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Abstract. We introduce pairing matrices on simplicial cell complexes in discrete electromagnetism as a
means to avoid the explicit construction of a topologically dual complex. Interestingly, the Finite Element
Method with first-order Whitney elements – when it is looked upon from a cell-method perspective –
features pairing matrices and thus an implicitly defined dual mesh. We show that the pairing matrix
can be used to construct discrete energy products. In this exercise we find that different formalisms lead
to equivalent matrix representations. Discrete de Rham currents are an elegant way to subsume these
geometrically equivalent but formally distinct ways of defining energy-products.
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and Galerkin methods – 41.20.Cv Electrostatics; Poisson and Laplace equations, boundary-value problems
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1 Introduction

A discrete theory of electromagnetism (DEM) features
discrete fields, discrete derivative operators, and discrete
material operators. Cell methods provide all of these fea-
tures based on an oriented cell complex C, representing a
bounded n-dimensional domain Ω, n = 0, 1, 2, 3, and its
topologically dual complex C

¯
. In this paper we consider

simplicial cell complexes and their barycentric duals.
To the above framework we add the concept of pairing

matrices, first postulated in [1]. They translate coefficient
vectors of a cochain defined on the primal complex into
coefficient vectors of cochains on the (barycentric) dual.
Discrete fields need only be defined on the primal com-
plex. The explicit construction of a dual complex is not
required.

Section 2 briefly recalls the mathematical framework
of discrete electromagnetism. The dual complex, in par-
ticular its boundary, is investigated in Section 3. Section 4
introduces the pairing matrix. Its coefficients are defined
by the principle of interpolation of simplices in Section 4.1,
and its properties are discussed in Section 4.2. Eventually
we discover that the pairing matrix features in a finite-
element method with Whitney elements in Section 5.

The second part of the paper deals with the role of
the pairing matrix in discrete energy products. Two for-
malisms are introduced in Section 6: the discrete wedge
product, which mimics the definition of continuous en-
ergy products; and the chain/cochain formalism, which
discretizes electromagnetic fields as chains and cochains

on one cell complex. Realizing that both formalisms lead
to identical matrix equations, we introduce a further layer
of abstraction in Section 7: the formalism of discrete de
Rham currents, which unifies the above approaches.

Appendix A shows that the pairing operator induces
a chain map between the primal and the closed dual com-
plex. In Appendix B we discuss the equivalence of four
seemingly unrelated results in this paper. Eventually, Ap-
pendix C lists the transformation properties of discrete
fields and operators under a global change of orientation.

2 Mathematical Framework and Notation

We denote F̄ ∈ Fp(Ω) a differential p-form, and
〈
F̄

∣∣ m
〉

the integral of a differential p-form over a p-manifold m ⊂
Ω. Stokes’ theorem for differential forms reads〈

d F̄
∣∣ m

〉
=

〈
F̄

∣∣ bm
〉
, (1)

with the boundary operator b , and the coboundary- or
exterior derivative operator d .

Discrete electromagnetism uses concepts of algebraic
topology such as (co)chains and (co)boundaries. Metric is
introduced in form of discrete Hodge operators. We denote
F̂ ∈ Cp(C) (hat) the p-cochain of a field and {F̂} ∈ Rnp

the coefficient vector of the cochain. Cp(C) or simply Cp

denotes the space of cochains on C. np denotes the num-
ber of p-simplices σ̌p in the complex C. The ith coefficient
of a cochain is obtained from a differential form by the
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2 Bernhard Auchmann, Stefan Kurz: The Pairing Matrix in Discrete Electromagnetism

de Rham map, {F̂}i =
〈
F̄

∣∣ σ̌i
p

〉
. Furthermore č ∈ Cp(C)

(check) denotes a chain of cells and {č} ∈ Rnp the chain’s
coefficient vector. Cp(C) denotes the space of chains. Ob-
jects that are defined on the dual complex are underlined,
e.g. F̂

¯
for a dual cochain. Finally we denote F̃ ∈ Wp(C)

(tilde) the Whitney form, that is the interpolation of a dis-
crete field based on its coefficients {F̂}. The duality prod-
uct of chains and cochains is written

〈
F̂

∣∣ č
〉

= {F̂}
T
{č},

and operators acting on chains and cochains are written
in bold font, e.g., d for the discrete derivative-, b for the
discrete boundary-, and F for the discrete Hodge opera-
tor.

The discrete Stokes theorem reads for F̂ ∈ Cp−1〈
d F̂

∣∣ č
〉

=
〈
F̂

∣∣b č
〉

or (2)

([Dp−1]{F̂})
T
{č} = {F̂}

T
[Bp]{č}, (3)

where [Bp] and [Dp−1] represent the discrete boundary
and coboundary operators acting on p-chains and (p− 1)-
cochains on the coefficient level.

