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A. SYNTHESIS OF RC NETWORKS BY MEANS OF COORDINATE TRANSFORMATIONS

In Quarterly Progress Report No. 64 (pp. 345-359), it was shown that the nodal

parameter matrices of any two-element-kind network (not having mutual inductance)

can always be simultaneously reduced to diagonal form by a real, nonsingular trans-

formation. In particular, it was shown that this can be done irrespective of dynamical

degeneracies existing in the network, which cause one or both of the parameter matrices

to be singular. The diagonal form places in evidence the natural frequencies of the

network. It was also shown how this diagonal form, together with the transformation

matrix that effected the diagonalization, formed a basis for the expansion of the open-

circuit impedance matrix of the network.

The present report takes up where the previous one left off and is directed toward

the synthesis of two-terminal pair RC networks. However, the techniques developed

and the general form of the results apply equally well to RL and LC networks. Specifi-

cally, some necessary conditions regarding compactness of residues, and a general

synthesis procedure involving ideal transformers will be discussed. Finally, some

comments regarding transformerless synthesis will be made.

1. The Compact Residue Requirement

In an n independent node RC network the nodal admittance matrix, Y, may always

be diagonalized by a nonsingular, real congruent transformation M. We denote the

complex-frequency variable by s, the nodal capacitance matrix by C, and the nodal

conductance matrix by G; the rank of C is assumed to be (n-p), and the rank of G to

be (n-), while n, T, and p obey the constraint (n--p) > 0. We have, then, Y and its

diagonalized form, Yd.

Y = [sC+G]

Yd = Mt YM = Mt[sC+G] M = s[MtCM] + [MtGM]

U 0 :0 0 0 :0

.......... . ...... ....................

.(1)

Y = s 0 U :0 + : . :

g(n-p)
................... ......

0 O 0 0 0 U
p P
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where the superscript t denotes the transpose, Uk is a diagonal unit matrix of order k,

and g(_+)' g(~+ 2 ) + "'" g(n-p) are all real positive quantities.

The g's are the negatives of the natural frequencies of the

venient to relabel them in the following manner:

s(+1l) 9(o+1)

s(a+2) = g(+2)

network and it is con-

s (n-p) = g(n-p)

Hence

0sU

(s+s(+l))0
0

S(s+s (n-p))

0 Up

The open-circuit impedance matrix Z is the inverse of Y. Thus

-1 -1 MtZ = Y = MYd (4

where the superscript -1 denotes the inverse.

given by

The entries in M are all real.

L mn . . . . . . . . . . . . . . . . mnn

Equation 4 has the form of a Gramian, so that if we make the identification

m. m = k(q)
jq kq jk

a typical term in Z, zjk' may be written

k ( q )  k(q)S jk (n-cr) jk n
Zjk(s) = + (s+s ) +

q 1 q=(a-+l) q q=(n-+l) jk
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Equation 7 reveals z jk(s) in the form of a partial fraction expansion, the pole factors

being the diagonal entries in Yd' and the terms kk being the residues in these poles.

The terms in the summation at the extreme right in Eq. 7 are not really residues, for

they define the constant term in the partial fraction expansion of zjk, but for the sake

of consistency we shall treat them as if they were residues.

Let us now consider a set of impedances z ll, 12' and z 2 2 and investigate the

residues of these in their qth pole. From (6) and (7) we have

(q) = 2
k11 mlq

12ml qm 2q (8)

(q) 2
22 2q

By inspection it is clear that these residues must satisfy the following condition:

k(q )k(q) (2 q)2 2 2 2
11 22 12= mlqm2q (ml qm2q) 0. (9)

The equality stated by (9) is characterized by saying that the residues form a com-

pact set or, more simply, that the residues are compact.

As shown in the previous report, the entries in Yd' which are the pole factors of

(7), are all dynamically distinct. They need not, however, be numerically distinct.

The physical significance is simply that if a term in Yd having a particular numerical

value appears r times, in the network there are r different and independent ways of

exciting a natural frequency having this particular numerical value.

