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A bstract

The use of the BFK L kemel in proved by the inclusion of subleading tem s generated by
renom alization group (RG ) analysis has been suggested to cure the instabilities in the
behavior of the BFKL G reen’s function in the nextto-Jleading approxin ation (NLA ). W e
test the perform ance of a RG —m proved kemel in the determ ination of the am plitude of a
physical process, the electroproduction of two light vectorm esons, In the BFK L approach in
the NLA .W e nd that a am ooth behavior of the am plitude w ith the center-ofm ass energy
can be achieved, setting the renom alization and energy scales appearing in the subleading
term s to values m uch closer to the kinem atical scales of the process than in the approaches
based on the unin proved kemel.

arXiv:0707.4100v2 [hep-ph] 2 Feb 2008


https://core.ac.uk/display/44183147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0707.4100v2

1 Introduction

It is known that hard processes in which the centerofm ass energy is much larger than
all the other scales are the natural ground for the application of the BFK L approach [11].
T his approach was originally developed in the leading logarithm ic approxin ation (LLA ),
w hich m eans resum m ation ofall term s of the form ( 5 In(s))" . In such an approxin ation the
argum ent y of the running coupling and the energy scale are not xed. Thism otivated the
extension of the approach to the next=to—-Jleading logarithm ic approxin ation (NLLA ), which
means resumm ation of all tarm s proportional to  4( sIn(s))". In both approxin ations
the BFK L am plitude appears as a convolution of the G reen’s function of two interacting
R eggeized gluonsw ith the in pact factors of the colliding particles (see, for exam ple, Fig.1).
The G reen’s function, which carries the dependence on the centerofm ass energy, can be
determm Ined through the BFKL equation. The im pact factors are process-dependent and
describe the interaction between R eggeized ghlions and scattering particles.

T he singlet kemelof the BFK L equation in the next+to-leading approxin ation (NLA )was
obtained for the forward case in Ref. [2], com pleting the long program of calculation of the
N LA corrections [3] (fora review ,seeRef. [4]). In the non-forw ard case the ingredients for the
NLA BFKL kemelhave been known for a few years in the case of the color octet representa—
tion In the tchannel [5]. T his color representation isvery im portant to check the consistency
of the schannel unitarity with the glion R eggeization, ie. for the \bootstrap" [6]. M ore
recently, the Jast m issing piece for the determ ination of the non-forward NLA BFK L kemel
hasbeen calculated in the singlet color representation, ie. in the Pom eron channel, relevant
for physical applications [7]. The singlet NLA BFK L kemel in the so-called \dipole form " is
available now also In the coordinate representation [8], which allow s the study of its confor-
m al properties and the com parison w ith the kemel of the Balitsky-K ovchegov [9] equation
In the linear regim e. So far, the color dipole kemel has been calculated in the NLA only for
the quark part [10] and agrees w ith the dipole form of the quark part of the NLA BFKL
kemel.

In thispaperwe w ill focuson the BFK L approach in the NLA and in the case of forward
scattering. Tt is well known that the NLA corrections to the G reen’s function tum out
to be large, this being a signal of the poor convergence of the BFK L series. In order to
\cure" the resulting instability, m ore convergent kemels have been introduced, incliding
term s generated by renomm alization group (RG ), or collinear, analysis [11]. T hey are based
on the ! <hift method [11], with ! being the variable M ellinconjigated to the squared
centerofm ass energy s. Them ain e ect of thism ethod is that the scale=nvariant part of
the kemel eigenvalues carries a dependence on the M ellin variable ! , in such a way that the
position of the sinqularities of the G reen’s filnction in the ! fplane becom es the solution ofan
In plicit equation In ! . M any other studies have been perform ed, either based on this kind
of m proved kemels [12] or analyzing di erent aspects of the kemel NLA and altemative
approaches [13]. The e ects of these collinear corrections in exclusive observables have been
Investigated In Ref. [14], with a posterdori con m ation in Ref. [15].

In Ref. [16] the original approach of Ref. [11] was revisited and an approxim ation to
the original ! <hift was perform ed, leading to an explicit expression for the RG —=im proved



NLA kemel. Tt was shown that this In proved kemel leadsto a NLA BFK L G reen’s function
exem pt of nstabilities. Since thee ect of the RG —im provem ent is tom odify the BFK L kemel
by the inclusion of term s beyond the NLA , one is led to conclude that RG generated tem s,
although form ally subleading, play an in portant num erical role in practical applications.