3 Some Remarks on the Dual Complex

We list a few properties of boundary- and coboundary op-
erators on topologically dual cell complexes. The matrices
of discrete boundary- and coboundary operators are re-
lated via

[Bp] = [Dp−1]T, (4 a)
[B
¯

p] = [D
¯

p−1]T, (4 b)
(−1)p[B

¯
p] = [Bn−p+1]T, (4 c)

(−1)p+1[D
¯

p] = [Dn−p−1]T, (4 d)

and from (4 a), (4 c) and (4 d)

(−1)p[B
¯

p] = [Dn−p], (5 a)
[Bn−p] = (−1)p+1[D

¯
p]. (5 b)

Equation (5 a) has an interesting consequence. It is well
known that the discrete coboundary of a constant 0-cochain
F̂ , {F̂}1 = {F̂}2 = · · · = {F̂}n0 , is zero

[D0]{F̂} = {0}. (6)

The constant dual n-chain ň
¯

represents all n-simplices in
the dual complex. From (6) and (5 a) it follows that the
boundary of the dual complex is empty,

[B
¯

n]{ň
¯
} = {0}. (7)

According to the standard definition, a complex which
does not contain all sides of its simplices is not a com-
plex. We shall therefore call the standard complex a closed
complex, and a complex which does not contain its own
boundary, i.e. b ň = 0 for constant, nonzero n̂ ∈ Cn, an
open complex.

Fortunately we can easily find a closure for the open
barycentric dual complex. It is given by the barycentric

dual of the primal boundary complex. Figure 1 (a) shows
a 2-dimensional primal complex C and (b) its open dual
C
¯
. (c) and (d) show the boundary complex Cb = bC and

the dual of the boundary complex C
¯ b . The closed dual

complex is denoted C
¯ c and is given by C

¯ c = C
¯
⊕ C

¯ b .

4 The Pairing Matrix

Pairing matrices map coefficients of primal p-cochains into
coefficients of dual p-cochains on the open dual complex.
We give a definition and discuss the properties of the map-
ping.

4.1 Definition

The definition of pairing matrices is based on the con-
cept of interpolation of simplices [2]. Any p-simplex šp in
the interior of a simplicial n-cell can be expressed as a
weighted sum of p-simplices σ̌I

p in the n-cell’s boundary:

šp = {µ1σ̌
1
p + · · ·+ µnp

σ̌np
p | 0 ≤ µi ≤ 1}, (8)

where np denotes the number of p-cells in the n-cell’s
boundary. We assume that the n-simplex and its sides
are canonically oriented.

For the definition of the coefficients µi we introduce the
set of multiindices Ip. An index I ∈ Ip is given by a set
of ordered integers I := {i1, . . . , ip+1 | i1 < · · · < ip+1}. Ip

has np elements. Each multiindex specifies one p-simplex
by listing the indices of its spanning nodes. We can write
(8) for a p-simplex šp spanned by the nodes x̌1 . . . x̌p+1

[2][3][4]

šp =
∑

I

∑
π

sgn(π)λi1(x̌
1) . . . λip+1(x̌

p+1)σ̌I
p, (9)

where the sums extend over multiindices I ∈ Ip and per-
mutations of each multiindex π ∈ Perm(i1, . . . , ip+1). The
0-forms λij

denote the barycentric coordinate function be-
longing to the node σ̌

ij

0 in the n-simplex.
We will now interpolate the part of a jth dual cell σ̌

¯
j
p

that is contained in a primal n-cell, see Fig. 2 (a) and (b).
We denote this part with a prime σ̌

¯
′
p
j . Note that for p ≥ 2,

the part of a dual cell σ̌
¯
′
p
j is a chain of simplices,

σ̌
¯
′
p
j =

∑
K

šK
p , (10)

see Fig. 2 (c). We require that the dual cochain F̂
¯
′ fulfills〈

F̂
¯
′ ∣∣ σ̌

¯
′
p
j
〉

=
〈
F̂

∣∣ µj
1σ̌

1
p + · · ·+ µj

np
σ̌np

p

〉
(11)

with the coefficients

µj
I =

∑
K

∑
π

sgn(π)λi1(x̌
k1) . . . λip+1(x̌

kp+1). (12)

Recall that the jth dual cell σ̌
¯
′
p
j is composed of simplices

according to (10). The index j is therefore hidden in the

2



Bernhard Auchmann, Stefan Kurz: The Pairing Matrix in Discrete Electromagnetism 3

primal complex open dual complex

boundary of the primal complex

dual of the primal boundary complex,

boundary of the closed dual complex

(a) (b)

(c) (d)

(a) (b) (c)

(c)

Fig. 1. (a) 2-dimensional simplicial complex. (b) Dual complex of the primal complex in (a). The complex is open, i.e. it has
no boundary. (c) 1-dimensional boundary complex of the complex in (a). (d) Dual complex of the 1-dimensional boundary
complex in (c). The dual boundary complex represents the closure of the open dual complex in (b).

primal complex open dual complex

boundary of primal complex

dual of the primal boundary complex

boundary of closed dual complex

(a) (b)

(c) (d)

(a) (b) (c)

(c)

Fig. 2. (a) Part of a dual edge inside a primal n-cell. (b) Part of a dual face inside a primal n-cell. (c) Composition of the
part of the dual 2-cell in (b) from 2-simplices.