The fact that the entries in Yd can be numerically identical has an interesting

implication. Let us assume that each of the impedances zll, z 12' and z 2 2 is written

in the form of (7) and, for instance, that the natural frequencies s 1 and s 2 are numeri-

cally identical. Then, for the residues in these two poles, we have the relations

k(1)k (1 ) - k 11 = 0
11 22 2

(10)

k(2)k(2) - k(2) = 0.
11 22 2

On the other hand, we might wish to add together, in each of the three impedances,

the residues relating to these numerically equal poles. We shall call such a residue

sum a "net" residue. In our example each "net" residue is the sum of two terms. If

we make use of the Schwartz inequality, we see that the "net" residues satisfy the

following inequality:
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[(k (1k 21) (k1 +k 22)2 - (k1)+k 22 ) > 0. (11)

It follows that an inequality of the type given by (11) holds when there are any number

of terms involved in the summations which define the "net" residues. Hence we have
the result that the compactness of the residues in the dynamically independent poles

insures that the so-called residue condition will obtain for the "net" residues.

In a synthesis problem the impedances z 1 1, z12' and z 2 2 (which we assume meet the

so-called residue condition) are specified in advance. If the residues appear to be not

compact, they can always be factorized into compact sets as the following example shows.

Suppose that we have

(1)

z 1 1(s) a 111 s + s 1

(1)
Z1 2 () +1 2  (12)

1 
+ 
1

a(1)
22

z 2 2 (s) s + s

2
where all > 0, a 2 2 > 0, and alla22 - a1 2 > 0.

Make the following identifications:

a (1) k(l) + k (2 )

11 11 11

a (1) k 1l) + k122)  (13)12 12 12

a(1) - k() + k(2)22 22 22'

Let

k( ) = a(1) k(2) = 0
1 1  1 1  11

k(l)a (1) . k2) 0.12 12  12

To satisfy the compactness requirement, we have

k(1)k(1) ( (1)2 ( 01) 
2  ( ) ()2

11 22 2 2 2  (1 )  a(1)
11 11
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Thus

a( 1)( 2

k(2) a(1) k(l) a(1) 0. (14)
22 22 22 22 (1)all

1 1

The values obtained simultaneously satisfy (10) and(13) and permit (12)to be recast in the

form k ( )

11 0
11s s + s1 s + s 2

k(1)12 0
Z1 2 (S) s + s  (15)

k 1 )  k(2)22 22
z (s) - +z 2 2 ( s + s s + s 21 2

where s 2 
= sl .

The example given above illustrates the simplest type of factorization that one can

perform, but it is easy to see that it is not the only way of reducing a noncompact set

to compact sets. Factorization into compact residue sets is by no means unique so

that, in general, an infinite number of possibilities exist. However, the point is that

factorization of a noncompact set into compact sets can always be accomplished.

Hence in a synthesis problem in which a realizable set z ll, z12' and z 2 2 is prescribed,

we may always accomplish a residue factorization and put each of the impedances in the

form of Eq. 7.

2. Synthesis of a Given Set of Impedances by Using Ideal Transformers

Suppose that an n independent node-pair network exists whose nodal admittance

matrix, Y, may be put into diagonal form by means of a congruent transformation with

a matrix M. Thus, since

M YM = Yd'

the open-circuit impedance matrix Z takes the familiar form

-1 -1 tY = Z = MY M .
d

The open-circuit equilibrium equations may then be written

MY-1Mt] I = V, (16)
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where I is the column matrix of terminal currents, and V is the column matrix of

terminal voltages

I = i2

n

v1

V =  v2

v
n

A new set of current and voltage variables, I' and V', may be defined in terms of

the original ones given in (16), as follows:

V' = M-Iv =

v
1

v2

v

n

I' = MtI=

n
Note that the change of variables expressed by (17) leaves the power invariant, since

V'tI, = VtI.

