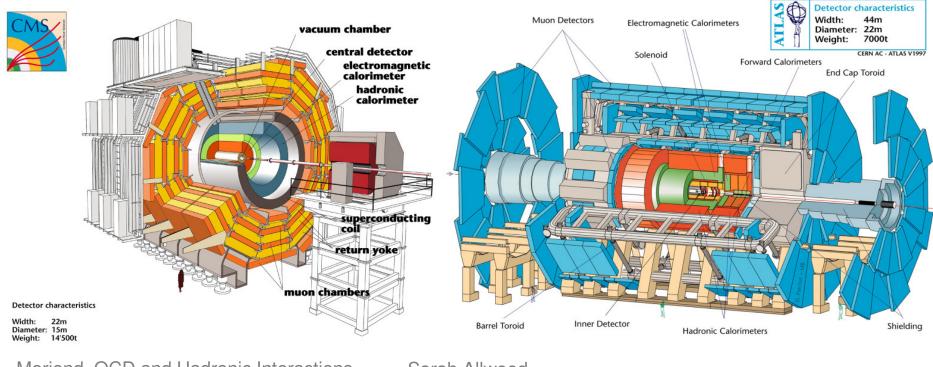

Electroweak Symmetry Breaking without a Higgs at the LHC

Sarah Allwood University of Glasgow

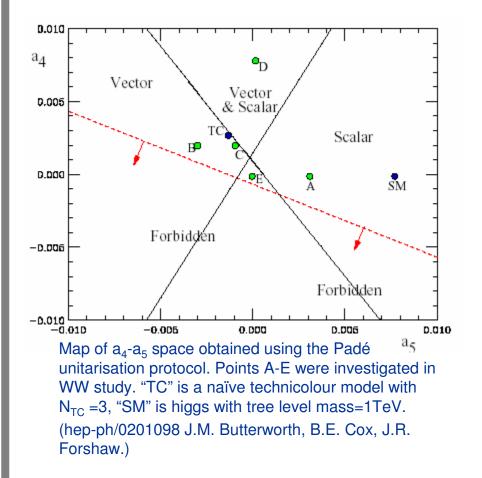
Rencontres de Moriond 2007, QCD and Hadronic Interactions

Introduction


- Standard Model: Higgs mechanism generates mass for the vector bosons • and fermions.
- But radiative corrections to higgs mass² α a quadratic term in the cutoff • parameter. → HIERARCHY PROBLEM
- Solutions? ٠
- Cut-off parameter is fairly low, i.e. other new physics enters at ~TeV OR
- No higgs...

In this talk, consider strong symmetry breaking scenarios:

- the Electroweak Chiral Lagrangian: studies at ATLAS
- technicolour: search for ρ_{TC} at CMS


Detectors

- At the LHC: p-p collisions, $\sqrt{s} = 14 \text{TeV}$ (2008 onwards)
- low luminosity: 2*10³³cm²s⁻¹, 10fb⁻¹/year /detector
- high luminosity: 10³⁴cm²s⁻¹, 100fb⁻¹/year /detector

Moriond, QCD and Hadronic Interactions, March 2007

EW Chiral Lagrangian

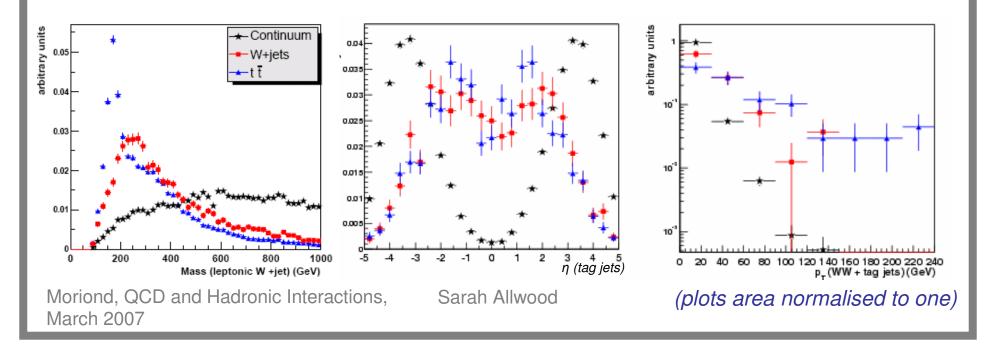
- Effective Lagrangian (EWChL) describes effects of different strong EWSB models at low energy.
- Two terms with coefficients a_4 and a_5 parameterise the "new physics" in $W_L W_L \rightarrow W_L W_L$
- EWChL made valid up to higher energies by unitarity constraints

 \rightarrow resonances (dependent on unitarisation procedure – Padé (IAM) used here).