sum over K, i.e. over multiindices of simplices. The coef-
ficients of the dual cochain are obtained from

{F̂
¯
′} = [P′p]{F̂}, with (13 a)

[P′p]ij = µj
I . (13 b)

The prime-symbol in (13 b) denotes the element matrix.
Its coefficients describe the coefficient of the ith primal
p-cell in the interpolation of that part of the jth dual
p-cell that lies inside the respective element. The global
matrix [Pp] is obtained from the element matrices [P′p]
taking into account the global orientation of simplices in
C. The matrix transfers coefficients of a p-cochain on the
primal complex into coefficients of a p-cochain on the open
barycentric dual complex

{F̂
¯
} = [Pp]{F̂}, (14)

and is called the pairing matrix in [1].1 We give the pairing
matrices for n = 3, 0 ≤ p ≤ 3:

[P′0] =
(

1
4
,
1
4
,
1
4
,
1
4

)
, (15 a)

1 The matrix was called transfer matrix in [4] and [5].

[P′1] =


0 0 1

12 0 1
12

1
12

0 − 1
12 0 − 1

12 0 1
12

− 1
12 0 0 1

12
1
12 0

1
12

1
12

1
12 0 0 0

 , (15 b)

[P′2] =


0 0 − 1

12
1
12

0 − 1
12 0 1

12
1
12 0 0 1

12
0 − 1

12
1
12 0

1
12 0 1

12 0
1
12

1
12 0 0

 , (15 c)

[P′3] =


1
4
1
4
1
4
1
4

 . (15 d)

A. Bossavit gives a geometric interpretation of the coeffi-
cients µj

I in (12) in terms of ratios of volumes [2]. Note that
the definition of the matrix coefficients only uses barycen-
tric coordinates of nodes that are the barycenters of vol-
umes, faces, or edges. The coefficients therefore do not
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4 Bernhard Auchmann, Stefan Kurz: The Pairing Matrix in Discrete Electromagnetism

depend on the actual shape of a simplex and need to be
calculated only once. The pairing matrix is an affine con-
cept - not a metric one.

The pairing matrix is the matrix representative of the
pairing operator p : Cp(C) → Cp(C

¯
), i.e. F̂

¯
= p F̂ . The

adjoint of the pairing operator maps dual p-chains into
primal p-chains and is denoted q : Cp(C¯

) → Cp(C). Its ma-
trix representative is given by the transpose of the pairing
matrix [Q

¯
p] = [Pp]T.

4.2 Properties

In this section we answer the important question whether
the coboundary of a cochain is preserved under the action
of the pairing operator. If a current-density cochain is de-
fined on the primal complex to be divergence free, is it still
free of divergence on the dual complex? In other words,
does the pairing operator commute with the coboundary
operator, and does it therefore represent a cochain map?

Before we are able to study the properties of the pair-
ing matrix, we need to introduce more operators. The
trace operator t : Cp(C) → Cp(Cb ) restricts a cochain
on a complex to the complex’ boundary. The coefficients
of the matrix representative [Tp] are either 0 or 1. The ad-
joint of the trace operator i : Cp(Cb ) → Cp(C) acts upon
chains in the boundary complex and is called an immer-
sion operator in [6]. Furthermore we introduce the closure
operator c : Cp(C¯

) → Cp−1(C¯ b ) which, as we will see,
closes the boundary of a dual p-cell on the dual complex’
boundary. Its adjoint is the coclosure operator on the dual
complex j : Cp(C

¯ b ) → Cp+1(C
¯
). We find that

[Ip] = [Tp]T, (16)
[J
¯

p] = [Tn−p−1]T, (17)
[In−p−1] = [J

¯
p], (18)

[C
¯

p] = [J
¯

p−1]T. (19)

Writing [Dp
b ] for the matrix representative of the cobound-

ary operator on the boundary complex Cb we find

[Tp+1][Dp] = [Dp

b ][Tp], (20)

which represents the analogue to the continuous equation
t d = d t , i.e. the commutativity of continuous trace- and
coboundary operators. We take the transpose of (20) and
find with (4 d)

[D
¯

p][J
¯

p−1] = −[J
¯

p][D
¯

p−1
b ]. (21)

With these prerequisites we can ask whether the op-
erator q, the adjoint of the pairing operator, represents a
chain map. A chain map is a map between two complexes
CB and CA, q : Cp(CB) → Cp(CA) for all p, that sends
cycles to cycles and boundaries to boundaries, i.e. that
commutes with the boundary operator qbB = bA q. A
chain map induces a cochain map p : Cp(CA) → Cp(CB)
(a discrete pull-back of the chain map) with dB p = pdA.

