-chip cache capacity and utilizes this for
migrating selective sequential programs to improve
performance [17]. Computation spreading [18] splits
thread code into segments and assigns cores responsible
for different segments, and execution is migrated to
improve code locality. Kandemir presents a data
migration algorithm to address the data placement
problem in the presence of non-uniform memory
accesses within a traditional cache coherence
protocol [19]. This work attempts to find an optimal
data placement for cache lines. A compile-time
program transformation based migration scheme is
proposed in [20] that attempts to improve remote data
access. Migration is used to move part of the current
thread to the processor where the data resides, thus
making the thread portion local. This work shows that
computation migration puts far less stress on the
network than shared memory counterpart. Our proposed
execution migration machine is unique among the
previous proposed works because we completely
abandon data sharing (and therefore do away with cache
coherence protocols). Instead, we propose to rely solely
on execution migration to provide coherence and
consistency.

B. Data placement in distributed memories
The paradigm for accessing data is critical to shared

memory parallel systems; Table 2 shows the four
possible configurations. Two of these (moving data to
computation) have been explored in great depth with
many years of research on cache coherence protocols.
Recently several data-oriented approaches have been
proposed to address the non-uniform access effects in
traditional and hybrid cache coherent schemes. An OS-
assisted software approach is proposed in [21] to control
the data placement on distributed caches by mapping
virtual addresses to different cores at page granularity.
When adding affinity bits to TLB, pages can be
remapped at runtime [5, 21]. The CoG [22] page
coloring scheme moves pages to the “center of gravity”
to improve data placement. The O2 scheduler [23], an
OS-level scheme for memory allocation and thread
scheduling, improves memory performance in
distributed-memory multicores by keeping threads and
the data they use on the same core.

Hardware page migration support was exploited in

PageNUCA and Micro-Pages cache design to improve
data placement [24, 25]. All these data placement
techniques are proposed for traditional cache coherent
or hybrid schemes. EM2 can only benefit from improved
hardware or OS-assisted data placement schemes.
Victim Replication [26] creates local replicas of data to
reduce cache access latency, thereby, adding extra
overhead to improve drawbacks of traditional cache
coherence protocol.

Execution migration not only enables EM2, but it has
been shown to be an effective mechanism for other
optimizations in multicore processor. [27] migrates the
execution of critical sections to a powerful core for
performance improvement. Core Salvaging [28] exploits
inter-core redundancy to provide fault tolerance via
execution migration. Thread motion [29] exchanges
running threads to provide fine-grain power
management.

III. EM2: THE EXECUTION MIGRATION
MACHINE

The essence of traditional cache coherence in
multicores is bringing data to the locus of the
computation that is to be performed on it: when a
memory instruction refers to an address that is not
locally cached, the instruction stalls while the cache
coherence protocol brings the data to the local cache
and ensures that the address can be safely shared (for
loads) or exclusively owned (for stores). Execution
migration turns this notion on its head, bringing the
computation to the locus of the data: when a memory
instruction requests an address not cached by the current
core, the execution context (current program counter,
register values, etc.) moves to the core where the data is
cached.

In this scheme, the physical address space in the
system is divided among the cores, for example by
striping (see Figure 1), and each core is responsible for
caching its region of the address space; thus, each
address in the system is assigned to a unique core where
it may be cached. (Note that this arrangement is
independent of how the off-chip memory is accessed,

Table 2: Different paradigms of distributing data and
computation, and the resulting architectures.

 4

and applies equally well to a system with one central
memory controller and to a hypothetical system where
each core has its own DRAM). When the processor
executes a memory access for address A, it must

1. compute the “home” core for A (e.g., by masking
the appropriate bits);

2. if the current core is the home,
a. forward the request for A to the cache

hierarchy (possibly resulting in a
DRAM access);

3. if the home is elsewhere,
a. interrupt the execution of the current

core (as for a precise exception),
b. migrate the architectural state to the core

that is home for A,
c. resume execution on the new core,

forwarding the request for A to its cache
hierarchy (and potentially resulting in a
DRAM access).

