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A. VELOCITY DISTRIBUTION MEASUREMENTS

The experimental apparatus for the measurement of the longitudinal velocity distri-

bution has been completed and tested for the required properties. Basically, the veloc-

ity distribution is measured by the observation of the cyclotron radiation from individual

electrons (that is, in the transparent limit) at two axially separated positions in the

positive column of a dc discharge. The crosscorrelation function of the radiation at

these two positions is then proportional to the axial velocity distribution with the velocity

scale being the separation distance divided by the time scale of the crosscorrelation

function.

The existence of collisions imposes some restrictions on the dimensions of the sys-

tem. It is necessary to restrict the size of the plasma that is observed at each of the

axial positions so that the ratio of the length of observation at one position to the distance

between the positions is small. This limitation allows the "window" on the velocity dis-

tribution to be a small fraction of the velocity that is being measured. The separation

between the two observation ports is restricted to be somewhat less than a mean-free

path for elastic electronic collisions because the technique of measuring the crosscor-

relation function requires that the radiation from each individual electron at one position

be coherent with itself when it reaches the second position. The coherence is preserved

only if the electron does not collide during its flight along the magnetic field from one

position to the other. The error in the measurements resulting from these unwanted

collisions could, in theory, be corrected for by knowing the probability of collision as

a function of velocity. Fig. X-l is the schematic representation of the technique of

measurement. Furthermore, if one were to call the radiation by one electron into the

waveguide nearest the cathode S2(t), then, if the electron reaches the waveguide nearest

the anode without colliding, the signal received at this position, S (t), would be just

S2(t-d/vl), where d is the waveguide separation, and v1 is the electron's velocity along
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under Contract AF19(604)-5992; and in part by the National Science Foundation under
Grant G-9330.
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the magnetic field toward the anode of the discharge. One sees that simply by delaying

S2 (t) by the time r, the power in the product [Sl(t)][S 2 (t-T)] is equal to the power radi-

ated by each electron times the number of electrons proceeding longitudinally with veloc-

ity d/T (within some uncertainty of velocity caused by the nonzero time duration within

the waveguides). Figure X-2 is a block diagram of the equipment required to make the

mathematical manipulations indicated above.
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for white noise

The crosscorrelation system was tested as follows: The bremsstrahlung noise from

a fluorescent tube was passed through one of several filters in turn. The power out of

the filter was split into two paths through a hybrid tee and was fed into the input channels

of the crosscorrelator, thereby making it into an autocorrelator. Since the autocorrela-

tion function of the noise should simply be the Fourier transform of the magnitude

squared of the filter transfer function, one can check the operation of the crosscorrelator

by comparing the correlation function with the transform of the measured filter frequency

characteristics. Actually, this test was made on two filters, one with a Z00-mc band-

width and the other with 40-mc bandwidth. The autocorrelation functions were merely

compared with respect to the rate of drop-off with increasing T and the theoretical rate

that one would expect. These data are given in Fig. X-3.

S. Gruber
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B. MAGNETOAMBIPOLAR DIFFUSION

A Master's thesis, entitled "Steady-State Diffusion Currents in a Cylindrical Mag-
netoambipolar Plasma," was submitted to the Department of Electrical Engineering,
M. I. T., in January 1962, by Herbert B. Wollman. Partial results of his experimental
measurements were published in Quarterly Progress Report No. 63 (pages 8-11).
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Fig. X-4. Magnetized plasma in a cylindrical cavity.

Our analysis of the probleml exhibits fair agreement with the results of Wollman's
thesis. It has always been necessary, however, to assume that the density distribution
in a cylindrical cavity with conducting walls is in its lowest mode. The theoretical proof
of this fact has now been completed and is presented in this report.