For CA = C and CB = C
¯

we find

[Pp+1][Dp] = [D
¯

p][Pp] + [J
¯

p][Pp

b ][Tp], (22 a)
[Bp+1][Q

¯
p+1] = [Q

¯
p][B

¯
p+1] + [Ip][Q

¯
p

b ][C
¯

p+1]. (22 b)

which will be proven in Section 6.1. It follows directly that
for CA = Cb and CB = C

¯ b

[Pp+1
b ][Dp

b ] = [D
¯

p

b ][Pp

b ], (23 a)
[Bp+1

b ][Q
¯

p+1
b ] = [Q

¯
p

b ][B
¯

p+1
b ]. (23 b)

We can see that the (co)chain map condition is not met
by the pairing matrix and its adjoint. Equations (22 a)
and (22 b) feature terms from the boundary that break
the symmetry. Only on the boundary complexes Cb and
C
¯ b the (co)chain-map conditions are fulfilled. In other
words, if we want to have the properties of a cochain pre-
served under the action of the pairing operator, we need
to include a boundary term in the derivative on the dual
complex, compare Fig. 3.

Fig. 3. Illustration of (22 a). An electric current density is
mapped from the primal complex in Fig. 1 to the open dual
complex. Applying first the pairing operator and then the dual
derivative, we do not sum the circulation of the magnetic field
along a closed path. The boundary term is needed in order to
close the loop and recover the discrete Ampère’s law on the
dual complex.

5 The Pairing Matrix in FEM

We briefly introduce the finite-element method (FEM)
with Whitney elements.

5.1 Whitney Element FEM

Following a convention, we denote ᾱ a potential, e.g., the
magnetic vector potential Ā or the electric scalar potential
ϕ̄, and η̄ a source field, e.g., an electric current density ̄
or an electric charge density ρ̄. ϑ denotes the material
property. Consider the differential equation

d ∗ϑ d ᾱ = η̄, (24)
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ᾱ ∈ pHd (Ω), η̄ ∈ n−pHd (d , Ω), where η̄ is chosen to lie in
the Sobolev space of closed (n− p)-forms. For a definition
of the Sobolev spaces pHd (Ω) and n−pHd (d , Ω) see, e.g.,
[7]. For a given source η̄, we search for a solution α̃ in a
finite-dimensional subspace Wp(C) of pHd (Ω). An opti-
mum solution is found by the weighted residual method:
The residual is given by

R(α̃) = d ∗ϑ d α̃− η̄. (25)

We require that the weighted residual vanishes for all test
functions w̃p

i in the space of Whitney forms,〈
d ∗ϑ d α̃ ∧ w̃p

i

∣∣ Ω
〉

=
〈
η̄ ∧ w̃p

i

∣∣ Ω
〉
, i = 1, . . . , np. (26)

With
〈
d (F̄ ∧ Ḡ)

∣∣ Ω
〉

=
〈
t F̄ ∧ t Ḡ

∣∣ bΩ
〉

and

d (F̄ ∧ Ḡ) = d F̄ ∧ Ḡ + (−1)pF̄ ∧ d Ḡ, (27)

where F̄ ∈ Fp(Ω), Ḡ ∈ Fn−p−1(Ω), we can rewrite (26)

(−1)n−p
〈
∗ϑ d α̃ ∧ d w̃p

i

∣∣ Ω
〉

+
〈
t ∗ϑ d α̃ ∧ t w̃p

i

∣∣ bΩ
〉

=
〈
η̄ ∧ w̃p

i

∣∣ Ω
〉
,

(28)

i = 1, . . . , np, where t ∗ϑ d α̃ is the Neumann data of the
field problem and t α̃ is the Dirichlet data. On a cell com-
plex C that discretizes the domain Ω, and with Whitney
p-forms available on the complex, (28) is the finite element
formulation of (24).

5.2 Galerkin-Type Matrices

We introduce matrices [Pp] and [Mp
ϑ] by〈

F̃ ∧ G̃
∣∣ Ω

〉
= {Ĝ}

T
[Pp]{F̂}, and (29)〈

∗ϑ F̃ ∧ H̃
∣∣ Ω

〉
= {Ĥ}

T
[Mp

ϑ]{F̂}, (30)

F̃ , H̃ ∈ Wp(C), G̃ ∈ Wn−p(C) with the element matrices
of [Pp] and [Mp

ϑ] defined by

[P′p]ij =
〈
w̃p

j ∧ w̃n−p
i

∣∣ C
〉

and (31)

[M′p
ϑ]ij =

〈
∗ϑ w̃p

j ∧ w̃p
i

∣∣ C
〉
. (32)

Furthermore, we define

[P′p
b ]ij =

〈
t w̃p

j ∧ t w̃n−p−1
i

∣∣ Cb

〉
. (33)

The ”Galerkin-type” matrices are called Galerkin-Hodge
matrix [8] and pairing matrix. It is insightful to realize
that the pairing-matrix definitions (31) and (33) yield
identical matrices as the geometrical definition by inter-
polation of simplices in (13 b). This identity is proven by
verifying that both definitions yield identical matrices for
0 ≤ p ≤ n on one arbitrary simplicial n-cell. Now we can
see that

[Pp] = (−1)p(n−p)[Pn−p]T, (34)

e.g. for n = 3, [Pp] = [P3−p]T, which can be verified in
(15 a)-(15 d).