Because each address can be accessed in at most one
location, many operations that are complex in a
traditional cache-coherent system become very simple:
sequential consistency and memory coherence, for
example, are trivially ensured, and locking reduces to
preventing other threads from migrating to a specific
core.

This basic sketch intentionally leaves a broad range
of design choices. For example, migration (step 3.b
above) could preempt the execution on the target core or
be subject to scheduling; similarly, the context currently
executing on the target core could be either kept on the
same core or transferred elsewhere. While we defer the
question of the best precise migration algorithm to
future research, we focused our investigation in this
paper on two simple models: one where the two
contexts are swapped, and another where the migrated
thread simply moves to the destination core and shares
the computational resources with the threads already
present there (see Section V.D). Similarly, the questions
of dividing the address space among the cores (step 1
above) and finding the best assignment of virtual to
physical addresses also potentially offer interesting
tradeoffs; in this paper, we evaluated two simple
striping schemes based on cache-line size and the
operating system page size (see Section V.B).

IV. DISCUSSION
Although at first blush migrating the execution

context on every memory access to a non-local region
of memory might seem expensive, a careful analysis of
a traditional directory-based cache coherence protocol,
supported by experimental data, reveals that migration
can in fact outperform cache coherence.

A. Costs of directory-based cache coherence
Last-level cache misses in a directory-based cache-

coherence scheme incur three significant costs: the
latency of potentially retrieving the data from off-chip
memory, the latencies associated with the directory
protocol itself, and decreased cache effectiveness due to
data sharing and directory size limits. For example, in a
last-level cache miss under a simple MSI directory
protocol,

1. the last-level cache must contact the relevant
directory;

2. if A is not cached in the directory, the directory
must (a) potentially evict another directory entry,
contacting all sharers of that entry and waiting for
their invalidate responses, and (b) retrieve the data
for A from off-chip memory;

3. if A is already in the directory and the request is for
exclusive access, or if A is exclusively held by
another core, the directory must contact all sharers
and wait for their invalidate responses;

4. finally, the directory must respond to the
requesting cache with the cache line data for A.

The communication cost and the latency of the off-
chip memory access, while significant, are dwarfed by
the potential deleterious effect on private caches. When
an already full directory services a request for a new
address (step 2 above), it must replace an existing entry
and invalidate its address in all processor caches even
though the caches themselves did not need to evict the
line. Perversely, growing the per-core caches (or adding
more processors) without significantly increasing the

Figure 1: Address-based cache distribution in EM². Each
cache (left) is responsible for caching a specific, unique
region of main memory (right). In our experiments, main
memory is divided into 64-byte or 4KB blocks assigned to
consecutive caches; the assignment wraps around and block
N+1 is again assigned to the first core.

 5

directory size only compounds the problem and
increases the cache miss rate, as the larger caches hold
more unique addresses and cause more directory
evictions. Indeed, 6 of the 16 applications we tested
suffered worse performance on a realistic cache-
coherent 64-core system when the per-core cache size
increased. Figure 2 shows two examples of this effect:
on both benchmarks, the number of cache hierarchy
misses per memory access in the system increased when
per-core caches grew beyond 48KB.

The magnitude of this effect is application-dependent
and the selection of an appropriate directory
configuration is not straightforward; at worst, each
directory may have to grow as much as all processor
caches combined, clearly an unrealistic scenario. If
directory limits can impede performance at 64 cores,
what will we do when we get to 1,000 cores?

In addition, directory-based cache-coherent
multicores suffer from other secondary effects. Most
directly, directory sizes needed to retain good
performance—especially as core counts and cache
capacities grow—use significant area and power, which
could instead be allocated to more cores or larger
caches. The complex cache and directory controller
logic requires area and power as well as significant
verification effort. At an architectural level, an
implementation of directory-based cache coherence

forms an intricate system with many complex
interactions, making it difficult to reason about and
evaluate design tradeoffs.