The steady-state transport and conservation equations of ions and electrons in the
cylindrical cavity of Fig. X-4 with a uniform magnetic field along its axis are:

S =-D an (1)iz az a8z (

an __nFr -b D -r nbFi ar (2)±r ± ± ar

V *.F = nvi,  (3)

where .Iz and ir are the axial and radial current densities of the ion and electron, n
is the electron or ion density which are set equal, is the electrostatic potential, D
and L± are the diffusion and mobility coefficients, v is the electron ionization frequency
assumed to be constant throughout the cavity, and b are the ion and electron "magnetic
quenching factors" given by

b 2 2 (4)
1+ ± B

In this system of six equations, there are six unknowns, r, r , n, and 4, and,
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although we are assured of a solution, the equations are nonlinear because of the mobil-

ity terms. It is possible to eliminate the nonlinear terms from (1) and (2), and, by so

doing, we get

+z -z an
+ - -(T +T ) (5)

L+ p_ +

r + r -(T +T )an 
(6)

+ b + 8r

Equations 3, 5, and 6 now represent a system of four linear equations, but, unfortu-

nately, there are five unknowns.

If we now assume that the walls of the cavity in Fig. X-4 are insulating, then the

congruence condition applies, namely +r = _r and +z . With these two addi-

tional equations our solution is determined, and the equation for the density n is an

eigenvalue problem when the density is set equal to zero at the walls, that is,

n = nkJ(r/Ak) cos (z/A,), (7)

kk

where Ak = R/ak, with ak the zeros of Jo; and Ap = L/fTr, with f odd. The condition

for any of these modes to exist in the steady state is

v. bi a 1 1
= 0 with b = (8)D 2 2 a 2a A A 1+p._ B

and, since v. can have only one value, only one mode exists for the lowest value of v.,

namely n 1 1. This result is well known.

If, however, we make the cavity walls conducting, the congruence condition is no

longer true, and the ion and electron currents may be vastly different. The best that

one can do with Eqs. 3, 5, and 6 is to make a harmonic analysis of the density and cur-

rents. Thus the density can again be written as a sum of modes, as in Eq. 7. The cur-

rents are then given by

Fz Fz, kOJ(r/Ak) sin (z/A), F±r C i r , kJl(r/Ak) cos (z/A 2 )

ki kk

(9)
with

(10)
nkAf D a  2 b -b D 2  A 2]

A a A k
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r b b
±r, kj a a b an D 2 b -b (11)

kAka Ak a a Ak k f

It is clear that v. can now have a range of values and, in addition, the higher modes

may exist simultaneously with the fundamental. The only requirement is that the total

density in the plasma and the net current to the wall never become negative. Therefore

the analysis, thus far, does not indicate the magnitude of the higher modes. In order to

determine the values of nk, rir, k', and Fz, k' we must substitute these back in the

nonlinear equations (1) and (2) and solve for the electric field.

n k() Iz k (r/Ak) sin (z/Ap)

E kz (12)

Snki J (r/A k ) cos (z/A )
ki

I nk()T Ir, kI J(r/Ak) cos (z/A 2 )

E k (13)

Snki Jo(r/Ak) cos (z/A )
ki

in which T = TT_/T + T, and Iz, k and Ir, k are complicated expressions of b , D ,

A , A, and v ..

Now there are constraints on E z and E , since the cavity wall is a unipotential sur-z r
face. But this surface is in contact with the sheath and not the plasma, and our solutions

for the density and field are not valid in the sheath. The preceding derivation has not

been for nought, however, because we must also satisfy a zero curl for the electric

field:

aE aEz r
8r 8z (14)

Performing these differentiations, we find that, although it is all right for any mode to

exist by itself, if any two modes exist together, Eq. 14 is violated. The very important

conclusion, therefore, is that only the lowest mode can exist in the plasma region.

Because of this, it is possible to determine the required v. and the magnitude of the

unbalanced currents.