Tt is very interesting to test the RG —im provam ent of the kemel In the calculation ofa full
physical am plitude, rather than just considering its e ect on the BFK L G reen’s function,
and to com pare it w ith other approaches. A test— eld for this com parison can be provided by

the physical process ! VV ,where representsa virtualphoton and V a Iight neutral
vectormeson ( %;!; ). The am plitude of this reaction has been calculated in Ref. [17]
through the convolution of the (unim proved) BFKL G reen’s function with the v

in pact factors, calculated in Ref. [18]1. In the case of equal photon virtualities, the so—
called \pure" BFKL regin e, a num erical calculation has shown that NLA corrections are
large and of opposite sign w ith regpect to the leading order and are dom inated, at the lower
energies, by the NLA corrections from the in pact factors. Nonetheless, an am plitude for
this process with a an ooth behavior in s could be achieved by \optin izing" the choice of
the energy scale sy and of the renom alization scale i, which appear In the subleading
term s. Later on it has been found that the result is rather stable under change of the
m ethod of optin ization of the perturbative series and of the representation adopted for the
am plitude [191].

T he striking feature of these Investigations was that in all cases the optin alvalues of the
w0 energy param eters tumed out to be quite far from the kinem atical scales of the reaction.
For exam ple, the optin alvalue of the renom alization scale z tumed out to be typically as
largeas 100 ,Q? being the virtuality of the colliding photons. T he proposed explanation
for these \unnatural" values was that they m in ic the unknown next-to-NLA corrections,
which should be large and of opposite sign respect to the NLA in order to preserve the
renorm —and energy scale nvariance of the exact am plitude. If this explanation is correct and
if the RG —=m provam ent of the kemel catches the essential dynam ics from subleading orders,
then, by repeating the num erical determ ination of the ! VV am plitude w ith the use of
an RG —m proved kemel, one should getm ore \natural" values for the optin alchoices of the
energy scales and, of course, results consistent w ith the previousdeterm inations. In thiswork
w e address this question by calculating the NLA am plitude of the ! VV process in the
BFK L approach with the RG —im proved kemel of Ref. [16], which can be straightforwardly
In plam ented in the num erical set up of Refs. [17, 19].

T he paper is organized as follow s: in the next Section we repeat the steps of Refs. [17,
19] to buid up the NLA am plitude in two representations, serdes and \exponentiated",
which in plem ent the RG =im proved kemel of Ref. [16]; in Section 3 we num erically evaluate
the am plitude, considering both the cases of colliding photons w ith the sam e virtualities
and with strongly ordered virtualities. W e stress that n Refs. [17, 19] only the case of
equal photons’ virtualities was considered ; attem pts to determ ine the am plitude for strongly
ordered virtualities were unsuccessfill, due to the large instabilities m et in the num erical
analysis [20]. W e expect that the RG —in provem ent should be even m ore e ective In the
latter case, since it was concetved to work in a kinem atics w ith strong asymm etry in the

1T his am plitude has been considered also in 22,23, 24].



transverse m om entum plane [11].

2 The NLA am plitude w ith the RG —Im proved G reen’s

function ?

W e consider the production of two light vectorm esons (V = 0;1; ) 1 the collision of two
virtual photons,
© ©)! VEe)V(e): (1)

Here, p, and p, are taken as Sudakov vectors satisfying p° = p5 = 0 and 2(pip;) = s; the
virtual photon m om enta are nstead

Q7 °F
P= P —P p’= T —p (2)
s S
so that the photon virtualities tum to be p* =  Q? and (©°)* = Q3. W e consider the
kinem atics when
s Qip  Geni (3)
and ) )
1+ 22 062y, %214 L0672 (4)
s s

In this case the vector m esons are produced by longitudinally polarized photons in the
Iongitudinally polarized state [18]. O ther helicity am plitudes are power suppressed, w ith a
suppression factor my=Q,,.W ew illdiscuss here the am plitude of the forward scattering,
ie. when the transverse m om enta of the produced V m esons are zero or when the variable
t= (o pf takesitsmaximalvaliety= QQ2=s+ O (s ?).

T he forward am plitude in the BFK L. approach m ay be presented as follow s

Z 2 7 2 7 11 |
S dep dep ! s
Ims(A)= — 1(@iso) —5 20 giso) - — Gil@mi®): )
& N 2 1 s

T his representation for the am plitude is vald w ith NLA accuracy.