In the end, all of these costs stem from one central
feature of cache coherence: each cache line may be
shared among many cores. This presents a significant
opportunity, as eliminating sharing can result in
improved performance, complexity, silicon area, and
power.

B. Performance of execution migration
On most workloads, execution migration significantly

improves memory performance: in our benchmarks
simulating a realistic 64-core architecture with 5
memory controllers and various per-core cache sizes on
a high-performance on-chip interconnect (see Section
V.B), the number of off-chip memory accesses in EM2
decreased by 75%–89% relative to the cache coherent
architecture. As shown in Figure 3, the improved
memory performance is directly attributable to the
significant reduction in last-level cache misses. In turn,
this is caused by (a) a significant increase in effective
cache capacity when compared to the cache-coherent
architecture because each address is cached in at most
one location, and (b) the consequent longer lifetime of
cache lines in the absence of cache evictions caused by
such external requests as exclusive-access requests from
other cores or directory evictions.

Critically, as the number of cores on a die grows, the
performance advantage of execution migration

Figure 2: Impact of directory size on cache performance
on two SPLASH-2 benchmarks. When caches grow too
large in relation to the directory, frequent evictions from
the directory lead to cache thrashing. The results show
total cache hierarchy misses per memory access in a 64-
core cache-coherent model with 5 memory controllers
and a 64KB directory for each controller (see Section V.B
for configuration details).

Figure 3: Reduction in memory latency in execution
migration (EM) vs. cache coherence (CC) is due to a
much lower cache hierarchy miss rate. (The figure shows
an average over all benchmarks).

 6

architecture increases. While the performance of a cache
coherence scheme is limited on the one hand by the
number of sharers per cache line (and the consequent
invalidates caused by exclusive-access requests) and on
the other hand by directory sizes (and the consequent
invalidates caused by directory evictions), cache miss
performance in execution migration depends directly on
the effective point-to-point bandwidth and latency
provided by the on-chip interconnect, and is much
easier to reason about.

C. Costs of execution migration
Since in most workloads memory instructions occur

every few cycles and migrations can be frequent: for
example, for one of the migration policies we evaluated
(one-way, see Section V.D), an average of 45% of
memory hierarchy accesses in the benchmarks triggered
migrations (Figure 4). This, however, is under an OS
model that assumes a cache-coherent architecture, and
does not allocate memory pages appropriately for an
EM2 architecture. Thus, for example, the stack area and
the working set are likely to be allocated in different
cores, causing frequent migrations between the two,
especially with the heavy stack utilization of an x86
architecture. Efficient page allocation under EM2 is,
however, beyond the scope of this paper a subject of
further research.

The main memory access cost incurred by execution
migration architecture is that of transferring an
execution context to the home cache for the given
address. Per-migration bandwidth requirements,
although larger than the cache line required by cache-
coherent designs, are not prohibitive by on-chip
standards: in a 32-bit x86 processor, the relevant
architectural state amounts, including a TLB and an
instruction cache line, to about 2 Kbits [29]. Although
on-chip networks today are not generally designed to
carry that much data, on-chip communication scales

well; indeed, a migration network is easily scaled by
simple replication because all transfers have the same
size. Furthermore, execution migration is uniquely
poised to take advantage of the high bandwidth, low
latency, and low power potential of quickly maturing
on-chip optical interconnect technologies [10, 11].

Another potential cost of execution migration is the
loss of some instruction locality: when an execution
context is moved, the instruction cache in the
destination core might not contain the instructions for
the transferred thread. In our model, we mitigate this
effect by including one 64-byte instruction cache line in
the 2Kbit execution context that is migrated between
cores (discussed in Section V.B below). While further
discussion of instruction caching in execution migration
falls outside of the scope of the present paper, we note
that (a) many numerically intensive applications
(including most SPLASH-2 and PARSEC benchmarks)
run the same instructions in each thread, and the
instructions cached are likely to be similar, and (b)
instruction caches store read-only data and therefore do
not require cache coherence logic, and instruction data
can easily be replicated by, for example, transmitting
the current cache line along with the execution context
as we do in our model—over time, instruction caches on
each core will store the instructions that operate on the
data cached in the same core.