We can now conclude that, in addition to the unbalanced currents that cause a cur-

rent flow from the radial wall to the axial wall and back through the plasma, as shown

in Fig. X-4, there will be other currents that flow in the walls and return through the
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sheaths. These currents arise because the sheath voltage drop must adjust itself to

a unipotential surface. The analysis of these sheath currents is difficult but will be

attempted.
D. R. Whitehouse
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C. THE WAKE OF A CHARGED PARTICLE MOVING THROUGH A PLASMA

WITH MAGNETIC FIELD

A charged particle moving in a plasma will have both short- and long-range inter-

action with the surrounding medium. For a low-density plasma, the long-range Coulomb

force is of major importance and causes a certain charge distribution to develop in the

plasma surrounding the moving particle. For a field-free plasma, and with the ions at

rest, this situation has been discussed by Bohm and Pines, Akhiezer and Sitenko,Z and

and Majumdar. 3 In this report a similar investigation is presented for a plasma with a

magnetic field.

Following Majumdar,3 we shall represent the plasma by the linearized transport

equation in hydrodynamic approximation:

av e- V e- E- V n -- vxH, (1)8t m n mc o

where Ho is the constant magnetic field along the z-direction, n and E are the pertur-

bations of electron density and macroscopic field in the plasma, n o is the average den-

sity, - is the perturbation in the plasma electron velocity, and V is the average thermal

velocity of the electrons.

The field quantities that are due to a test particle of charge q and velocity V in the

z-direction are given by Maxwell's equations:

1 8HVx E - (2)c 8t

1 8E 47 - 4w
H = -- n ev + -- qV 6(-V t) (3)

c 8t c o c o

SE = -41ne + 4rq6(i:-Vot) (4)

V - H = 0. (5)

A Fourier analysis of Eqs. 1-5 gives the following expression for the total charge
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density developed:

2

p(r,t) = q3 e dk (6)
8w f(k)

where

k2V2 2 ~ 2 k2c2 2 2 2 c2 _ 2 2c k2 akk(c-V2

(-w [J )j ( 2 (w2 _c2 k2 ) k 2 c2  2( 2 + 2 2  2 2 2 c k c22p c\ w c P

(7)
In (7),

w k V (8)

is the circular frequency of the Fourier transform pk of the density, k z and k are the

components of propagation vector k along and at right angles to the z-direction, w0 and
p

wc are the usual plasma and the cyclotron frequencies, f(k) = 0 gives the dispersion rela-
tion of the disturbance in the plasma, which has been discussed by Allis. 4

5Following Koster, we evaluate the integral in (6) by the saddle-point method,
assuming large values of the quantity R =r - V t. The result is

2qw ik R

S 2 2
a f(ko) 8 f(ko)

2 2

and K2 and K3 are the two components of the vector k = K - which measures the devia-
tion of k from the saddle point. These components lie in a plane that is tangent to the
surface f(k) = 0, at the point k = q. The condition for the right-hand side of (9) to be
nonzero is that the vector R should be antiparallel to the normal Vf(k ) at the point k

0 0
on the surface f(k) 0.

R is antiparallel to Vf(k ). (10)

This last condition determines the shape the shape of the charge-density distribution, and the solu-
tion of f(k) = 0 determines the type of charge-density wave that will be set up in

the medium.

Now, f(k) = 0 is a bicubic equation in k. It is solved by assuming that the velocity
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V is small compared with the velocity of light c, and by neglecting c as compared
22

with k c . The last assumption means that the wavelength of the disturbance must be

much less than c/w . As c/wp is much greater than the Debye length V/w , this approx-

imation excludes only very long wavelengths from our consideration.