In Eg. (5), 1(e;sg) and ,( g;s9) are the Im pact factors describing the transitions
P)! Vp)and @) ! V (p,), respectively. The G reen’s function in (5) is determ ined
by the BFK L equation
z
‘@ @)= 16, (@) d9K (@G, (@) ; 6)

2T his Section follow s closely Section 2 oftheRefs. [17,19], the only di erence being theuseofam odi ed
BFKL kemel. The reader already fam iliar w ith the notation and the previous papers m ay prefer to go
straight to the m ain form ulas: Eqg. (36) for the \exponentiated" representation, Eq. (37) for the \series"
representation of the am plitude and Eq. (22) for the extra-term in the BFK L kermel eigenvalue.



Figure 1: Schem atic representation of the am plitude for the () ) ! V (o1)V ;)
forward scattering.

where K (& ;) is the BFKL kemel. It is convenient to work in the transverse m om en-—
tum representation, where \transverse" refers to the plane orthogonal to the vector m esons
m om enta. In this representation, de ned by

q#ui= el (7)
g ipi= Ya @) MPi=mRIKBi= Z d’kA (K)B (K) ; (8)

the kemel of the operatorKA is
K (@)= K i 9)

and the equation for the G reen’s function reads
T=¢ )3 ; (10)

its solution being
g,=@¢ K)': (11)
To clearly indicate the RG —im proved pieces of the kemel, we decom poseKA as
K= K% 2K'+ Ky ; (12)

w here
.= (13)

and N . is the number of colors. In Eq. (12) K © is the BFK L kemel in the LLA ,K ! is the
NLA correction and KARG Includes the RG generated termm s, which are O ( g). The In pact
factors are also presented as an expansion In - ¢

i 4 eqf, 9 —
o= Dy %@+ cU@?) ; D= —2Y N2 1; a4)
Nch;Z



where £, is € m eso (im ensional coupling constant (f 200M eV ) and g should be
replaced by e= 2,e=(3 2)and e=3 forthecassof ?,! and meson production, respec—
tively.

In the collinear factorization approach the m eson transition im pact factor is given as
a convolution of the hard scattering am plitude for the production of a collinear quark{
antiquark pair w ith them eson distribution am plitude (DA ). T he integration variable in this
convolution is the fraction z of them eson m om entum carried by the quark (z 1 =z isthe
m om entum fraction carried by the antiquark):
z1 q 2
), 2
Cy. = dz——""— «(2): 15
12 @) O o+ 2207, x (2) (15)
The NLA correction to the hard scattering am plitude, for a photon w ith virtuality equal to
0?,isde ned as Dllow s
71 2
1 g
cPig?)= dz ————
) 4N g2+ ZZQZ[

(z)+ @  2)k(z); (16)

with (z) given In the Eq. (75) of Ref. [18]. Cl(lz) (g?) are given by the previous expression
with Q ? replaced everywhere in the integrand by Q2 and Q 3, regpectively. W e w ill use the
DA in the asymptotic form {°(z)= 6z(1 z).

To determ ine the am plitude with NLA accuracy we need an approxin ate solution of
Eqg. (11). W ith the required accuracy this solution is

VA AN A A A AN 2
¢ = KOty KO KiK. K9 T+ o0 K1 . (17)

D i erently from Refs. [17,19], where KARG was absent, this G reen’s function inclides e ects
which are beyond the NLA . T he basis of eigenfunctions of the LLA kemel,

1 1

K% i= ()3 i; ()=2 @)  S+i St (18)
is given by the follow ing set of fiilnctions:
o 1 ;103
hyj i= += ; (19)
for which the orthonom ality condition takes the form
Z 2 C
L. dq i 101
h%i= 22 q° = %) (20)

T he action of them odi ed BFK L kemel on these finctions m ay be expressed as follow s:

© ();n(?) i

Kii= o(r) ()Fi+ 2(r) ¢ )+4NC

!

e . .
+ §<R)4NOC(>1@— Ji+ re( )ji; (21)




where the rsttem represents the action of LLA kemel, the second and the third ones stand
for the diagonal and the non-diagonal parts of the NLA BFK L kemel [17]and