V. METHODS
A. Modeling methodology
We use Pin [12] and Graphite [13] to model the

proposed EM2 architecture. Pin enables runtime binary
instrumentation of parallel programs, including the
SPLASH-2 [14] and PARSEC [15] benchmark sets we
use for evaluation, while the Graphite program analysis
pintool provides models for a tile-based core, memory
subsystem and network. Graphite provides the

Figure 4: Minimum required execution migration rate for various benchmarks.
Specific implementations (e.g., swap) may have a higher migration rate.

 7

infrastructure to intercept and modify the memory
references and present a uniform, coherent view of the
application address space to all threads; this allows us to
maintain functional correctness in our EM2 architecture
models.

In this paper we do not model non-memory
instructions or the memory effects of the instruction
cache; since we do not model instruction delay, we also
do not model the timing effects of execution other than
memory latency. This choice allows us to focus on the
data-centric component impact of our architecture on a
generic multicore processor.

For the interconnect, we chose to model a fixed-
latency high-bandwidth network model where all
messages experience the same latency, which allows us
to reason cleanly about the role of the interconnect in
the memory system performance; consequently, we did
not model congestion in the interconnect network.
Indeed, this is not an unreasonable assumption. On the
one hand, maturing optical interconnect technologies
enable high-bandwidth, low-latency communication,
and have reached miniaturization levels required for
CMOS integration [9]. On the other hand, the
technology for high-bandwidth electrical interconnect is
already available, and our requirements are not far
beyond the capabilities of existing NoC interconnects.
For example, the mesh network of the 1GHz TILE64™
multicore processor provides 1.28Tbps of bandwidth to
each core [7]; this translates to a bandwidth of
0.32Kbit/cycle one-way in each of the four ports, and
means that a 2Kbit execution context can leave (and
another arrive at) the core every 6–7 cycles. With an
average of 45% of memory accesses causing migrations
(cf. Section IV.C), a rate of one memory access every
3–4 processor cycles can be maintained. While this
back-of-the-envelope calculation is necessarily
approximate (and does not consider, for example,
network congestion), it clearly shows that our
bandwidth requirements are technologically feasible.

B. System configurations
We ran our experiments using a set of SPLASH-2

and PARSEC applications: FFT, Radix, Water, Ocean,
LU, FMM, Barnes, Volrend, Raytrace, Cholesky,

Blackscholes, Swaptions and Canneal; the remaining
benchmarks from the two suites cannot run because of
the Graphite system limitations in handling certain
system calls. Each application was run to completion
and used the recommended input set.

For each benchmark, we simulated a 64-core
processor with six different memory subsystem
configurations and four cache configurations (Table
3). While we concentrated on comparing EM2 with a
realistic cache-coherent MSI design with five memory
controllers and 64KB directories for each controller
(“CC realistic” in the figures), we reasoned that the
complex design-specific interactions between
directories and core caches might obscure the true
potential of the cache-coherent paradigm, and repeated
all experiments with an idealized version with a
memory controller on each of the 64 cores and 512KB
directories (“CC ideal” in the figures); the total memory
bandwidth in the system remained she same (64 GB/s).
The simulated application memory space is striped
across the memory controller based on either cache line
granularity (64 bytes) or OS-page granularity (4KB).

Finally, we assume a fixed-latency network with 5
cycles for communication between any two cores. EM2
requires more network bandwidth per message than
cache coherence, since the execution context (such
architectural state as registers, TLB, and an instruction
cache line, about 2Kbits in an x86 [29]) is larger than a
cache line (perhaps 64 bytes). Since we postulate a
high-bandwidth network, we assumed enough
bandwidth that the larger context messages will not
incur extra latency; to characterize the effect of a less
powerful network, however, we repeated our
experiments in a model where latencies correspond to
the message sizes and EM2 has latency 4× larger than
the cache-coherent architecture.

