
The ALICE alignment framework

R. Grossoa

for the ALICE Collaboration

a CERN
Geneva, Switzerland

Abstract
The ALICE alignment framework is described. Based on the ROOT geometry pack-
age, it provides the functionality to consistently produce, store, retrieve, and apply the
alignment constants.

15.1 Basic objects and alignment constants
The purpose of the ALICE alignment framework is to
offer all the functionality related to storing alignment
information, retrieving it from the Offline Conditions
Data Base (OCDB), and consistently applying it to the
ALICE geometry. This functionality is required in or-
der to improve our knowledge of the real geometry by
means of the additional information obtained by survey
and alignment procedures, without needing to change
the hard-coded implementation of the detector’s geom-
etry. The ALICE alignment framework is built on the
AliAlignObj base class and its derived classes; each
instance of one of this classes is an alignment object
and stores the so-called alignment constants for a single
alignable volume:

– a unique volume identifier,
– a unique global index,
– a delta-transformation.

This is the information to uniquely identify the physical
volume to be displaced and to unambiguously describe
the delta-transformation to be applied to that volume.

In the following we describe the meaning of
these variables, how they are stored and set, and the
functionality related to them. A deeper description of
the framework providing several examples of usage is
given in Ref. [1].

15.1.1 The unique volume identifier
The unique volume identifier is the character string al-
lowing access to a specific physical volume inside the
geometry tree. For the ALICE geometry (which is a
ROOT geometry) this is the volume path, a string con-
taining the names of all physical volumes in the cur-
rent branch of the geometry tree as a file path does it

in a file system tree. For example, the volume path
/A/B_i/.../M_j/Vol_k identifies the physical vol-
ume ‘kth copy of the volume Vol’ by listing its con-
tainer volumes; going from right to left in the path cor-
responds to going from the innermost to the outermost
containers and from the lower to the upper level in the
geometry tree, starting from the mother volume M_j of
the current volume Vol_k up to the physical top volume
A, the root of the geometry tree.

The unique volume identifier stored by the align-
ment object is not the volume path but a ‘symbolic vol-
ume name’, a string dynamically associated to the cor-
responding volume path at the finalization stage of the
geometry; the mapping of symbolic names to volume
paths is stored in the geometry itself.
The choice of the symbolic volume names is constrained
only by the following two rules:

1. Each name has to contain a leading sub-string
indicating its pertaining sub-detector; in this
way, the uniqueness of the name inside the sub-
detector scope also guarantees its uniqueness in
the global scope of the whole geometry.

2. Each name has to contain the intermediate
alignable levels, separated by a slash (‘/’), in case
some other physical volume on the same geome-
try branch is in turn alignable.

Introducing the symbolic volume names as unique vol-
ume identifiers stored in the alignment object in place of
the volume path has two considerable advantages:

1. The unique volume identifier has no direct depen-
dence on the geometry; in fact, changes in the
volume paths reflect changes in the hash table as-
sociating the symbolic names to them, which is
built and stored together with the geometry. As
a consequence, the validity of the alignment ob-

139

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44182667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


jects is not affected by changes in the geometry
and hence is in principle unlimited in time.

2. The unique volume identifier can be freely cho-
sen, according to the two simple rules mentioned
above. This allows one to assign meaningful
names to the alignable volumes, as opposed to the
volume paths, which inevitably are long strings of
often obscure names.

The geometry then provides the user with some meth-
ods to query the hash table linking the symbolic volume
names to the corresponding volume paths; in particular,
the user can

– obtain the number of entries in the table;
– retrieve a specific entry (symbolic volume name,

volume path) either by index or by symbolic
name.

15.1.2 The unique global index
Among the alignment constants we store a numerical in-
dex (a short) uniquely identifying the volume to which
those constants refer. The 16 available bits of the global
volume index are filled by the index of the ‘layer’ or sub-
detector to which the volume belongs (5 bits) and by the
‘local volume index’, i.e., the index of the volume itself
inside the sub-detector (the remaining 11 bits). Limiting
the range of sub-detectors to 25 = 32 and of alignable
volumes inside each sub-detector to 211 = 2048, this
fits the cardinality of sub-detectors and sub-detectors’
modules in ALICE.

The aim of indexing the alignable volumes is fast
iterative access during alignment procedures. The look-
up table mapping symbolic volume names to indexes is
built as a static variable when the first instance of an
alignment object is created in memory. The framework
allows one to browse easily the layered structure of the
look-up table, where each layer corresponds to a set of
alignable volumes belonging to the same sub-detector
and placed at the same radial distance from the centre
of the ALICE detector. The user can query the table for
the number of sensitive alignable volumes in each layer,
for the layer name corresponding to a given layer index,
for the symbolic volume name corresponding either to
a global volume index or to a layer index plus a local
volume index.