With these assumptions, detailed examination of the equation f(k) = 0 shows that there

are three types of wave surface in a plot of k vs k . The first solution gives an openz p
surface that is very similar to a hyperbola bounded by two asymptotes. This exists only

for particle velocity V > V. Use of the condition (10), then, at once suggests that the
o -1V

whole disturbance is confined within a cone with semiangle given by sin V . The dis-

tribution of the charge density within this cone is calculated to be 0

2
q p

P - V
2

exp i 2 2 2) 1

2 2 1/2
Rp +w

24 p c 2
z 2 Rz 2 p

/2 p

R2 4 + R
z p

E z R p )

V

( 2 1/2)V
and

2

[D]= 1+-- 2
p

Rz22 - R2
z P

2 2
w +w

RZ4 p c R2
Rzp + 2 R
z 2 p

p

2 P4
z

R 2 4 R 2

zp +Rzp

34R2R
2

z p

(R2 4+R
\z P)

3V 2 - 2V 2

V2 _ 2  4R
V -V

V 2 + 2V

V2 2 V2V--V

2 2

R24 p c R2
z + Rpz P

p

The quantities R and R are the components of R, and are shown in Fig. X-5.
z p

Therefore this is a shock wave confined within a Mach cone behind the moving particle.

The second solution gives an elliptical wave with the moving particle at its center:

where

(11)

1/2

2 V2
WV

c 0
2 2

p

1/2
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2
q p

P -

exp i c iR+ R o 
V z p 2 2

c

(R2z + R
P

22 22 2
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Wo V
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This is also a radiated wave from the moving particle, existing for both V > and <V. It
o
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Fig. X-5. Diagram showing the point of observation with respect to the moving particle.

vanishes when we goes to zero.

The third solution gives a spherical wave for large values of w :

2 2qw w 2
p pV

4wc Cc cc

exp i V

LWc c IR ]

(13)

If w is zero, then in place of (13) we get a damped solution for p:
c2

4-2c

2 v1/2

(2c-V2)

expR
2  2c 2  2

Lx Zc z 2c2 - V p2 1/2
R2 2c 2  2 11
R 2P C + R 

2c 2 _V 2 + J1

where

(12)

26 - V2
+4

V 2

o

c
2

p

qw p
28rc2

8we
(14)
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This is also elliptical in shape, surrounds the moving particle, and is almost identical

with the transverse disturbance in the field-free plasma,3 the slight difference arising
2 22

from the neglect of w compared with k c

S. K. Majumdar

(Alfred P. Sloan Postdoctoral Fellow)
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D. DETERMINATION OF ELECTRON ENERGIES AND ENERGY DISTRIBUTIONS

FROM MEASUREMENTS OF THE NONTHERMAL RADIATION FROM PLASMAS

In a previous report I we described measurements of the ratio of emission to the

absorption coefficient j /a from a plasma. Measurements of the departure of this

ratio from the Kirchhoff-Planck law,

jw 2j-- = kT, 
(1)a --- 3 kT

W 87w c

afford a convenient method of estimating the mean electron energy and the distribution

of electron velocities in a plasma. When the plasma is not in thermodynamic equilib-

rium (that is, when Eq. 1 does not hold) we may write the ratio of emission to absorp-

tion symbolically as

j 2
- - 2 kT (2)

a 32 r
w 8rr c

Here, Tr is a fictitious temperature unless the distribution is Maxwellian, in which case

Tr equals the electron temperature T. In all other cases T r is a function of the radia-

tion processes, the frequency, and the distribution function.

Calculations have shown that in a plasma with nonrelativistic energies, in which

collisions with neutrals predominate, the radiation temperature is given by
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00(v) v4dv
2 2 f(v)dv

"0 (oW-Cob) + v (v)
kT r = - (3)

' (o-W b)2 + v2 (v) au v v

Here, u is the electron energy mv2/2, f(v) is the distribution function assumed to be

isotropic, and v(v) is the collision frequency for momentum transfer of an electron

with neutral atoms or molecules. The quantity o b is the electron-cyclotron fre-

quency of the plasma electrons that are acted upon by an external magnetic field of

strength equal to wbm/e. Equation 3 holds only for tenuous plasmas whose refractive

index is close to unity. More specifically, the conditions for the applicability of Eq. 3 are:

2
p

- < 1 at w wb
tbY

(4)
2

( << <1 at w Cb

where Co is the electron plasma frequency. All measurements were made in plasmas

that satisfied these conditions.