C. Measurements
We collected the experimental results using a

homogeneous cluster of machines. Each machine within
the cluster has an Intel® Core™ i7-960 Quad-Core (HT
enabled) running at 3.2GHz with 6GB of PC3-10600
DDR3 DRAM. These machines run Debian Linux with
kernel version 2.2.26 and all applications were compiled

Table 3: Memory system configurations used in experiments.

 8

with gcc version 4.3.2.
For each simulation run, we tracked the cache

hierarchy miss rates, perceived memory latencies, and,
for the EM2 simulations, migration rates; we averaged
per-core numbers weighted by the total memory access
count for each core. In figures where data is aggregated
over all benchmarks, we averaged per-benchmark data
with each benchmark given equal weight to reflect a
varied computation load.

D. Migration algorithm
We use two migration algorithms for our

experiments. In the swap scheme, when the computation
context migrates from, say, core A to core B, the context
in B is moved to A concurrently. On the one hand, this
ensures that multiple threads are not mapped to the
same core, and requires no extra hardware resources to
store multiple contexts. On the other hand, the context
that originated in B may well have to migrate back to A
at its next memory access, causing a thrashing effect.
Swap also puts significantly more stress on the network:
not only are the migrations symmetrical, the thrashing
effect may well increase the frequency of migrations.

The one-way scheme assumes that multiple contexts
can be mapped to any single core and, therefore, would
only perform the migration from A to B. This reduces
the strain on the network and the total number of
migrations, but requires hardware resources at core A to
store multiple contexts. While it may appear that A
might now have to alternate among contexts and
become a computational bottleneck, observe that
threads executing on A are also accessing the memory
cached by A, and would be subject to additional
migrations in the swap scheme.

In the one-way scheme, the number of threads
mapped to a single core becomes an important

consideration, as it affects both the hardware resources
required to store the contexts and the computational
power required at each core. In our experiments cores
mostly did not exceed 8 concurrent threads at any given
time (see Figure 5). While a more detailed evaluation
of this design space is beyond the scope of this paper,
we observe that including multiple computational units
on each core, as in simultaneous multithreading [30],
could potentially allow all threads to run in parallel; for
example, one might imagine a design where one-way
migrations are the default and swaps are used whenever
a maximum number of threads mapped to a core
exceeds its computational resources.

VI. PERFORMANCE EVALUATION
A. Memory performance
This section discusses per benchmark results.

Comparisons are drawn based on three data points: two
cache coherence implementations and an EM2
implementation (cf. Section V); unless otherwise noted,
the results reflect 4KB main memory striping and a
high-performance interconnect.

Figure 6 illustrates that in EM2 the cache hierarchy
miss rate generally directly determines memory
performance. For water-nsquared, which has good
spatial locality, this is also the case in the ideal cache-
coherent model with enormous directories, but under the
realistic CC model memory performance suffers from
the directory size bottleneck; since EM2 can cache more
addresses in total and is not encumbered by a directory,
it performs better. Volrend suffers in both CC regimes
because extensive sharing reduces cache utilization;
since the per-core caches in EM2 never share, the total
number of addresses cached at any given time is much
larger and leads to better performance.

Figure 5: The maximum number of threads concurrently executing on any core in the one-way migration scheme. Most
cores never have more than 8 threads executing at the same time.

 9

The blackscholes benchmark in Figure 7 is highly
parallel with a relatively small primary working set
(64K), and performs well with ideal CC and EM2. The
radix sort kernel showcases how directory sizes can
significantly limit performance: the realistic CC model

performs worse as the per-core caches grow (Figure 7).
Since the main working set does not fit in the cache,
increasing local cache sizes allows threads to cache
more unique addresses; this, in turn, leads to frequent
capacity-based evictions from the directory (and,

Figure 6: Execution migration significantly reduces the cache hierarchy miss rate, and
consequently outperforms either cache coherence model. Note that the cache miss rates for both
EM schemes are the same, and the difference in latency is only due to migration frequency.