5.3 DEM Interpretation of FEM

Eventually, we interpolate the source field η̄ ∈ Fn−p(Ω)
in (24) by a Whitney (n− p)-form η̃ ∈ Wn−p(C) and the
Neumann data t ∗ϑ d α̃ by a Whitney (n − p − 1)-form
γ̃ ∈ Wn−p−1(Cb ). We can now rewrite (28):

(−1)n−p[Dp]T[Mp+1
ϑ ][Dp]{α̂}

+[Tp]T[Pn−p−1
b ]{γ̂} = [Pn−p]{η̂}, (35)

which reads with (4 d), (14) and (17)

[D
¯

n−p−1][Mp+1
ϑ ][Dp]{α̂}+ [J

¯
n−p−1]{γ̂

¯
} = {η̂

¯
}. (36)

We have shown that the finite-element method with Whit-
ney forms uses an implicit definition of a barycentric dual
complex.

The coclosure matrix [J
¯

n−p−1] is called jump matrix
in [5]. The second term in (36) can be interpreted as a
single layer of sources (charges or currents) that makes
the Neumann data jump to zero on the domain boundary.
These surface sources contribute to the total sources on
the dual complex. This interpretation has advantages in
the context of a coupling of discrete electromagnetism to
the boundary-element method [5].

6 Discrete Energy Products

In this section we define energy products in discrete elec-
tromagnetism. One definition uses the discrete wedge prod-
uct, whereas another one employs the duality product. We
realize that there exist various ways to introduce a prod-
uct of discrete quantities. With the above findings we also
find that all these definitions are geometrically equivalent.
This will lead to the introduction of discrete de Rham cur-
rents in the next section.

6.1 Discrete Wedge Product

The wedge product of cochains ∧∧ : Cp(C) × Cq(C) →
Cp+q(C) is defined using de Rham- and Whitney maps
(interpolation and discretization) [9]. The discretization
operation, called de Rham map, is defined as

π : Fp(Ω) → Cp(C), F̄ 7→
np∑
i

〈
F̄

∣∣ σ̌i
p

〉
σ̂p

i , (37)

where σ̂p
i is the ith p-cosimplex, i.e. the ith basis ele-

ment of the cochain space Cp. The interpolation operation,
called Whitney map, is defined as

ω : Cp(C) →Wp(C), F̂ 7→ F̃ =
np∑
i

{F̂}iw̃p
i . (38)

The definition of the discrete wedge product reads2

Ĝ ∧∧ F̂ = π(ω Ĝ ∧ ω F̂ ). (39)
2 The discrete wedge product is not associative. This is felt

as a problem by some, but it is of no concern for us here [10].
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6 Bernhard Auchmann, Stefan Kurz: The Pairing Matrix in Discrete Electromagnetism

In particular for Ĝ ∈ Cn−p and F̂ ∈ Cp we find〈
Ĝ ∧∧ F̂

∣∣ C
〉

=
〈
ω Ĝ ∧ ω F̂

∣∣ C
〉

= {F̂}
T
[Pn−p]{Ĝ},

(40)

with the pairing-matrix definition of (31). We realize that
the cochain product can be geometrically interpreted as a
product of primal and dual cochains since

{F̂}
T
[Pn−p]{Ĝ} = {F̂}

T
{Ĝ
¯
}

= (−1)p(n−p){F̂
¯
}

T
{Ĝ}.

(41)

With the linear operator w defined by

w F̂ = (−1)pF̂ for F̂ ∈ Cp(C) (42)

we find in analogy to (27)〈
t F̂ ∧∧ t Ĝ

∣∣ Cb

〉
=〈

d F̂ ∧∧ Ĝ
∣∣ C

〉
+

〈
w F̂ ∧∧d Ĝ

∣∣ C
〉
, (43)

where F̂ ∈ Cp and Ĝ ∈ Cn−p−1. (43) reads in matrix
notation

{Ĝ}
T
[Tn−p−1]T[Pp

b ][Tp]{F̂}=
{Ĝ}

T
[Pp+1][Dp]{F̂}+ (−1)p{Ĝ}

T
[Dn−p−1]T[Pp]{F̂}.

(44)

With (4 d) and (17) we recover (22 a)

[Pp+1][Dp] = [D
¯

p][Pp] + [J
¯

p][Pp

b ][Tp], (45)

which was interpreted in Fig. 3.
As an example for a discrete wedge product in discrete

electromagnetism we define the magnetostatic energy W
in a complex filled with linear material

W =
1
2
〈
B̂ ∧∧ Ĥ

∣∣ C
〉
, (46)

which can be written with (43)

1
2
〈
B̂ ∧∧ Ĥ

∣∣ C
〉

=
1
2
〈
Â ∧∧ ̂

∣∣ C
〉

+
1
2
〈
t Â ∧∧ t Ĥ

∣∣ Cb

〉
. (47)

Note that for the use of the discrete wedge product the
Faraday- and Ampère-Maxwell fields must both be dis-
cretized on the primal complex.