15.1.3 The delta-transformation
The delta-transformation is the transformation which
defines the displacement to be applied to the given phys-
ical volume. During offline alignment we wish to cor-
rect the hard-coded, ideal position of some volume, ini-
tially fixed according to the engineers’ drawings, by in-
cluding the survey and alignment information related to
those volumes; we say that we wish to align the ideal

geometry. With this aim, here we need to describe how
the delta-transformations are defined and thus how they
have to be produced and applied to the ideal geometry
in order to correct the global and local ideal transforma-
tions into global and local aligned transformations.

For the representation of the delta-
transformation there are several possible conventions
and choices, in particular:

1. to use the local-to-global or the global-to-
local convention and “active-” or “passive-
transformations” convention;

2. to use the local or global delta-transformation to
be stored in the alignment object and to be passed
when setting the object itself;

3. the convention used for the Euler angles repre-
senting the delta-transformation;

4. the use of a matrix or of a minimal set of param-
eters (three orthogonal shifts plus three Euler an-
gles) to be stored in the alignment object and to
be passed when setting the object itself.

The choices adopted by the framework are explained in
the remainder of this section.

15.1.3.1 Use of the global and local transformations
Being based on the ROOT geometry package, the frame-
work keeps the ‘local-to-global’ convention; this means
that the global transformation for a given volume is the
matrix G which, as in TGeo, transforms the local vec-
tor~l (which gives the position in the local reference sys-
tem, i.e., the reference system associated to that volume)
into the global vector ~g, which gives the position in the
global (or master) reference system (‘MARS’), accord-
ing to:

~g = G~l . (15.1)

Similarly, the local transformation matrix is the matrix
L which transforms a local vector ~l into the correspond-
ing vector in the mother volume RS, ~m, according to:

~m = L~l . (15.2)

If, furthermore, M is the global transformation for the
mother volume, then we can write:

~g = G~l = M~m = ML~l .

Recursively repeating this argument to all the parent
volumes, that is to all the volumes in the branch of the
geometry tree which contains the given volume, we can
write:

~g = G~l = M0...MnL~l .

which shows that the global matrix is given by the prod-
uct of the matrices of the parent volumes on the geome-
try branch, from the uppermost to the lowest level.

Let us now denote by G and L the ideal global
and local transformations of a specific physical volume

140



(those relative to the reference geometry) and let us put
the superscript ’a’ to the corresponding matrices in the
aligned geometry, so that Ga and La are the aligned
global and aligned local transformations, which relate
the position of a point in the local RS to its position in
the global RS and in the mother’s RS, respectively, after
the volume has been aligned, according to:

~g = Ga~l (15.3)
~m = La~l . (15.4)

Eqs. (15.3)–(15.4) are the equivalent of Eqs. (15.1)–
(15.2) after the volume has been displaced.

There are two possible choices for expressing the
delta-transformation; either we use:

– the global delta-transformation ∆g, that is the
transformation to be applied to the ideal global
transformation G in order to obtain the aligned
global transformation:

Ga = ∆gG = ∆gML , (15.5)

or we use
– the local delta-transformation ∆l, that is the

transformation to be applied to the ideal local
transformation L to get the aligned local transfor-
mation:

La = L∆l . (15.6)

Eqs. (15.5)–(15.6) allow one to rewrite:

Ga = MLa (15.7)

as:
∆gML = ML∆l (15.8)

or equivalently:

∆g = G∆lG−1 (15.9)
∆l = G−1∆gG (15.10)

to relate global and local alignment.
The alignment object stores as delta-

transformation the global delta-transformation; never-
theless both global and local delta-transformations can
be used to construct the alignment object or to set it. The
reasons for this flexibility in the user interface is that the
local RS is sometimes the most natural one for express-
ing the misalignment, as for example in the case of a
volume rotated around its centre. However, the use of
the local delta-transformation is sometimes error-prone;
in fact, the user has to be aware that he is referring to
the same local RS which is defined in the hard-coded
geometry when positioning the given volume, whilst the
local RS used by simulation or reconstruction code can
in general be different. In case the alignment object is
constructed or its delta-transformation is set by means

of the local delta-transformation, the framework will
then use Equation (15.9) to perform the conversion into
global alignment constants.

As for the choice of storing a symbolic volume
name instead of the volume path as volume identifier,
we would also like to make the delta-transformation
stored in the alignment objects independent from the ge-
ometry, thus keeping their validity unconstrained. This
is possible if we store in the geometry itself a matrix for
the ideal global transformation related to that volume
(this possibility is offered by the class storing the link
between symbolic volume names and volume paths, see
Section 15.2).

15.1.3.2 Matrix or parameters for the delta-
transformation

The global delta-transformation can be saved both

– as a TGeoMatrix and,
– as a set of six parameters, out of which three de-

fine the translation by means of the shifts in the
three orthogonal directions, and three define the
rotation by means of three Euler angles.