$\sigma {\rm ``s}$ for WW ${\rightarrow}$ WW ${\sim}$ 10's of fb.

Moriond, QCD and Hadronic Interactions, March 2007

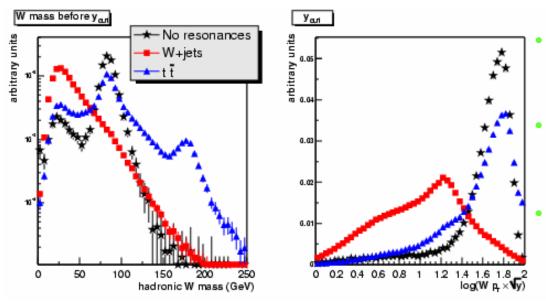
High Mass Vector Boson Fusion


- Fast simulation studies: WW→lvqq for scalar, vector, no resonance signals. (*Cuts similar to hep-ph/0201098, J. Butterworth, B. Cox, J. Forshaw*)
 - W+jets and tt backgrounds, generated in Pythia
- Full simulation studies: Vector signal 1.15 TeV WZ \rightarrow IvII, WZ \rightarrow Ilqq, WZ \rightarrow Ivqq.
 - WZqq, WWqq, W+jets, tt backgrounds included

Cuts for WW→lvqq

- Leptonic W: highest-p_T lepton + E_T^{miss}
- Hadronic W: highest-p_T jet(s)
- top cut: reject events with m(W+jet)~m_{top}
- tag jets: forward of the W's
- p_T(WW+tag jets) ~0:
- central jet veto:

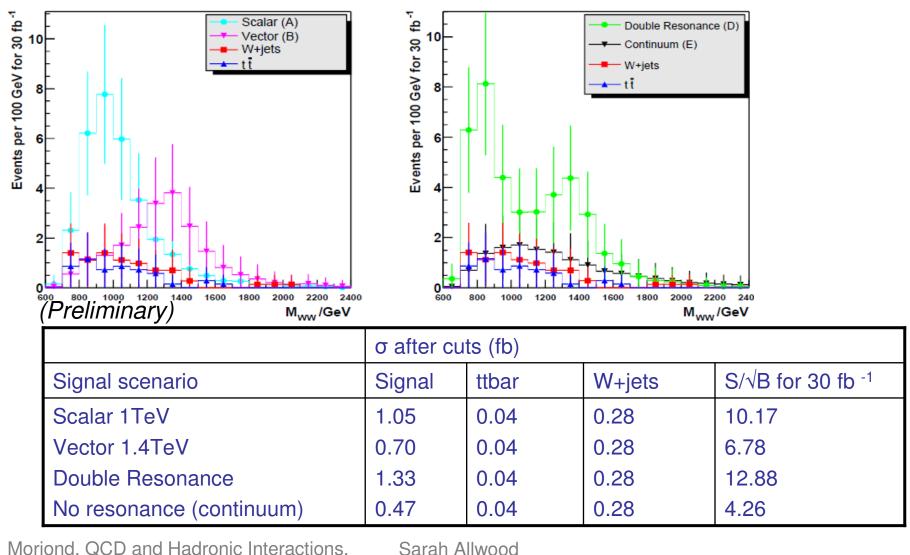
- Cut at p_T^W>320GeV
- Cut at p_T^W>320GeV, m_W±2σ
- ➢ 140 < m(W+jet) <270GeV</p>
- E>300GeV, |η|>2.5
- ▷ p_T(WW+tag jet) <50GeV</p>
- > ≤1 extra jet, p_T > 20GeV,