( n l
2 % ( 1¥@n) (o+a 2"
re () = 2<e X : P (22)
neo neol'nln+ D)!II=2+1 +m by) )
S 2 a + b 1 ’
1=2+1i +m S 1=2+1 +m (1=2+1i +my¥Y 2(1=2+1 +m?Y
is the solution of the ! shift equation obtained in [16], w ith
5 13 n 55 1 n 11
e P i £ —: (23)
12N, 36N3 36 8N, 6NZ 12
The function “)( ) is conveniently represented in the form
10
1) 0 2 0
= — 1 + ’ 24
() oM. ( 3 () () () (24)
w here .
() = 124()6(3)“%) :
Bl 4 3 cosh( )
! ! #
2sinh( ) ne 11+ 12 72
— 3+ 1+ — ——— 4+ 4 () ; (25)
2 cod’( ) N3 16(1+ 2)
n # -
2 wos( hix)) 2 _ _ Z ma b
()=2 dx——p— — Li(x) ; Lihx)= dt———: (26)
1+ x) x o . t
Hereand below 9 )= d( ( ))=d and O )= F( ( )=

The j 1 representations for the In pact factors are given by the follow ing expressions:

), o 71 ), 2 71
C;y (g”) . Co @g°) .
———= d "a( % "¥i; ———=d e()mji; @7
q 1 q 1
v4 o\ 2 Z oy 1 2
g°) * ) ?
al )= dzqcl‘“(qz)—pz—; ()= dzqcf)(qz)—pi—; (28)
and by sin ilar equations for cil)( ) and cél)( ) from the NLA corrections to the im pact
ﬁctors,cl(l)(qz)and Cz(l)(qz).

Follow Ing Ref. [17], we obtain the am plitude as a spectral decom position on the basis of
elgenfunctions of the LLA BFKL kemel:

8 0 1
71 (1) 1)
Img (A) S s =t=) ) < o () o ()
e a — (e el ) 1+ o( )@ ' A
DD, 27 = s ROmt R a0 el
2 0 AnEl) 13
2 S 4 0 @ 10,720 2 A5
+ c(r)In 5 () an . () ( )+3+l 3 +2In( g 2
)
S
+ In S_ rg () (29)
0



W e nd that

_ =1 ; 31
alt)lel)=070, 07 32 as Yew( ) GH

anei) | TN

ld7=2 3+ 21 )+ (3 21 ) 5+1 5 i n ©:10,) : (32)

Tt can be usefill to separate from the NLA correction to the in pact factor the tem s
containing the dependence on sy and o,

71 qz
C(l)(qz) = dZm k(Z) (33)
H ! ! ! ! 4
1 S ( + zz)! 0 2 5
- In — In + n — + — In( ) + :::
4 Q2 27272 4N Q2 3

A ccordingly, one can w rite

A y=d2( )+ &Y ; (34)
(1)

where ¢, ( ) are the contributions from the term s isolated in the previous equation and
cf;z)( ) represent the rest. In Ref. [17] it was found that

(1)

PO SOy s ey £
a( ) () Q102 2N ¢ 010, 3
3
+ 3+ 21 )+ (3 21 ) §+i — i : (35)

O necan construct iIn nitely m any representations of the am plitude, allof them equivalent
within NLA accuracy. A particular one, m otivated in Ref. [19], is to exponentiate all the
scale-invariant part of the NLA kemel, obtaining

71

Im. @) s s sCr) O 20 Crggs OO D+ ws ()
= d — (rl)a( )a( )
D1D> 2§ . So = F
? ° o W, 0 c() 13
() c () S 0 . ()
41 4+ ez Ay 2 n — @i — =2 4 2m( 2R5:
s(r) <) %) sCr) - () 3 (g P

(36)
A nother possible representation of the am plitude, In som e sense closer to the original dea
of the BFK L approach, is the \series" representation, which reads

QlQZImsA 1 2
= s( r)
D.D, S (2 )2 "
ha g n+l
y+ah — + s(r) ann — (37)
Sp n=1 So
#
s n s n 1
+ b In—  +da(so; r)ID — ;
So So



w here the coe cients .
7,

b, ()
= d ; 38
0.0, a( )l )T (38)

1

are determ ined by the kemel and the i pact factors in LLA and

an S )

Q1Q> -

arise from the collinear im provem ent. T he coe cients

! !

2
d=nh -2 40 mepPily = nin_ 1)
010, 4N b 010, 2
1
7l n 1
010, ()
¥ d m+ DEC el ol A (40)
B S Ty
0.0 e nol )2c(”< ) S ( )3l
1% 2 1
+—=¢ 4 ) 4 + + 1y—>54
b ety ") T " ()

1

are determm ined by the NLA corrections to the kemel and to the in pact factors. H ere, cilz) ()

represent the contribution w ithout the term s depending on sy and , and

- . 3. 3 ,
+ @B+ 2i)+ 3 21 ) -+ 1 — i (41)

£( )=
() > >

wl o

W e stress that the term s in the series representation (37) w ith the a, coe cients are beyond
the NLA , since, as one can easily see from Eq. (22), z¢ 5O ( 2).