6.2 The Chain-Cochain Interpretation of DEM

Discrete electromagnetism usually defines Faraday- and
Ampère-Maxwell fields as cochains on the pair of a primal
and a dual complex. In this section we propose to let pri-
mal (n − p)-chains take the role of dual p-cochains. The
goal is that, while we loose in intuition, we gain in for-
malism, e.g., by introducing the duality product between
fields and making use of Stokes’ theorem.

The number of primal (n − p)-cells is identical to the
number of dual p-cocells on the open dual complex C

¯
.

This, together with (5 b) enables us to use the canonical

basis isomorphism and interprete the coefficients of a dual
p-cochain as the coefficients of a primal (n− p)-chain

Cp(C
¯
)

∼=- Rnn−p

∼=- Cn−p(C), (48)

or simply {F̂
¯
} = {F̌}, and

dC
¯

∼=- Rnn−p×nn−p−1
∼=- wbC , (49)

where the linear operator w is defined on chains by

w F̌ = (−1)n−pF̌ for F̌ ∈ Cp(C), (50)

compare (42). As for dual cochains on the open dual com-
plex, a derivative of a primal chain is constituted of the
boundary operator acting on the chain and an immer-
sion from the boundary complex. As an example we take
Ampère’s law

̌ = b Ȟ + i Ȟb , (51)

and Gauss’ law

ρ̌ = −b Ď + i Ďb . (52)

It comes as no surprise, that the coefficients of a primal
(n − p)-chain can be obtained from those of a primal p-
cochain by means of the pairing matrix. The pairing op-
erator is now defined as p : Cp(C) → Cn−p(C) and from
(22 a) we obtain

pd = wbp + i p t . (53)

The magnetostatic energy in linear media can be calcu-
lated from

1
2
〈
B̂

∣∣ Ȟ
〉

=
1
2
〈
d Â

∣∣ Ȟ
〉
, (54 a)

=
1
2
〈
Â

∣∣b Ȟ
〉
, (54 b)

=
1
2
〈
Â

∣∣ ̌
〉
− 1

2
〈
Â

∣∣ i Ȟb

〉
. (54 c)

It can be easily verified that (47) and (54 c) have identical
matrix representations, see (55), provided that the 2-chain
Ȟ and the 1-chain ̌ are obtained from the 1-cochain Ĥ
and the 2-cochain ̂ by Ȟ = p Ĥ and ̌ = p ̂.

7 Discrete de Rham Currents

In the last section we have seen that discrete energy prod-
ucts can be formulated in two different ways. The wedge-
product formalism is derived in analogy to the continuous
theory. The duality product between chains and cochains
is a new and simple approach, but not quite intuitive. A
third product of the same kind is used, e.g. in [10], which
is defined as the product of primal p-cochains and dual
(n−p)-cochains, compare (41). Of course, this latter prod-
uct is isomorphic to the chain-cochain product by (48). It

6
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lacks, however, the convenience of Stoke’s theorem. Even
a primal-chain/dual-chain representation of discrete elec-
tromagnetism is conceivable.3 This approach however does
not seem to have merits for our present work. In what fol-
lows we shall only use wedge- and duality-product versions
of energy products.

With the use of the pairing operator, all of the above-
mentioned versions of energy products have identical ma-
trix representations. For the magnetostatic energy it reads

1
2
{B̂}

T
[P1]{Ĥ}

= 1
2{Â}

T
[P2]{̂} − 1

2{Â}
T
[T1]T[P1

b ][T1]{Ĥ}.
(55)

In the chain-cochain interpretation we read the pairing
matrix as a mapping from cochain coefficients to chain co-
efficients. In the wedge-product interpretation we read it
as the agent of the discrete wedge product, evaluated over
the complex. Note that the wedge-product matrix repre-
sentation strictly speaking is the transpose of the above
equation according to (40), which explains the change of
sign in the boundary term, see (34).

One might argue that, if the system of linear equa-
tions arising from a discrete-electromagnetism formulation
is identical whatever concept we use, then there should ex-
ist a formalism that unifies all different approaches. This
formalism, based on de Rham’s continuous theory of cur-
rents [12], was proposed in [6].

7.1 Discrete Currents

A discrete current of dimension p and degree n−p is a map
of p-cochains into reals, i.e. currents are functionals on
cochains. The linear space of discrete currents is denoted
by Cn−p

p (C) or simply Cn−p
p . (n − p)-cochains as well as

p-chains qualify as currents T ∈ Cn−p
p

T : Cp → R,

F̂ 7→ T [ F̂ ] =
〈
F̂

∣∣ Ť
〉

=
〈
T̂ ∧∧ F̂

∣∣ C
〉
.

(56)

The use of the pairing operator Ť = p T̂ ensures that Ť
and T̂ in the above equation are the representatives of the
same current T .

7.2 Operators on Currents

The boundary operator on currents is defined in accor-
dance with the discrete Stokes theorem b : Cn−p

p (C) →
3 In [11] 322ff. G. de Rham mentions the Kronecker index

I(č1č
¯2) of the cut prodcut between two chains č1 and č

¯2 of
dimension p and n − p. In our context this operation defines
a product of primal and dual chains that has the coefficient
representation I(č1č

¯2) = {č1}T{č
¯2}. de Rham proceeds to il-

lustrate the duality of chains and forms: he gives the index
of the wedge-product of an (n − p)-form F̄ 1 and a p-form F̄ 2

as I(F̄ 1F̄ 2) =
˙
F̄ 1 ∧ F̄ 2

˛̨
Ω

¸
. He then sets out to show that

this duality is rooted in a deeper identity of chains and forms,
which is exhibited in the current formalism.