Figure 7: Blackscholes (left) relies heavily on local caches, and memory performance is low on
the five-memory-controller CC model until a large cache can hold the working set. Radix (right)
under realistic CC performs worse with bigger caches because directory cache evictions cause
thrashing. (Cache miss rates are the same for both EM schemes).

 10

consequently, the local caches). When directory space is
very large (ideal CC), performance improves steadily
with cache size, and is even better in EM2 as cache lines
are never shared and a large portion of the working set
can be cached.

The SPLASH-2 suite includes two implementations
of matrix LU decomposition: one written in a more
straightforward style, and one where blocks accessed by
the same thread are allocated contiguously to optimize
parallel cache performance. Again, the underlying
problem is sharing, and, under a cache-coherent
architecture, the performance benefits of the
restructured (contiguous) implementation are
impressive: cache miss rates drop from 4%–8% to
nearly zero (Figure 8). Since EM2 eliminates the
sharing of data among different cores, cache miss rates
are low and overall memory performance is very good.

It’s worth stressing that EM2 allowed good
performance regardless of how much effort was
expended in optimizing the benchmark itself for cache
performance. While program optimization for the
memory hierarchy will always be important in a small
number of critical applications, EM2 often offers good
performance without the expense of optimization, and,
when optimization is necessary, provides an architecture
where reasoning about cache performance is much
easier.

B. Impact of data striping
To determine how the pattern in which main memory

is distributed across cores affects the performance of

EM2, we repeated all benchmarks with stripe sizes of
4,096 bytes (equivalent to a common OS page size), 64
bytes (a common cache line size), and 16,384 bytes. The
results for 16,384-byte striping closely matched those
for 4096-byte striping, and we omit them. The results
for 64-byte and 4096-byte striping are summarized in
Figure 9: the 4,096 stripe size allows one-way EM2 to
take advantage of spatial locality in memory references
and keep threads mapped to cores for longer; in the
swap version, threads are evicted by incoming
migrations and the migration rate remains higher. On
the other hand, if caches are small (on the order of
32KB total), any non-trivial shared data structures that
fit in one 4096-byte page are cached in the same cache
with 4096-byte striping and are subject to more
evictions; with 64-byte striping, they are distributed
among many caches and evictions are less frequent.

C. Impact of network latency
While throughout the paper we assume a network

with bandwidth sufficient to deliver the 2Kbit context
migrations of EM2 as quickly as the 64-byte messages
of a cache coherence protocol, we also modeled a
network where bandwidth is low and context migrations
take 4× more cycles than cache coherence messages, as
much as the difference in message sizes. Figure 10
shows that even under low-bandwidth conditions one-
way EM2 outperforms the directory-based cache-
coherence version.

Figure 8: EM2 reduces the need to optimize code for parallel cache performance: while a cache-
optimal implementation of LU decomposition performs well in both CC and EM2, only the
latter also allows a more straightforward implementation to perform equally well. (Cache miss
rates are the same for both EM schemes).

 11

D. Silicon area advantages of EM2
In general, even compared to “ideal” cache

coherence, EM2 requires significantly smaller cache
resources to achieve the same memory latencies: for
example, Figure 11 shows that even an “ideal” cache
coherence design requires 144KB of caches per core to
match the performance of EM2 with only 80KB of per-
core cache, which translates to significant silicon area
and power savings.

VII. CONCLUSIONS
In this paper, we introduced EM2, an instruction-level

execution migration-based memory scheme for large-
scale multicore processors. EM2 provides a coherent,

sequentially consistent view of a uniform address space
without the need for complex cache coherence protocols
and the associated silicon area, while reducing the
perceived cost of memory accesses: for example, on a
set of SPLASH-2 and PARSEC benchmarks, EM2

reduced cache miss rates by 84% and decreased
memory latencies by 58% on average.