3 N um erical results

In this section we present som e num erical results for the dependence in s of the BFK L
am plitude calculated for the process under study, using both the \exponentiated" and the
\series" representations derived in the previous Section. Follow ing Ref. [17], we w i1l adopt
the principle of m inin al sensitivity (PM S) [21] requiring, for each value of s, them Inim al
sensitivity of the predictions to the change ofboth the renom alization and the energy scale,
r and sy. In previous studies, w here the unin proved kemel was used, the optim al choices
for g and sy tumed out to be very far from the kinem atical scales of the process. O ur
aim is to see if and to what extent the inclusion of a collinear in provem ent leads to m ore
\natural" values for the optin al scales. This would dem onstrate that the RG -generated
term s reproduce the essential subleading dynam ics, thus stabilizing the perturbative serdies.
In the follow ing analysis we use the two{loop running coupling corresponding to the value
sM )= 0:12.
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Figure 2: Im.(A )Q?=(sD1D,) as a function of Y at 0%=24 GeV? and n; = 5 i the
\exponentiated" representation with and without collinear in provem ent of the kemel; In
both cases the PM S optin ization m ethod has been usd.

3.1 Symm etric kinem atics

W e consider here the Q; = Q, Q kinem atics, ie. the \pure" BFKL regine, with
0%=24 GeV? and ns = 5. W e start with the \exponentiated" representation, given in
Eg. (36) and set In(s=sy) = Y Yy, where Y = Ih(s=0?) and Y, = Ih(sp=02). W e have
Jooked for the optim alvalue for the scales z and Y. In practice, for each xed value of Y
we have determ ined the optim al choice of these param eters for which the am plitude is the
Jeast sensitive to their variation. W e have found that the am plitude is always quite stable
under variation of both scales and exhibits generally only one stationary point (localm axi-
mum ). W e choose as optin alvalues of the param eters those corresponding to this stationary
point.

The optim al values tumed out to be typically g ’ 30 and Yy, / 2. In com parison
w ith Ref. [17], where the optin al choice was typically z ' 10Q ,we can see that there isa
rem arkable m ove towards \naturalness". T he fact that the inclusion of the RG -term sa ects
the optin al choice of y m ore strongly than of Yy is not surprising, since the added tem s
depend on g and noton Yy. In Fig. 2 we show the result for the (in aghary part of the)
\1n proved" am plitude com pared w ith the result obtained in Ref. [19]. The curves are in
good agreem ent at the lower energies, the deviation increasing for large values of Y . This
is consistent w ith having a Jarger asym ptotic intercept when the collinear in provem ents are
taken into account. W e have to rem em ber, however, that the applicability dom ain of the
BFK L approach is detemm ined by the condition ( g )Y 1, that for our typical optim al
valieof r and PrQ?=24GeV?meansY  6.Around this value the discrepancy is not so
pronounced .
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Figure 3: Im 4 (A )Q%=(sD 1D ,) asa function of Y atQ?=24 G eV? and nf = 5 in the \series"
representation w ith and w ithout collinear in provem ent of the kemel; in both cases the PM S
optin ization m ethod has been usd.

T he next analysis hasbeen done using the \series" representation of the am plitude, given
n Eg. (37). In this case we have also obsarved a sn ooth dependence of the am plitude on
the two energy param eters. T he optin alvalues for Yo and i tumed out to be quite sim ilar
to those obtained for the \exponentiated" representation, z ’ 3Q and Yo / 3. In Fig. 3
we show the behavior in Y of the \series" am plitude, com pared w ith the determ ination of
Ref. [17]. The situation is sim ilar to Fig. 2, but the deviation between the curves appears
to bem ore m arked here. It is in portant to observe that the curves for the \exponentiated"
and \series" representations of the am plitude as functions of Y w ith collinear im provem ent
(e Figs.2 and 3) fallalm ost on top of each other, while In the determ ination w ithout the
collinear in provem ent there was a discrepancy, m ore pronounced at higher energies [19].
T his is a further indication of a better stability, induced by the collinear in provem ent.

