

Outlook for b and c physics at the LHC in ATLAS and CMS

Attila Krasznahorkay Jr. for the ATLAS and CMS collaborations

Presented at DIS 2007 19. April 2007, Munich

- Overview of the experiments
- Property measurements of heavy-flavoured mesons
- CP violation measurement possibilities
- Rare decay measurements
- Conclusions

The LHC

- 27 km in circumference, colliding protons at \sqrt{s} = 14 TeV
- 4 experiments:
 - LHCb: dedicated to B-physics
 - ALICE: dedicated to heavy ion physics
 - **CMS, ATLAS**: general purpose experiments
- Operation plan:
 - Possibility of a 900 GeV commissioning run in 2007
 - From summer 2008: I4 TeV, low luminosity (L=10³³ cm⁻²s⁻¹)
 - After 3 years of low luminosity, 14 TeV @ L=10³⁴ cm⁻²s⁻¹

B physics at the LHC

- p-p collisions at \sqrt{s} = 14 TeV
- σ(bb) = 500 μb
 - 10⁵ bb pairs/s @ L=10³³ cm⁻²s⁻¹
 - Huge statistics allows precision measurements despite the noisy environment.
- Heavy particle factory, as well as "new particle factory"
- Main B physics interests in ATLAS and CMS:
 - CP violation (e.g. $B \rightarrow J/\psi K^0$)
 - Physics of the B_s meson -> signatures beyond the SM (e.g. B_s->J/ψΦ)
 - Rare B decays (e.g. B->μμX)

The ATLAS detector

- Properties:
 - weight: ~7000 T
 - diameter: 22 m
 - length: 46 m
 - magnetic field: 2 Tesla (solenoid) 0.5 Tesla (toroid)
- Good tracking, calorimetry & muon detection
- Dedicated and flexible B-physics trigger
- No K/π separation

The CMS detector

- Properties:
 - weight: ~12500 T
 - diameter: 15 m
 - Iength: 21.5 m
 - magnetic field: 4 Tesla
- Good tracking, excellent EM calorimetry, good muon detection
- Separate triggers for B-physics channels

Selecting B-physics events

- Both experiments were designed for high-pT (discovery) physics.
- c and b events contain mostly low-p_T particles. -> Triggering and selecting these events is a challenge.
- Many signatures contain one or more muon in their final state. These are of main interest. (Muons are easy to trigger/reconstruct in both experiments.)

B-physics triggers in ATLAS

- At L = 10³³ cm⁻²s⁻¹ (low luminosity): ATLAS uses single particle triggers at LVL1 and extends search for complex signatures in the HLT
 - Starting from LVL1 Jet Rol: hadronic final states, e.g. $B_s \rightarrow D_s(\Phi \pi)\pi$
 - Starting from LVL1 EM Rol: e/γ final states, e.g. $J/\psi \rightarrow ee$, $K^*\gamma$, $\Phi\gamma$
 - Starting from LVLI Muon Rol: To recover di-muon final states in which the second muon was missed at LVLI.
- At L = 10³⁴ cm⁻²s⁻¹ (high luminosity): Start from LVL1 di-muon trigger (pT > 6 GeV)

- B -> J/ψ(μμ)Χ
- double semi-leptonic decays
- Rare decays, e.g. B_s -> μμ

B-physics triggers in CMS

- CMS also uses LVL1 single- (pT > 14 GeV) and dimuon (pT > 3 GeV) triggers, 40 MHz -> 100 kHz accept rate
- The HLT provides fast (local) reconstruction, 100 kHz -> 100 Hz accept rate (~5 Hz for exclusive and inclusive b, c triggers)
 - Reconstruction of three most probable vertices with pixel detector
 - Regional track reconstruction around LVLI muons
 - Search for (un)like charge track pairs in given mass windows

10

Decay length fit possible

B hadron property measurements

- Huge B hadron production statistics will allow precise measurements of their properties at LHC
- The theoretical description of heavy flavoured hadrons needs input at LHC energies
- Precision measurements can be achieved starting from 10 fb⁻¹ (one year at low luminosity) of data

Inclusive b cross section

- Measured b production cross-sections at Tevatron/HERA/LEP are larger than the NLO QCD predictions.
- -> The improvement of the theoretical description requires experimental input from the LHC.
- CMS studied the feasibility to measure the inclusive b production cross section in events with jets and at least one muon.
- The spectrum of the muon p_T with respect to the closest b-tagged jet is characteristic of the inclusive b events.
- It is possible to extract the cross section with a maximum likelihood fit.
- Measurement of B⁺ -> J/ΨK⁺ and inclusive J/Ψ x-section is also planned.