Cn−p+1
p−1 (C)

bT [ F̂ ] = T [d F̂ ] (57 a)

=
〈
T̂ ∧∧d F̂

∣∣ C
〉

(57 b)

=
〈
F̂

∣∣b Ť
〉

=
〈
d F̂

∣∣ Ť
〉
. (57 c)

The linear operator w acts as w T = (−1)p T where p is
the degree of the current. We (re)introduce the immersion
operator as a mapping

i : Cm−p
p (B) → Cn−p

p (C), p ≤ m ≤ n, (58)

where B is an m-dimensional subcomplex of C. A discrete
trace operator on currents is defined as a restriction to the
boundary Cb ,

t : Cn−p
p (C) → Cn−p

p−1 (Cb )
tT [ Ĝ ] =

〈
t T̂ ∧∧ Ĝ

∣∣ Cb

〉
=

〈
Ĝ

∣∣ t Ť
〉
,

(59)

with Ĝ ∈ Cp(Cb ). The trace of a chain is defined as

t Ť = p t T̂ . (60)

Furthermore the adjoint of an immersion acting upon a
trace is a trace, i.e.

i tT [ F̂ ] = tT [ t F̂ ], F̂ ∈ Cp(C). (61)

The definition of the coboundary operator reads

d : Cn−p
p (C)→ Cn−p+1

p−1 (C),
dT [ F̂ ] =

〈
d T̂ ∧∧ F̂

∣∣ C
〉

=
〈
F̂

∣∣d Ť
〉
,

(62)

where the coboundary of a chain is defined by

d Ť = pd T̂ . (63)

It follows that

d = wb + i t . (64)

The discrete Hodge operator is a mapping from cochains
to currents, F : Cp(C) → Cn−p

p (C). We set H = FĜ and
define similarly to (39)

Ĥ ∧∧ F̂ = π (∗ ω Ĝ ∧ ω F̂ ). (65)

It follows that

FĜ [ F̂ ] =
〈
Ĥ ∧∧ F̂

∣∣ C
〉

=
〈
∗ ωĜ ∧ ωF̂

∣∣ C
〉
,

=
〈
F̂

∣∣ Ȟ
〉
,

(66)

For Ĝ ∈ Cp we find

FĜ [ F̂ ] = {F̂}
T
[Mp]{Ĝ}, (67)

where the element matrix [M′p] of a canonically oriented
simplex is defined as

[M′p]ij =
〈
∗ w̃p

j ∧ w̃p
i

∣∣ C
〉
. (68)

The above defined operator is called the Galerkin Hodge
operator, compare (32). Alternative definitions of a dis-
crete Hodge operator do not obstruct the presented for-
malism.

7
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7.3 Currents in Discrete Electromagnetism

Objects that are discretized on the dual complex (dual
cochains, primal chains) can be interpreted as currents.
Generally, the Faraday complex is discretized on the pri-
mal complex and the Ampère-Maxwell complex on the
dual complex. Hence, Ampère-Maxwell fields should be
discretized by currents, mapping Faraday fields to energy
quantities. For the magnetostatic energy in linear media
this reads

1
2
H [ B̂ ] =

1
2
 [ Â ]− 1

2
tH [ t Â ]. (69)

We can write the topological diagrams of discrete electro-
magnetism.

ϕ̂ ρ
∂t- 0

@
@
@
−d
R �

�
�d �

�
�
�d �

Â
−∂t- Ê D

−∂t- 

@
@
@
d
R

@
@
@
−d
R �

�
�d �

B̂
−∂t- 0 H

@
@
@
d
R

0

(70)

The functionals of the Ampère-Maxwell complex on the
right-hand side map cochains of the Faraday complex on
the same row of the left-hand side into energy-related
quantities.

The pairing matrix has vanished from the visible for-
malism, as has the dual complex. Their definitions are
implicit to the action of a current on a cochain.

8 Conclusion

We calculate the coefficients of the pairing matrix and see
that it maps cochain coefficients on the simplicial primal
complex into cochain coefficients on the open barycentric
dual complex. We find that pairing matrices also figure
in Whitney-element FEM and in the discrete wedge prod-
uct. This finding allows for a geometric interpretation of
the wedge product in terms of a duality product between
primal cochains and primal chains. The equivalence of the
matrix representations of these two formalisms leads us
from the duality of chains and cochains to their unifica-
tion in the formalism of de Rham’s currents.

The practical importance of the pairing matrix lies in
the possibility to avoid the explicit construction of a dual
cell complex. It should be interesting to define pairing ma-
trices for dual complexes other than barycentric duals. A
further advantage of the presented theory lies in the clarifi-
cation of apparent ambiguities in the definition of discrete
energy products by means of de Rham’s currents.