It is clear from Eq. 3 that measurements of T r as a function of Cob and C, together

with known experimental values of v(v), yield an integral equation for the distribution

function f(v). This forms the basis of our determination of the distribution function. We

were not able to invert the integral equation to arrive at the distribution function, nor

is it clear that a unique solution exists.

For purposes of comparison of theory with experiment, we assumed a distribution

function of the form

f(v) cC exp[-bvl], (5)

where

Sf(v) 4v2 dv = 1 (6)

and

- my 2
u = - f (v) 4rv dv. (7)

0

Here, b and f are arbitrary parameters, and - is the mean electron energy. We

determine b and 2 by comparison of the calculated with the measured radiation
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temperatures. Knowing b and f, we find u from Eq. 7.

The form of the distribution function given by Eq. 5 holds for plasmas of low degree

of ionization, where (a) elastic collisions of electrons with neutrals predominate over

inelastic collisions and (b) the dc electric field is parallel to the dc magnetic field.

The distribution function depends on the applied electric fields and on the collision

processes in the plasma. Our measurements were made on the positive column of a
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de discharge immersed in a magnetic field for which the criteria given above are
approximately true.

The integrals of Eq. 3 were carried out numerically on a computer. In these calcu-
lations we used the previously measured results of the collision cross section for

momentum transfer 2 for each gas that was studied. The calculations show that, for a

4
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D
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Fig. X-8. The radiation temperature as a function of the normalized magnetic field.
The points are experimental values for a current of 10 ma. The theo-
retical curve is based on a value of f = 3.4 and of u = 7. 75 ev.
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Fig. X-9. The radiation temperature as a function of the normalized magnetic field.
The points are experimental values for a current of 10 ma. The theo-
retical curve is based on a value of f = 3. 3 and of U = 6. 35 ev.
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given departure of the plasma from thermodynamic equilibrium, the effect on the radia-

tion temperature is most pronounced at, and close to, the electron-cyclotron frequency

for gases that have a velocity-dependent v. In the energy range for which v is constant,

T r is invariant with frequency or magnetic field. Note from Eq. 3 that now T r

(2/3)(lculations for a plasma in mercury vapor show that large peaks of t/k).

Calculations for a plasma in mercury vapor show that large peaks of the radiation

7x 104
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! 66
Ld
w
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Fig. X-10.

Fig. X-11.

The radiation temperature as a function of the normalized magnetic field.
The points are experimental values for a current of 10 ma. The theo-
retical curve is based on a value of f = 4. 13 and of j = 4. 55 ev.
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The radiation temperature as a function of the normalized magnetic field.
The points are experimental values for a current of 10 ma. The theo-
retical curve is based on a value of I = 3. 02 and of i = 4. 52 ev.
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temperature at cyclotron resonance are to be expected at low electron energies (where

v is a steeply increasing function of v) but that hardly any peak occurs at the higher

energies for which v is approximately constant. Figure X-6 shows these calculations

for one distribution function 2 = 4. Our experiments in mercury support these results.

The mean electron energies were such that no peaks or valleys in Tr were found.

Calculations for hydrogen, Fig. X-7, show similar results. A peak in the radiation

temperature at cyclotron resonance is indicated at energies below 2 ev, but no signifi-

cant peak is indicated above this value. Experiments in hydrogen confirmed these

results.

In neon, for which v is approximately proportional to v, a peak is to be expected.

We observed the peak at various pressures. Figures X-8 and X-9 show comparisons of

experiment and theory for two gas pressures.

In argon, for which v rises steeply with v, we find peaks larger than those in neon.

Figures X-10 and X- 1 show comparisons of experiment and theory for this gas.

The theoretical curves that we use in these comparisons of theory and experiment

were obtained by varying b and 2 in Eqs. 3 and 5 until the best fit to the experimental

results was obtained.