B_c meson properties

13

Bkas 10° Events/ 20 MeV/c² for prompt J/Ψ Bs 10² 10 = 1╞ 10⁻¹ з 5 $m_{J/\Psi\pi \text{ candidate}} (GeV/c^2)$ ÷. Events/0.02GeV/c² for 1 ft 5 00 02GeV/c² for 1 ft 5 00 02GeV/c² for 1 ft 20 15 10E 5 6.25 6.3 6.35 6.4 6.45 6.5 6.55 6.6 $m_{J/\psi\pi}$ (GeV/c²

- Studying B_c can help understanding heavy quark dynamics
 - Different theoretical descriptions give B_c properties with large uncertainties
- CMS studied the channel:
 - B_c -> J/ψπ
- I 20 such events are expected to be selected with I fb⁻¹ of data
 - Expected resolutions:
 - mass: 22.0(stat.), 14.9(syst.) MeV/c²
 - ст: I3.I (stat.), 3.0(syst.) µm

- The full proper-time and angular analyses allow the investigation of several parameters of physics interest in B⁰_s decays.
- If the SM predictions are correct, the weak phase (Φ_s) will not be measured with useful significance, but deviations from the SM could be detected.
- Heavy flavour hadron decays also allow the direct measurement of some CKM matrix elements.

$sin(2\beta)$ measurement

- ATLAS sensitivity to measure $sin(2\beta)$ in the $B^0_d \rightarrow J/\psi K_s$ decay was estimated with a maximum likelihood fit.
- Combining all tags, a precision of 0.01 on sin(2β) could be achieved with 30 fb⁻¹ at low luminosity.

	J/ψ(μ6μ5)	J/ψ(μ6μ3)	J/ψ(elel)
# of reconstructed events	250k	490k	I 5k
Signal/background	28	32	16
$\delta sin(2\beta)_{stat}$ lepton tag	0.023	0.030	0.018
$\delta sin(2\beta)_{stat}$ jet-charge tag	0.015	0.019	-
$\delta sin(2\beta)_{stat}$ combined tag	0.0126	0.016	0.018

Δm_s measurement

- In B⁰_s -> D_sπ, B⁰_s -> D_sa₁ the probability to detect an initially pure B⁰_s as B⁰_s (p+) or as \overline{B}^{0}_{s} (p-) is: $p_{\pm}(t) = e^{-\Gamma t} (\cosh \frac{\Delta \Gamma_{s}}{2} t \pm \cos \Delta m_{s} t) \frac{\Gamma^{2} - \Delta \Gamma_{s}^{2}}{2\Gamma}$
 - Δm_s can be derived from:

$$\frac{p_+(t) - p_-(t)}{p_+(t) + p_-(t)} = \frac{\cos \Delta m_s t}{\cosh \frac{\Delta \Gamma_s}{2} t}$$

• The projection of ATLAS's sensitivity to Δm_s can be seen on the right. A 5 σ limit could be obtained for CDF's measurement already with 10 fb⁻¹

ATLAS sensitivity in $B_s \rightarrow J/\psi \Phi$

For integrated luminosity 30 fb⁻¹

Signal events within kinematic cuts		810 000
Signal events passing L1 & L2 di-muon triggers		623 700
Signal events after offline reconstruction, vertex fit and signal selection cuts		270 700
Bs mass resolution		I6.5 MeV
Bs proper-life time resolution		83 fs
Tag efficiency / wrong tag fraction	jet charge	<mark>63% / 38%</mark>
	electron	<mark>1.2% / 27%</mark>
	muon	2.5% / 24%
Background from J/ψK ^{0*} & bb -> J/ψX		15%

Results

$\sigma(\Phi_s)$ (for $\Delta m_s = 20 \text{ ps}^{-1}$)	0.046
$\sigma(\Delta\Gamma_s)/\Delta\Gamma_s$ supposing $\Delta\Gamma_s/\Gamma_s = 10\%$	13%
$\sigma(\Gamma_s)/\Gamma_s$	1%
$\sigma(A_\parallel)/A_\parallel$	0.9%
$\sigma(A_{\perp})/A_{\perp}$	3%

7 parameters extracted in maximum likelihood 3 helicity amplitudes 2 independent magnitudes and 2 phases: $|A_{\parallel}| |A_{\perp}| \delta_1 \delta_2$ • 3 B_s weak decay param. • $\Gamma_s, \Delta \Gamma_s, \Phi_s$ Fits done in phase-space of three angles: • $\theta_1 \ \theta_2 \ \Phi$

$B_s^0 \rightarrow J/\psi \Phi \rightarrow \mu^+\mu^-K^+K^-$

- CMS also studied this decay channel in a full angular analysis.
- After reconstructing the final state, a maximum likelihood fit could be used to extract all parameters of interest.

Parameter	Inpu <mark>t va</mark> lue	Result	Stat. error	
$ A_0(0) ^2$	0.57	0.57398	0.00267	no
$ A_{\ }(0) ^2$	0.217	0.21808	0.00473	ţ
$ A_{\perp}(0) ^2$	0.213	0.20794	0.00396	₹
$ar{\Gamma}_s$	0.712 ps ⁻¹	0.712358 ps ⁻¹	0.003506 ps ⁻¹	ity
$\Delta\Gamma_s$	0.1 <mark>42 ps⁻¹</mark>	0.134645 ps ⁻¹	0.010825 ps ⁻¹	tiv
$\Delta\Gamma_s/\bar{\Gamma}_s$	0.2	0.189013	0.0157993	nsi
δ_1	Π	2.94405	0.632682	Sel
δ_2	0	-0.109493	0.639713) 2 (
ϕ_s	-0.04	-0.0297427	0.0758856	

t

18

Rare B-decays in ATLAS and CMS

- Rare B-decays, produced by b -> d,s quark transitions, are forbidden at tree level in the SM.
- Their study gives opportunity to:
 - check SM predictions in a high perturbative order
 - search for new physics (SUSY, Extra Dimenstions, ...)
 - find the values of the $|V_{ts}|$ and $|V_{td}|$ CKM matrix elements
 - provide new information on long-distance QCD effects in matrix elements of the tensor currents