While EM2 offers significant savings in silicon area
compared to a directory-based cache-coherent
architecture and an EM2 design can therefore offer more
computation resources or larger caches in the same area,
we conservatively assume equivalent cache sizes and
number of cores for the cache-coherent architectures we
compare against. Further research will quantify the
savings and determine how to best allocate them.

Figure 9: Spatial locality allows the one-way EM2 model to keep threads mapped to cores they
need to access for longer periods when the main memory is striped in larger blocks. (The figure
shows an average over all benchmarks; cache miss rates are the same for both schemes).

Figure 10: Impact of network latency on EM2. (The figure shows an average over all benchmarks).

 12

Throughout this paper we have assumed a high-
bandwidth, low-latency on-chip interconnect. Although
currently there is little demand to optimize network-on-
chip designs for such high bandwidths, we argued that
they are not beyond the capabilities of today’s electrical
interconnects. At the same time, the advent of practical
on-chip optical interconnect technology promises to
make high-bandwidth, low-latency, low-power on-chip
networks common. Either way, the high-bandwidth
interconnect we require offers a fertile field for future
research.

The performance of EM2 is bounded by the number
of migrations per memory access. While we show that
even with a relatively high migration rate EM2 can
outperform a directory-based cache-coherent design,
reducing migrations would improve overall
performance and lower the interconnect network
performance demands; this motivates further research
into better migration algorithms, appropriate main
memory striping schemes, and OS support for keeping
all data used by a thread on the same core. Indeed, the
unique properties of the EM2 architecture open up
abundant opportunities for operating system techniques
and optimizations.

REFERENCES
[1] S. Bell et al., "TILE64 - Processor: A 64-Core

SoC with Mesh Interconnect," in Solid-State
Circuits Conference, 2008. ISSCC 2008. Digest of
Technical Papers. IEEE International, 2008, p.
88.

[2] S. R. Vangal et al., "An 80-Tile Sub-100-W
TeraFLOPS Processor in 65-nm CMOS," Solid-
State Circuits, IEEE Journal of, vol. 43, p. 29,
2008.

[3] T. R. Halfhill, "Looking Beyond Graphics," In-
Stat Whitepaper2009.

[4] S. Borkar, "Thousand core chips: a technology
perspective," in Proceedings of the 44th annual
Design Automation Conference, San Diego,
California, 2007, p. 746.

[5] N. Hardavellas et al., "Reactive NUCA: near-
optimal block placement and replication in
distributed caches," in Proceedings of the 36th
annual international symposium on Computer
architecture, Austin, TX, USA, 2009, p. 184.

[6] S. Rusu et al., "A 45nm 8-core enterprise Xeon®
processor," in Solid-State Circuits Conference,
2009. A-SSCC 2009. IEEE Asian, 2009, p. 9.

[7] D. Wentzlaff et al., "On-Chip Interconnection
Architecture of the Tile Processor," Micro, IEEE,
vol. 27, p. 15, 2007.

[8] D. Park et al., "MIRA: A Multi-layered On-Chip
Interconnect Router Architecture," in Proceedings

of the 35th International Symposium on Computer
Architecture, 2008, p. 251.

[9] M. T. Hill et al., "A fast low-power optical
memory based on coupled micro-ring lasers,"
Nature, vol. 432, p. 206, 2004.

[10] J. Miller et al., "ATAC: A Manycore Processor
with On-Chip Optical Network," MIT CSAIL
Technical Report MIT-CSAIL-TR-2009-018,
2009.

[11] N. Kırman et al., "A Power-efficient All-optical
On-chip Interconnect Using Wavelength-based
Oblivious Routing," in Proceedings of the 15th
international conference on Architectural support
for programming languages and operating
systems, Pittsburgh, Pennsylvania, USA, 2006.

[12] M. Bach et al., "Analyzing Parallel Programs with
Pin," Computer, vol. 43, p. 34, 2010.

[13] J. Miller et al., "Graphite: A Distributed Parallel
Simulator for Multicores," in High Performance
Computer Architecture, 2010. HPCA-16.
Proceedings. 16th International Symposium on,
2010, p. 186.