In Fig. X-12 we show a plot of 2 and the mean energy u in neon for a range of gas

pressures from 0. 1 to 3 mm Hg. Note that the distribution function as given by the

parameter 2 does not vary in this pressure range; on the other hand, _T decreases with

increasing pressure, which is in agreement with the behavior of the positive column.

8 8

A NEON
7- -7

6 -6O

z

0W 0

_j

0 I 2 3
GAS PRESSURE P0 (MM-Hg)

Fig. X-12. The variation of the distribution parameter 1, and the mean
electron energy with pressure.
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W z
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-J 

H

0O 0.5 1.0

GAS PRESSURE P0 (MM-Hg)

Fig. X-13. The variation of the distribution parameter 1, and the mean
electron energy with pressure.

A similar plot for argon is shown in Fig. X-13. Here, k varies significantly over the

pressure range investigated, possibly because of the strong energy dependence of the

collision frequency.

H. Fields, G. Bekefi

(Mr. Harvey Fields is from Microwave Associates, Burlington, Massachusetts.)
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E. HOLLOW-CATHODE ARC

A hollow-cathode gas-arc apparatus similar to those described previously by Getty1

and by Rose et al.2, 3 has been constructed. The vacuum system is diagrammed in

Fig. X-14. O-ring seals are used throughout, and the ultimate vacuum is from 2 to

10 X 10- 7 mm Hg. The 6-inch gate valves and roughing-line valve permit the opening

of the arc chamber to the atmosphere and re-evacuating it without shutting off the pumps.

The arc chamber outside diameter is 6 inches and it has a 0. 125-inch stainless-steel

wall with six 4-inch and four 0. 75-inch viewing ports. The left (cathode) and right (anode)
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Fig. X-14. Vacuum system layout for the hollow-cathode arc.
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chambers are connected by a 75-mm O. D., 9-inch-long Pyrex tube through which the are

column passes. The flanges to this section are water-cooled to protect the O-ring seals.

The over-all length is 63 inches, and the arc length is variable from 9 inches to approx-

imately 60 inches.

A pair of movable Helmholtz coils provides a magnetic field up to 2000 gauss which

is uniform over 4 inches along the axis of the glass section. Two auxiliary coils capable

of providing a 400-gauss field are located around the anode chamber.

Figure X-15 shows the design of the cathode holder and the hollow tantalum cathode.

The anode is similar, except that there is no gas-inlet hole in the screw-in copper block.

The gas, usually argon, is fed from the tank through a needle valve and flowmeter into

the cathode holder.

The arc power is supplied by two Airco "Bumblebee" welders (Model 2DDR-224R,

0-300 amp) connected in series or parallel. An rf welder starter is used to preionize

the gas in striking the arc.

When first put into operation in September 1961, the 9-inch glass section was only

30 mm in diameter. In this configuration the arc operated in a peculiar manner. It

operated in two distinct modes, often with a discontinuous transition between them as

current or magnetic field was varied. The "glow" mode operated at higher voltage and

the plasma either filled the discharge tube in the manner of a glow-discharge positive

column, or the slender, bright blue arc column broke up into a conically shaped pink

glowlike plasma that filled the tube at the anode end. The base of the cone appeared to

be fixed to the opening of the anode chamber and was not affected by the position of the

Helmholtz coils. This mode ran at low and high arc currents at high magnetic fields,

and for all arc currents at low magnetic field. The "arc" mode operated at lower volt-

age and the slender arc positive column terminated on the anode.

With all pumps on, the pressure measured at the throat of the right pump was much

lower than that at the left pump. Throttling the right pumps to maintain approximately

equal pressures at each ion gauge extended the range of the arc mode. Also, increasing

gas flow rate and chamber gas pressure extended the arc-mode range.

Figure X-16 shows some typical V-I characteristics, and Fig. X-17 gives the loci

of transition points for increasing arc current, with B held constant and pumps not

throttled. There is a "hysteresis" effect so that the transition points occur at lower

currents for decreasing arc current. The transition is either discontinuous, flickering,

or continuous. With equlized pressures it was usually flickering or continuous.

