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Abstract. Many nanophotonic devices rely on the excitation of photonic resonances to enhance light-matter
interaction. The understanding of the resonances is therefore of a key importance to facilitate the design of
such devices. These resonances may be analyzed by use of the quasi-normal mode (QNM) theory. Here, we
illustrate how QNM analysis may help study and design resonant nanophotonic devices. We will in particular
use the QNM expansion of far-field quantities based on Riesz projection to design optical antennas.

1 Introduction

Nanophotonic devices allow to control and tailor light-
matter interactions at the nanoscale. Many applica-
tions such as quantum infomation technology, bio-sensing
or the use of metasurfaces as miniature optical compo-
nents may benefit from the use of nanophotonic devices.
This control of light-matter interactions is often achieved
through the excitation of the photonic resonances of these
nanophotonic devices. The resonant interaction between
light and nanometric structures may readily be described
by using QNM theory [1, 2]. The design of nanophotonic
devices could consequently be facilitated by using QNM
analysis. QNM are however diverging with the distance
from the resonator. This complicates the analysis of far-
field quantities using QNM [1, 2]. Here, we will use QNM
expansion of far-field quantities based on Riesz projection
[4] to understand and design nanophotonic devices. We
will in particular focus on the design of optical antennas.

2 Design of optical antennas using
quasi-normal mode expansions

When designing nanophotonic devices, it is usually neces-
sary to shape and control both the far-field and near-field
properties of photonic structures. This may necessitate
the careful tuning of many parameters or degrees of free-
dom of the structure under consideration and consequently
result in time-consuming and costly parameter scanning.
Even if this design may be assisted by using optimization
approaches [5, 6], it would still be valuable to fully charac-
terize the optical properties of a photonic structure in terms
of a few number of modes. These modes are solution of
the source-free Maxwell’s equations:

∇ × µ−1
0 ∇ × Ek(r) − ω2

kε(r, ωk)Ek(r) = 0 (1)
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with outgoing boundary conditions. The eigenfrequencies
ωk are in general complex valued.

The design of optical antennas is an example where
one needs to control both the near-field and far-field opti-
cal behavior of photonic structures. Tuning the near-field
properties of the photonic stucture allows one to have a
control over the Purcell factor enhancement Γ(ω):

Γ(ω) = −
Re (E(rd, ω) · j∗)

2Γb
(2)

j = −iωp, p being the dipole moment while Γb is the
dipole emission in the homogeneous background material
and rd is the position of the dipole. This quantity may be
expanded on the QNM basis by means of the Riesz pro-
jection Γ(ω) =

∑kmax
k=1 Γ̃k(ω) + Γr(ω) where Γ̃k(ω) are the

resonant contribution and Γr(ω) is the non resonant back-
ground contribution which are defined as follows [3]:

Γ̃k(ω) =
1

2Γb
Re
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−

1
2iπ
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z − ω

dz
)
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]
Γr(ω) =
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] (3)

where the contours Ck are closed contours around the
eigenfrequencies ωk while the contour Cr is a large con-
tour permitting to take into account the non-resonant back-
ground. One sees that the Purcell factor can thus be de-
scribed in terms of a small number of resonant and non-
resonant terms. One can then vary the opto-geometrical
parameter of a photonic sctructure to tune the peak posi-
tion and width of resonant contributions Γ̃k(ω) in order to
optimize the Purcell factor for a given application.
Besides the near-field behavior, the far-field properties of
optical antennas are also of particular interest. Optical an-
tennas can indeed allow to control the radiation pattern of
a quantum emitter. This is of particular importance for
certain applications where the light emitted has then to be
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collected by a lens or an optical fiber with a given numer-
ical aperture [6, 7]. It would then be very useful to de-
scribe the far-field response of these photonic structures
in terms of their modes. In particular, a modal expan-
sion of the Poynting vector would be of a special inter-
est. This is however quite challenging since quasi-normal
modes are exponentially diverging with the distance from
the resonator [1, 2, 4]. To circumvent this divergence
problem, we developed a method for expanding quadratic
quantities and in particular the Poynting vector S(r, ω) =

s (E(r, ω),E∗(r, ω)) = 1
2 Re

(
E∗(r, ω) × 1

iωµ0
∇ × E(r, ω)

)
.

We found that the Poynting vector admits the following
modal expansion [4]:

S(r, ω) = −

kmax∑
k=1

1
2iπ
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dz

−
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1

2iπ

∮
Cr
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(4)

where E◦(r, z) is defined as the analytic continuation of
E(r,−ω) to the entire complex plane. The contour Ck and
Cr are analogous to the contours used for the expansion
of the Purcell factor in Eq. (3) while C∗k are the contours
around the resonance poles of E◦(r, z) equal to ω∗k. The
important point is that the expansion provided in Eq.
(4) is not diverging as |r| increases. This expansion can
thus be used to study the far-field properties of photonic
resonators. One can in particular describe the emission
pattern in terms of resonant and non-resonant contribu-
tions. This can help shape the emission pattern by tuning
the shape of the photonic structure under consideration
to selectively excite the modes allowing to obtain the
desirable emission pattern.

We will illustrate the usefulness of QNM expansion
to design several types of optical antenna. We will start by
presenting results on the circular Bragg gratings [4, 7]. We
will also show how QNM expansion can used to under-
stand the structures supporting quasi-bound states in the
continuum originating from the avoided crossing of two
resonances [8, 9].
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