In order to m ake visible the e ect of the collinear in provem ent in the \series" represen—
tation we list the rst few coe cients (see Eqg. (37)) b, dn, com Ing from the unin proved
BFKL kemel and in pact factors (in LLA e NLA respectively), and a,, com ing from the
RG wresumm ed tem s. U sing the optin al scales chosen with the PM S m ethod we obtain
Q?%=24GeV?,ns=5,Y9=3, = 30)

Iy = 170664 b = 345920 I = 40:7609 Iy = 330618 by = 20:7467

d; = 0674275 d, 173171 & 746518 4 15927 (42)

a; = 552728 a, = 730295 as = 642149 as = 424011 :

W e can see that the a, coe clents are of the opposite sigh respect to thed ,, so \curing”
the bad behavior of the BFKL series. Even if the values of the a, coe cients go down

10
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Figure 4: Tm (A )Q1Q0,=(sD1D,) as a function of Y for photons with strongly ordered
virtualities (Q,=Q; = 6 and Q,=Q; = 96, with 0,0,=24 G&V?), n com parison w ith the

case of photons w ith equal virtualities (Q? = Q3=24 Ge&V?). A 1l curves have been obtained
using the \exponentiated" representation w ith the collinearly im proved kemel.

w ith n, they appear in Eq. (37) w ith two m ore pow ers of the energy logarithm than the d,
coe clents, so that their e ect is not Iin ited to low energies.

3.2 A symm etric kinem atics

W hen the virtualities of the photons are strongly ordered, we enter the \DG LAP" regin e,
w here collinear e ects should com e heavily into the gam e. In this regin e, previous attam pts
to num erically determ ine the am plitude using unin proved kemels were unsuccessfill due to
severe nstabilities [20]. W e have found here that these instabilities disappear if, instead, the
RG —m proved kemel is usaed.

In the num erical analysis to follow ,we consider tw o choices for the virtualities of the pho—
tons,Q1=2Ge&V,Q,=12GeV and Q,=05GeV,Q,=48GeV , 0 thatQ,Q, = Q?=24 GeV?
in both cases, and usad the \exponentiated" representation. W ede neY = In(s=Q :0Q,) and
Yo = In(sp=Q01Q2).

Forthe rstchoice ofvirtualities,we nd thatforeach Y value the am plitude is stillquite
stable under variation of the energy param eters and the optinalvaliesare z ' 4 Q:Q,
and Yy ’ 2,aln ost independently of Y . T he sam e holds for the second choice of virtualities,
w ith the only di erence that now the optim alvalues Sepend strongly on Y . A s an exam ple,
forY = 6,when <( g)Y 1,theoptinal g is’ 3 Q1Q,,butYy="7. This large value for
Y, should not be surprising: ifwe use Q % as nomm alization scale n Y, instead ofQ ;0 ,, the
optim alvalue owersdown 2.5, which looksm ore \natural".

11



In Fig. 4 we plot the am plitude for the two chojoeﬁgf photons’ virtualities we have
considered, together w ith the am plitude forQ; = Q, = 24 G&V . The am plitude becom es
an aller and an aller when Q ,=Q | Increases, as it m ust be expected due to the presence of the
factor cos( g (Q3=Q?)) in the integration over .W e stressagain that, if the RG -generated
termn s are ram oved, it is Im possible even to draw the curves in Fig. 4 with Q, 6 Q.

4 Conclusions

W e have applied a RG —in proved kemel to determ ine the am plitude for the forw ard transition
from two virtual photons to two light vector m esons in the Regge lin it of QCD w ith next-
to-leading order accuracy. T he result obtained is independent on the energy scale sy, and
on the renomm alization scale z within the next+to-leading approxin ation.

U sing two di erent representations of the am plitude, which include the dependence on
the energy scale and on the renom alization scale at subleading level, we have perform ed a
num erical analysis both in the kinem atics of equal and strongly ordered photons’ virtualities.

An optin ization procedure, based on the principle of m inim al sensitivity, has led to
results stable in the considered energy interval, which allow to predict the energy behavior
of the forward am plitude. T he Im portant nding is that the optim alchoicesof sy and g are
much closer to the kinem atical scales of the problem than in previous determ nations based
on unin proved kemels. This e ect isvery m arked for 3 ,as itmust be expected, since the
extra-term s depend on z and not on sy. This leads us to conclude that the extra-term s
In the BFK L kemel com Ing from collinear in provem ent, which are subleading to the NLA ,
catch an in portant fraction of the dynam ics at higher orders.

M oreover, the use of the In proved kemel has allowed to obtain the energy behavior of
the forward am plitude In the case of strongly ordered photons’ virtualities, which tumed out
to be unaccessible to previous attam pts using unin proved kemels.
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