Since all indications were that this two-mode operation was the result of low gas

pressure in the vicinity of the anode, the tube was enlarged to 75 mm. With this tube

the discharge runs in the are mode for all currents up to at least 90 amps, the highest

we have attempted thus far, for sufficiently great magnetic field (over ~300 gauss). At

lower B fields, the glow mode runs at all currents up to at least 60 amps, the highest
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attempted in this mode. The pressure in the anode chamber is still lower than in the

cathode chamber, but higher than it was with the narrow tube. Figure X-18 shows typi-

cal V-I characteristics. The flow was varied during each run to keep the cathode cham-

ber pressure PK roughly constant. At constant flow this pressure normally increases

with arc current because the arc itself is pumping toward the cathode.

Many of the dc properties of this arc plasma and the cathode mechanism have been

analyzed and discussed by Rose et al.3 We still have not carried this any further, rather

preferring to use the arc as a plasma source for plasma dynamics studies. It has become

apparent, however, that our knowledge of the positive-column plasma is inadequate and

more measurements and a more thorough analysis of the dc properties are necessary.

The object of the plasma dynamics studies of the arc is to investigate plasma insta-

bility and plasma transport across the magnetic field. The principal experimental prob-

lem is to find a range of arc current, applied magnetic field, and flow rate or gas

pressure over which there is appreciable plasma noise that indicates the presence of an

instability. If the instability results in turbulent plasma motion, the spatial correlation

length of the noise signals from two points in the arc should be small compared with its

length.

An attempt was made to measure light fluctuations of the arc with the optical corre-

lator employed by Gruber and Bekefi in measuring turbulence in an rf discharge in a

wind tunnel. 4 The signal-to-noise ratio was too low and no correlations could be meas-

ured. Fluctuations in light intensity at 360 cps, which were caused by the power-supply

ripple, could easily be seen, but higher-frequency noise was essentially all photo tube

shot noise.

An 80-turn 1-mh coil was wound around the glass tube as a magnetic probe. The

natural frequency of this coil and its cable was 300 kc. A 1500-ohm parallel damping

resistor made its response to the amplitude of the flux change, D, flat (10 per cent) up

to 250 kc. The spectrum of 0(f) (proportional to average noise voltage in 10-kc

band/center frequency of band) from 10 kc to 200 kc for a 15-inch long argon arc of

60 amps and flow of 120 cc-atm/min is shown in Fig. X-19a. The spectral variation

with magnetic field is cross-plotted in Fig. X-19b.

In general, the noise level in all frequency intervals increased with arc current and

flow, though not all at the same rate, the higher frequencies increasing faster. Also

the magnetic field at which the minimum and maximum noise amplitude occur decreases

with increasing current and increasing flow.

Rough correlation measurements of this noise were made with the use of two similar

coils with varying spacing along the discharge axis. The ratio of minor-to-major axis C

of the Lissajous ellipses of the two signals filtered to 10-kc bandwidth as a function of

frequency is plotted in Fig. X-20 for a 15-inch arc at 40 amps, 120 cc-atm/min, and

800 gauss. The low-frequency range exhibits a short correlation length, whereas the
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Fig. X-20. Correlator coil response. C = width/length of Lissajous figure of noise
signals in 10-kc band from two pickup coils. (Arc current, 40 amps;
argon flow rate ~120 cc-atm/min; magnetic field, 800 gauss.)

higher frequencies remain fairly correlated over the whole length measured. Further-

more, the Lissajous patterns at these higher frequencies appeared to have a random

center and an elliptical halo that suggest that most of the width of the ellipse was due to

a phase difference in the signals rather than decorrelation.

Further measurements of the spectra and correlations are necessary before we can

pin down their mechanisms. They may be magnetohydrodynamic waves, ion-cyclotron

oscillations, or possibly pulses of plasma (high-density striations) moving along the

axis.
C. D. Buntschuh
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