Premultiplying both sides of (16) by M-l then yields an equation in the new variables
Premultiplying both sides of (16) by M then yields an equation in the new variables

-1
YI I' = V'. (18)

But we have

-1Yd

1

Y1

1

Y2.
(19)

where the terms yl, y 2
we have the relations

v1

2  1

2 Y2

... Yn represent the diagonal terms expressed in Eq. 3.

vI
n 1

n n
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Each of the impedances represented in (20) is simply a parallel RC combination.

From Eq. 3 we note that none of the admittances is zero; hence none of the impedances

is infinite.

At this point if we rewrite (17) in the following form, a straightforward physical

interpretation becomes evident.

V' = M-1V I= (Mt)- 1 '. (21)

The entries in V are the original terminal voltages, and the entries in V' are linear

combinations of these original voltages. From a physical point of view, we may think

of the n original voltages as being associated to the primary windings of n ideal trans-

formers, each of which has n secondary windings. The jth row of M - 1 represents the

turns ratios (with respect to the primary) of the jth secondary windings on the various

transformers. Hence M - 1 may be interpreted as a matrix of transformer turns ratios.

The same conclusion is evident from recognizing that the currents in I' represent the n

secondary winding currents. Thus the primary current in each transformer is related

to the secondary currents through the turns ratios of the secondary windings, with

respect to the primary.
-1

If we define M-1 in the following manner

Pll P 1 2  PIn

M-1 P 2 1  " (22)

Pnl............... Pnn

we can synthesize a network whose terminal pairs correspond to the terminals of the

primary windings. Its open-circuit impedance matrix will be Z. The general develop-

ment of such a circuit is given in Fig. XXI-1.

The resulting network is minimal in the number of R's and C's required, the total

number of such elements being at most 2n. However, it is obviously extravagant in its

utilization of transformers.

The application of this technique to the synthesis of a prescribed set of impedances

Zll, 212' and z 2 2 is straightforward. As already shown, the residues in the given

impedances can always be factorized into compact sets and the impedances put into the

form of Eq. 7. Therefrom the entries in the first two rows of M, as well as the terms

in Yd' can be determined.

The remaining entries in M can be filled in an arbitrary manner, subject only to

the restriction that M be nonsingular. A particularly easy way is to fill the (n-2)
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- v + -v +  - vn+

P P P P PI 21 ni 12 22 [71 2 n _nn

-2v -+

- v + .. n

nv I n

Fig. XXI-1. General development of a network realizing a prescribed impedance
matrix. (All primary windings are considered as having one turn.
Each admittance is a parallel RC combination.)

remaining diagonal positions with ones, and to place zeros in any positions not already

filled. The inversion of M is then extremely simple and the number of transformer

windings required is reduced considerably.

The technique, obviously, need not be limited to synthesizing two-terminal pair

situations, for it is a very general scheme that lends itself readily to an n terminal

pair synthesis.

3. Some Remarks on the Synthesis of a Grounded Two-Port without Ideal Transformers

In the following discussion we wish to point out a connection between the dynamical

character and the topological character of a network that must be satisfied in a trans-

formless network.

Suppose that a set of impedances z11 , z 12, and z2 2 is to be realized as a grounded

two-port. Further, suppose that the given set of impedances meets whatever require-

ments are necessary.

If the network exists, a starlike tree may be defined on the network in such a fashion

that the central node of the star corresponds to the ground node of the network, and that

the two-ports of interest correspond to entries across two of the tree branches. If we

assume a full network graph, the symmetry of the network graph makes each tree

branch topologically equivalent to every other tree branch. Hence we may number the

tree branches in an arbitrary way and assume that entries across tree branches 1 and
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2 correspond to the two-ports of interest, without incurring any loss of generality.

The short-circuit nodal admittance matrix, based on the assumed starlike tree

structure, may then be formed by using the appropriate cut-set matrix, a, and the

diagonal branch admittance matrix, yb. We assume that each branch in the network

can be a parallel combination of a capacitance and conductance. Thus the admittance

matrix will be a dominant matrix corresponding to a node-to-datum formulation.