[14] S. C. Woo et al., "The SPLASH-2 programs:
characterization and methodological
considerations," in Computer Architecture, 1995.
Proceedings. 22nd Annual International
Symposium on, 1995, p. 24.

[15] C. Bienia et al., "The PARSEC benchmark suite:
characterization and architectural implications,"
in Proceedings of the 17th international
conference on Parallel architectures and
compilation techniques, Toronto, Ontario,
Canada, 2008, p. 72.

[16] H. Garcia-Molina et al., "A Massive Memory
Machine," Computers, IEEE Transactions on,
vol. C-33, p. 391, 1984.

[17] P. Michaud, "Exploiting the cache capacity of a
single-chip multi-core processor with execution
migration," in High Performance Computer

Figure 11: EM2 requires smaller caches to guarantee the
same memory latency on many benchmarks.

 13

Architecture, 2004. HPCA-10. Proceedings. 10th
International Symposium on, 2004, p. 186.

[18] K. Chakraborty et al., "Computation spreading:
employing hardware migration to specialize CMP
cores on-the-fly," in Proceedings of the 12th
international conference on Architectural support
for programming languages and operating
systems, San Jose, California, USA, 2006, p. 283.

[19] M. Kandemir et al., "A novel migration-based
NUCA design for Chip Multiprocessors," in High
Performance Computing, Networking, Storage
and Analysis, 2008. SC 2008. International
Conference for, 2008, p. 1.

[20] W. C. Hsieh et al., "Computation migration:
enhancing locality for distributed-memory
parallel systems," in Proceedings of the fourth
ACM SIGPLAN symposium on Principles and
practice of parallel programming, San Diego,
California, United States, 1993, p. 239.

[21] C. Sangyeun et al., "Managing Distributed,
Shared L2 Caches through OS-Level Page
Allocation," in Microarchitecture, 2006. MICRO-
39. 39th Annual IEEE/ACM International
Symposium on, 2006, p. 455.

[22] M. Awasthi et al., "Dynamic hardware-assisted
software-controlled page placement to manage
capacity allocation and sharing within large
caches," in High Performance Computer
Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, 2009, p. 250.

[23] S. Boyd-Wickizer et al., "Reinventing Scheduling
for Multicore Systems," in The 12th Workshop on
Hot Topics in Operating Systems (HotOS-XII)
Monte Verità, Switzerland, 2009.

[24] M. Chaudhuri, "PageNUCA: Selected policies for
page-grain locality management in large shared
chip-multiprocessor caches," in High
Performance Computer Architecture, 2009.
HPCA 2009. IEEE 15th International Symposium
on, 2009, p. 227.

[25] K. Sudan et al., "Micro-pages: increasing DRAM
efficiency with locality-aware data placement," in
Architectural Support for Programming
Languages and Operating Systems, 2010.
ASPLOS-10. Proceedings. 15th International
Conference on, 2010.

[26] M. Zhang et al., "Victim replication: maximizing
capacity while hiding wire delay in tiled chip
multiprocessors," in Computer Architecture,
2005. ISCA '05. Proceedings. 32nd International
Symposium on, 2005, p. 336.

[27] M. A. Suleman et al., "Accelerating critical
section execution with asymmetric multi-core
architectures," in Proceeding of the 14th
international conference on Architectural support

for programming languages and operating
systems, Washington, DC, USA, 2009, p. 253.

[28] M. D. Powell et al., "Architectural core salvaging
in a multi-core processor for hard-error
tolerance," in Proceedings of the 36th annual
international symposium on Computer
architecture, Austin, TX, USA, 2009, p. 93.

[29] K. K. Rangan et al., "Thread motion: fine-grained
power management for multi-core systems," in
Proceedings of the 36th annual international
symposium on Computer architecture, Austin,
TX, USA, 2009, p. 302.

[30] S. J. Eggers et al., "Simultaneous multithreading:
a platform for next-generation processors," Micro,
IEEE, vol. 17, p. 12, 1997.