W→jj reconstruction

Hadronic W:

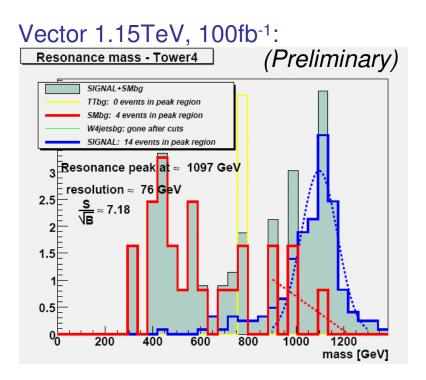
High-p_T overlapping jets \rightarrow can be reconstructed as 1 or 2 jets. Using k_T algorithm, R=0.5 :



⁽plots area normalised to one)

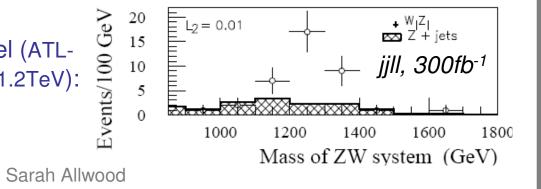
- Run k_T algorithm in subjet mode on the cells in the highest p_T jet.
- Clustering is stopped at a scale $y_{21}p_T^2 \rightarrow \text{clusters}$ remaining are subjets.
- Scale at which jet is resolved into two subjets is $\sim m_W^2$ for a true W.

Cut at 1.6 < log($p_T(W)\sqrt{y}$) < 2


Reconstructed Resonances

Moriond, QCD and Hadronic Interactions, March 2007

WZ→jjll study



Fast sim analysis for this channel (ATL-PHYS-99-006 A. Miagkov, for m_{res} =1.2TeV):

Moriond, QCD and Hadronic Interactions, March 2007 > Z: 2 high- p_T isolated leptons, $m_Z \pm 15$ GeV

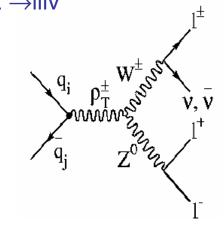
- Tag jets: E>200GeV, $p_T>15GeV$, $\Delta \eta_{ii}>4$
- W: 1 or 2 jets, p_{Ti}>40GeV, m_W±15GeV
- Central Jet veto: 0 extra jets, p_{Ti}>40GeV
- > Δη_{wz}>1.0
- Reject events with b-jets

Significant signals for 100fb^{-1} in WZ \rightarrow jjll, lvjj channels and for 300fb^{-1} in WZ \rightarrow Illv channel. Study is ongoing.

Technicolour

- Simplest model is QCD scaled up:
 - $SU(3)_{C} \rightarrow SU(N)_{TC}$
 - quarks \rightarrow techniquarks
 - pions \rightarrow technipions
 - $\Lambda_{QCD} \sim 200 \text{MeV} \rightarrow \Lambda_{TC} \sim 500 \text{GeV}$
 - Chiral symmetry breaking produces Goldstone bosons, $\pi_{TC}.\,$ 3 of these become W_L
- ruled out by EW precision data (S, T out by 3σ).
- \rightarrow Extensions:
- Extended technicolour: gives mass to the fermions by coupling technifermions to ordinary fermions,
- But then FCNCs are predicted: require "walking" rather than running coupling α_{TC} to solve this \rightarrow many technifermions.
- To obtain top mass: top assisted technicolour.