A A (Co)Chain Map between Primal and
Closed Dual Complex

The operators [B
¯

p] and [D
¯

p], as well as [Q
¯

p] and [Pp] are
defined for the open dual complex C

¯
. Intuitively we un-

derstand that a map between an open and a closed com-
plex cannot possibly preserve boundaries. To find a chain
map we rather have to consider the closed dual complex
C
¯ c = C

¯
⊕C

¯ b , see Section 3, for CB , and the primal com-
plex for CA. Then we find(

[Pp+1] 0
0 [Pp+1

b ]

)(
[ 1 ]

[Tp+1]

)
︸ ︷︷ ︸

p∗

[Dp]︸︷︷︸
dA

=
(
[D
¯

p] [J
¯

p]
0 [D

¯
p
b ]

)
︸ ︷︷ ︸

dB

(
[Pp] 0
0 [Pp

b ]

)(
[ 1 ]
[Tp]

)
︸ ︷︷ ︸

p∗

,
(71 a)

[Bp+1]︸ ︷︷ ︸
bA

(
[ 1 ] [Ip+1]

)([Q
¯

p+1] 0
0 [Q

¯
p+1
b ]

)
︸ ︷︷ ︸

q∗

=
(
[ 1 ] [Ip]

)([Q
¯

p] 0
0 [Q

¯
p
b ]

)
︸ ︷︷ ︸

q∗

(
[B
¯

p+1] 0
[C
¯

p+1] [B
¯

p+1
b ]

)
︸ ︷︷ ︸

bB

,
(71 b)

where [ 1 ] denotes the identity. We have therefore estab-
lished that for CA = C and CB = C

¯ c

p∗ dA = dB p∗, (72 a)
bA q∗ = q∗ bB . (72 b)

Furthermore dA dA = 0 and bA bA = 0 follow from the
discrete Poincaré lemma (a (co)boundary of a (co)boundary
is empty). dB dB = 0 and bB bB = 0 follow from the
Poincaré lemma and (21).

B Four Geometrically Equivalent Formulae

We list the geometrically equivalent expressions (43), (45),
(53), and (64)〈

d F̂ ∧∧ Ĝ
∣∣ C

〉
=

−
〈
w F̂ ∧∧d Ĝ

∣∣ C
〉

+
〈
t F̂ ∧∧ t Ĝ

∣∣ Cb

〉
, (73 a)

[Pp+1][Dp] = [D
¯

p][Pp] + [J
¯

p][Pp

b ][Tp], (73 b)
pd = wbp + i p t , (73 c)

d = wb + i t . (73 d)

– (73 a) is concerned with the wedge product between
primal cochains. It represents the discrete version of
an integration by parts.

– (73 b) defines the commutation of pairing operator and
derivative operator. Here, the pairing operator is inter-
preted as a map from primal chochains to dual cochains.
The boundary term of (73 b) is needed to ”close the
loops” in the dual derivative, compare Fig. 3. The re-
lation between (73 a) and (73 b) was derived in Sec-
tion 6.1.

8
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– In (73 c) the pairing operator is interpreted as a map-
ping from cochains to chains on the primal complex. In
matrix notation, (73 b) and (73 c) are equivalent due
to (5 b), [Bn−p] = (−1)p+1[D

¯
p].

– (73 d) is defined for discrete de Rham currents. It is
valid for the cochain representation of a current due to
(73 a), as well as for the chain representation in (73 c).

All equations (73 a) to (73 d) are based on the same geo-
metrical ground, which is best described by the Figure 3.

C Even and Odd Objects

As a last observation we take a look at the behavior of
various mathematical objects of continuous and discrete
electromagnetism under a change of (inner) orientation of
the underlying cell complex.

We generally say that discrete Faraday- and Ampère-
Maxwell fields are discretized on inner- and outer oriented
complexes, respectively. This concept has difficulties: The
theory of integration does not know outer orientation, but
uses even and odd differential forms on inner oriented
manifolds. De Rham maps can therefore only be applied
on inner oriented complexes, by integrating even and odd
differential forms of Faraday- and Ampère-Maxwell fields
over cells.

This insight implies the solution to another problem: In
a one-mesh method, such as the finite-element method or
a discrete-electromagnetism approach with pairing matri-
ces, all fields need to be discretized on the same complex.
Is it inner- or outer oriented? Or do we need to foresee two
copies of the same complex with inner- and outer orienta-
tion? The answer is that one inner oriented complex will
do the trick for both types of fields, provided that we are
clear about the transformation properties of discrete fields
and operators under a global change of orientation which
affects all cells in the complex, from nodes to volumes.

We shall call an object even if it keeps its sign, and
odd if it changes its sign under a global change of orienta-
tion. For discrete objects the even and odd qualifiers apply
to the respective coefficients. The results are displayed in
Tables 1 and 2.

Table 1. Even and odd quantities and operators in continuous
electromagnetism.

Object Even / Odd

straight (even) differential form even
twisted (odd) differential form odd
continuous coboundary even
continuous Hodge operator odd
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