Y = ayb , (23)

where a = cut-set matrix for a starlike tree, and

(cls+g1 )

(c 2 s+g 2 )
Yb

(cb s +gb)

where the c's and g's are the branch capacitances and conductances, respectively.

However, we know from the dynamical properties of the system that Y may be

diagonalized by a congruence transformation with M. We also know how the open-

circuit impedance matrix Z, is related to M and Yd* That is, we know that

M YM = Yd
(24)

-1 tZ = MY M.d

From the information supplied by the given two-port set of impedances, and by

taking into account certain conditions that are known to be necessary for the realization

of a grounded two-port, the terms in Yd and the entries in the first two rows of M can

be ascertained. We cannot just fill in the unknown entries in M arbitrarily and have a

guarantee that the network will be realizable without transformers, for if we substitute

(23) in (24), we have the requirement

[Mta] [yb ] [atM] = Yd (25)

Now the first two rows of M, and the entries in Yd are known; a is presumed.

Hence if we can find a solution (or solutions) of (25) which is such that the c's and g's

(that form the entries in the diagonal matrix yb ) are non-negative, and the remaining

entries in M are real, we shall have found a realization for the network without trans-

formers. If we regard the product [atM] as a rectangular matrix of order bXn, the
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problem reduces to transforming the diagonal form yb to the diagonal form Yd by means

of a singular, congruent transformation.

Equation 25 relates the dynamical and topological properties of the network. Satis-

faction of (25) requires, in a sense, that these two characteristics be compatible.

Expression 25 formulates the problem neatly, but its solution, subject to the
restrictions mentioned above, is a knotty problem, requiring further investigation.

W. C. Schwab

B. ERRATUM

In Quarterly Progress Report No. 64, page 356, in the report entitled "Synthesis of

Two-Element-Kind Networks by Means of Coordinate Transformations," Eq. (20) should
read:

k(q) k(q)
jk (n-X) jk n

zjk(s) -- + + Z sk q ) (20)
q=1 q=(cr+) q=(n-X+l)

W. C. Schwab

C. NEW CANONIC REALIZATION PROCEDURES FOR RL IMPEDANCES

This report presents two new canonic realization procedures for RL impedances.

The first procedure is appropriate to impedances of the form

n-i
s T T (s+ai)

1= 1
Z = (1)n

r7 (s+Bi )
i=l

and is based upon the cycle shown in Fig. XXI-2, for which the remainder impedance
Z has the formr

n-3

s . (s+-Yi)
Z =H

r n-2
7T (s+6i )
i=1

The second procedure is appropriate to impedances of the form

n+1

T1 (s+ai)

i (s+Bi)
= 1
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Fig. XXI-2. Fig. XXI-3.

(s + al) (s + 2)
z=L

s + a 3

Fig. XXI-4.

2 (s + c 1) (s + 2)

I s + 3

r --------

Fig. XXI-5.
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and is based upon the cycle shown in Fig. XXI-3, for which Z has the formr

n-1
iT (s+- i)

Z =H i=
r n-2

F (s+6. )
i=l

The cycle of Fig. XXI-2 is carried out as follows. First, the Cauer cycle of

Fig. XXI-4 is carried out, and then altered to that shown in Fig. XXI-5. Next, the

turns ratio on the ideal transformer in Fig. XXI-5 is fixed to the value

R
L(a- 2) (3)

so that the boxed section becomes equivalent to a "zero section" S of the type shown in

Fig. XXI-2. The cycle is completed by replacing the boxed section of Fig. XXI-5 with

S. The element values of S are found most easily by computing z 2 2 for the boxed

section of Fig. XXI-5, and then realizing z 2 2 on S by Foster's procedure.