$\Lambda_b \rightarrow \Lambda \mu \mu$

 In this process A_{FB} is very sensitive to Supersymmetry both for small and large values of š, where

$$\check{s} = (p_{\mu^+} + p_{\mu^-})/M_{\Lambda_b}^2 \equiv q^2/M_{\Lambda_b}^2$$

- Muon triggers were proven not to change the shape of this distribution
- For 30 fb⁻¹ about 800 signal events are expected
- A clear separation will be possible between SM and some of its extensions

B⁰_d -> K^{*}μ⁺μ⁻ & B⁰_s -> Φμ⁺μ⁻

- Branching ratios and differential distributions of these processes are sensitive to SM extensions.
- After 3 years of data taking, we expect
 - 2500 signal and <12000 background events for B⁰_d -> K^{*}μ⁺μ⁻
 - 900 signal and <10000 background events for B⁰s -> Φμ⁺μ⁻
- Also here it will be possible to set strong limits on SM extensions, or to undoubtfully detect beyond-SM physics.

Expected rates for rare semi-muonic Bdecays in ATLAS

Statistics after trigger+offline reconstruction 3y @ 10³³ cm⁻²s⁻¹ BR used in the Channel MC Upper limit on Signal background* 1.3x10⁻⁶ 2500 <12000 B_d -> K^{0*}μμ 3.5×10⁻⁷ 4000 <12000 B⁺ -> K⁺μμ B⁺ -> K^{+*}μμ 6.4x10⁻⁷ 2300 <12000 <10000 1.0x10⁻⁶ 900 B_s -> Φμμ 2.0×10^{-6} 800 <4000 $\Lambda_b \rightarrow \Lambda \mu \mu$

*) Upper limit on
background obtained
with a sample of 250 000
bb -> μ6μ4X events.
Additional 750 000 are in
production.

LVLI di-muon trigger studies on semi-muonic rare decays

L1 di-muon trigger rate @ 10³³ cm⁻²s⁻¹ using a suppression of false di-muon signals arising from single-muon (bb -> µ6X) events

Fake L1 di-muon trigger rate (using fake suppression)	~150 Hz
L1 trigger rate from real di- muons, dominated by beauty	~200 Hz

B⁰d,s -> μ+μ⁻

BR is sensitive to SUSY and other possible SM

extensions

CATCHISTORIS				
BR used in MC		Luminosity	Signal	Background*
	B _s -> μμ 3.5×10 ⁻⁹ Final detector studies 2006-2007	3y@10 ³³ cm ⁻² s ⁻¹ (30fb ⁻¹)	21	~60
B _s -> μμ 3.5×10 ⁻⁹			Upper limit 6.6x10 ⁻⁹	90% CL
			92	~900
B _d -> μμ 0.9×10 ⁻¹⁰	Early detector studies 2000		Upper limit 3×10 ⁻¹⁰	95% CL

*) Upper limit on background obtained with a sample of 250 000
bb -> μ6μ4X events.
Additional 750 000 are in production.

Details of offline study
done for $L = 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
with final detector layout

Offline selection cuts	BG efficiency	SIG efficiency
isolation: $p^{B}T/(p^{B}T+\Sigma PT(\Delta R < 1.0)) > 0.85$	0.028	0.53
angle between p ^B T and direction to primary vertex < 1 degree	0.024	0.52
Transverse decay length significance L _{xy} /σ _{xy} > 12	0.06	0.49
mass cut: m(B _s) +140MeV -77MeV	6×10 ⁻²	0.77

$B_s \rightarrow \mu^+\mu^-$

24

- At low luminosity CMS expects a ε = 0.019 ± 0.002 signal selection and a η = 2.6x10⁻⁷ background rejection efficiency for this channel.
- For 10 fb⁻¹ (1 year at low luminosity) it gives $N_s = 6.1 \pm 0.6$ signal and $N_b = 13.8^{+22.0}_{-13.8}$ background events.
- This means a B(B⁰s->μ⁺μ⁻) < 1.4x10⁻⁸ at 90% CL after one year of data taking.
- It should be possible to differentiate between $B_s \rightarrow \mu + \mu$ and $B_d \rightarrow \mu + \mu$ decays.
- Imperfect alignment is expected to give a mass resolution decrease of about 10%.

Conclusions

- The LHC will provide experiments with unprecedented statistics of heavy flavour quark production.
- Physics program in both experiments is prepared for all luminosities of the LHC.
- Precision B studies will be useful as additional methods for new physics searches. (Complementing direct searches possible at LHC.)