Technicolour studies at CMS

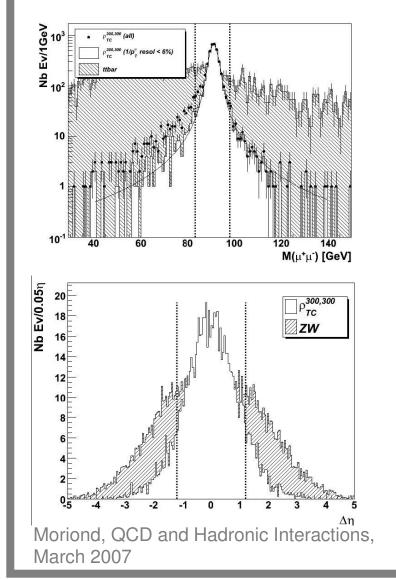

- Technicolour "straw man" model: Assumes low E phenomenology determined by lowest lying bound states $\rightarrow \rho_{TC}^{\pm,0}$, ω_{TC} , $\pi_{TC}^{\pm,0}$.
- CMS study: colour-singlet ρ_{TC}
- Cleanest experimental signature: $qq \rightarrow \rho_{TC} \rightarrow WZ \rightarrow IIIv$

 $\sigma \times BR \sim$ few to few hundred fb depending on m(ρ_{TC}) and m(π_{TC})

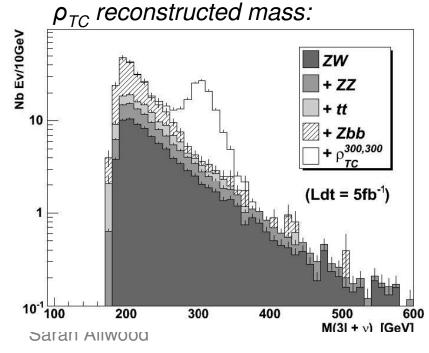
• Main backgrounds:

CMS

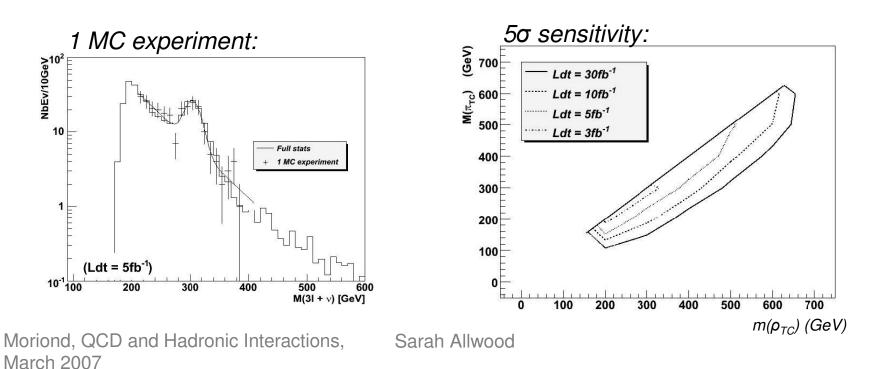
- WZ 0.38pb
- ZZ 0.07pb
- Zbb 330pb
- tt 490pb



- All generated using Pythia
- 200GeV< $m(\rho_{TC})$ < 600GeV studied
- Fast simulation analysis, validated against full for $m(\rho_{TC}) = 300$ GeV.


Moriond, QCD and Hadronic Interactions, March 2007

Selection cuts W / Z


•2 same flavour opp sign leptons = m_Z •3rd lepton +missing $E_T = m_W$ •W, Z p_T >30GeV •|M(Z)-M(Z_0)|<7.8GeV •| $\eta(Z)$ - $\eta(W)$ | < 1.2

Signal Sensitivity

- Signal: single Gaussian \mathcal{P}_{s}
- Background: single exponential \mathcal{P}_{B}
- Perform many MC experiments (each at stats expected for given luminosity)
- Fit by minimising likelihood function $\mathcal{L}_{S+B} \sim \Pi[(n_S \mathcal{P}_S + n_B \mathcal{P}_B)/(n_S + n_B)]$
- Sensitivity estimator: $S_L = \sqrt{2 \ln(\mathcal{L}_{S+B}/\mathcal{L}_B)}$

Summary

- In the case where there is no light higgs, we expect "new physics" at ~TeV.
- Vector boson scattering is an important channel in which to search.
- We can find significant signals in Chiral Lagrangian model for 30 fb⁻¹. Studies in ATLAS fast and full simulation are continuing in "Computing System Commissioning" note for ATLAS → Summer 2007.
- ρ_{TC}⁺⁻→W+Z study at CMS shows potential for technicolour discovery from 3 - 4 fb⁻¹.