The only question that arises in connection with the cycle above is: Does the choice

or turns ratio (3) actually make possible an equivalence between the zero sections of

Figs. XXI-2 and XXI-5? To understand that this is indeed the case, it is only neces-

sary to realize z 2 2 on both networks, compute z1 1 and z 1 2 for each, and notice that

corresponding impedances become equal when

R

We illustrate the cycle of Fig. XXI-2 by realizing the impedance

s(s+2)(s+4) s3 + 6s 2 + 8s
(s+l)(s+3)(s+5) s3 + 9s 2 + 23s + 15

The altered Cauer cycle is shown in Fig. XXI-6. For the boxed section z 2 2 is

2 8 s 5 2 2 8 ( 10 10 10 10
z22  P 9 15 9 15

s+ s+ -
8 8

The correct value for the turns ratio is

1

so that

so that

300



Fig. XXI-6.

2 62

62

Fig. XXI-7.

Fig. XXI-8.
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2 27 9s +- s +
75 5 2 and 5 s

22 4 15 r 186 10s+ 8 s+-8 3

The zero section of Fig. XXI-2 now can be found by Foster's procedure. Z can be
realized by inspection. The final realization is shown in Fig. XXI-7.

The most involved mathematical operation that must be performed to carry out the
cycle of Fig. XXI-2 is the factorization of a second degree polynomial (i. e., the zeros
of z 2 2 must be found). For this reason, realization by the cycle of Fig. XXI-2 some-
times might be preferable to realization by the general Foster procedure, since the
latter requires the factorization of an nth degree polynomial. When the cycle of
Fig. XXI-2 is repeated several times to realize an impedance of higher degree, the
final realization consists of a sequence of bridges within one another. The realization
of a 5th degree impedance has the form shown in Fig. XXI-8.

The method for carrying out the cycle of Fig. XXI-3 is dual to the method for
carrying out the cycle of Fig. XXI-2. This cycle is carried out as follows. First, the
altered Cauer cycle shown in Fig. XXI-9 is carried out. Next, the turns ratio on the
ideal transformer is brought to the value

P L ( R ' (4)

so as to make the boxed section equivalent to a "zero section," zero section S' having
the form shown in Fig. XXI-3. The cycle is completed by replacing the boxed section
of Fig. XXI-9, by S'. The element values of S' are found most conveniently by com-
puting y 2 2 for the boxed section of Fig. XXI-9, and then realizing y 2 2 on the zero

section of Fig. XXI-3 by Foster's procedure.

The assertion upon which the success of the cycle hinges, is that the choice of turns
ratio (4) makes possible an equivalence between the zero sections of Figs. XXI-3 and
XXI-9. To prove that this assertion is correct, it is only necessary to realize y 2 2 on

both zero sections, compute yll and y 2 2 for each, and notice that corresponding pairs
of admittances become equal when

L(a-l a 2 )
R

We illustrate the cycle of Fig. XXI-3 by realizing the impedance

(s+l)(s+3)(s+8) 3 2s + 12s + 35s + 24

(s+2) (s +6) 2 + 8s + 12s + 8s For the boxed section 12

The altered Cauer cycle is shown in Fig. XXI-10. For the boxed section y22 is
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1 (s + 1) (s + 2)
Y22 --

p2 R s + U3

Fig. XXI-9.

1 L----------- 2

Fig. XXI-10.

340 - 2485

Fig. XXI-11.
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2 52 s 6 +2
1 s +5 + 4 8  1 7 7

Y22 2p2 s(s+2) 2p 2

The proper value for the turns ratio is

1(5

2 7

so that

2 52
s +-s + 4849 7

Y22 680 s(s+2)

s(s+2)

and Z = 272'r 21-- 2 .

The element values of the zero section in Fig. XXI-3 now can be found by realizing y 2 2
on the zero section, with Foster's procedure used; Zr can be realized by inspection.

The final realization of Z is shown in Fig. XXI-11.

As is the case for the cycle of Fig. XXI-2, the most involved mathematical oper-

ation that must be performed in carrying out the cycle of Fig. XXI-3 is the factoring of

a 2 nd degree polynomial (i. e., the zeros of y 2 2 must be found).

H. B. Lee, Jr.
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