These two cases correspond to choosing one of the fol-
lowing two AliAlignObj- derived classes:

– AliAlignObjMatrix: stores a TGeoHMatrix
– AliAlignObjAngles: stores six double preci-

sion floating point numbers;

While storing the alignment constants in a different
form, they appear with the same user interface, which
allows the delta-transformation to be set both via the
matrix and via the six parameters which identify it.

15.1.3.3 Choice for the Euler angles
A general rotation in three-dimensional Euclidean space
can be decomposed into and represented by three suc-
cessive rotations around the three orthogonal axes. The
three angles characterizing the three rotations are called
Euler angles; however, there are several conventions for
the Euler angles, depending on the axes around which
the rotations are carried out, right/left-handed systems,
(counter)clockwise direction of rotation, order of the
three rotations.

The convention chosen in the ALICE alignment
framework for the Euler angles is the ‘xyz convention’
(see Ref. [2]), also known as pitch-roll-yaw or Tait–
Bryan angles, or Cardano angles convention. Fol-
lowing this convention, the general rotation is repre-
sented as a composition of a rotation around the z-
axis (yaw) with a rotation around the y-axis (pitch)
with a rotation around the x-axis (roll). There is an
additional choice to fully specify the convention used,

141



since the angles have opposite sign whether we consider
them bringing the original RS in coincidence with the
aligned RS (‘active-transformation’ convention) or the
other way round (‘passive-transformation’ convention).
In order to maintain our representation fully consistent
with the TGeoRotation methods we choose the ‘active-
transformation’ convention, i.e., the opposite conven-
tion to the one chosen by the already referenced descrip-
tion of the pitch-roll-yaw angles [2].

To summarize, the three angles — ψ, θ, φ —
used by the framework to represent the rotation part of
the delta-transformation, unambiguously represent a ro-
tation A as the composition of the following three rota-
tions:

1. a rotationD by an angle φ (yaw) around the z-axis

D =




cφ −sφ 0
sφ cφ 0
0 0 1




2. a rotation C by an angle θ (pitch) around the y-
axis

C =




cθ 0 sθ

0 1 0
−sθ 0 cθ




3. a rotation B by an angle ψ (roll) around the x-axis

B =




1 0 0
0 cψ −sψ

0 sψ cψ




which leads to:

A = BCD =




cθcφ −cθsφ sθ

sψsθcφ + cψsφ −sψsθsφ + cψcφ −cθsψ

−cψsθcφ + sψsφ cψsθsφ + sψcφ cθcψ




where ci and si denote cos(i) and sin(i), respectively.
In the case of alignment, the rotations to be applied are
usually very small; in this case we can approximate the
sins by the angles and the cosines by 1, and the final
expression for the rotation matrix A is:

A = BCD =




1 −φ θ
φ 1 −ψ
−θ ψ 1


 .

15.2 Use of ROOT geometry functionality
The ALICE geometry is implemented via the ROOT ge-
ometrical modeler (often referred to as TGeo), a frame-
work for building, browsing, navigating and visualising
a detector’s geometry, which is independent from the
Monte Carlo transport (see Ref. [3] and the dedicated
chapter in Ref. [4]). This choice allows the ALICE

alignment framework to take advantage of using ROOT
features such as its I/O, histogramming, browsing, GUI,
etc. However, the main advantage of this choice is that
the ALICE alignment framework can provide its spe-
cific functionality as a thin layer for managing the ad-
ditional alignment information, built on top of already
existing features for interfacing the geometry.
The ALICE alignment framework takes, in particular,
advantage of the possibility:

– to save the geometry to a file and upload it from a
file;

– to check the geometry for overlaps and extrusions
exceeding a given threshold;

– to query the geometry for the global and local ma-
trix of a given physical volume;

– to make a physical node out of a specific physical
volume and change the local and global transfor-
mation associated to it, while keeping track of the
original transformations;

– to store a hash table of links between symbolic
volume names and volume paths which can be
queried in an efficient way.

Concerning this last issue, the class representing the ob-
jects linking the symbolic volume names and the volume
paths also provides the possibility of storing a transfor-
mation. This feature turns out to be very useful if it is
used to store the matrix relating the RS stored in the ge-
ometry (global transformation matrix for that volume)
with the RS used in simulation and reconstruction (the
two things in general differ).

15.3 Application of the alignment objects to
the geometry

The base class provides a method to apply the single
alignment object to the geometry present in memory,
loaded from file or constructed. This method accesses
the geometry to change the position of the volume re-
ferred to by the unique volume identifier according to
Eq. (15.5). However, this method alone cannot guaran-
tee that the single object is applied correctly; the most
common case is indeed the application of a set of align-
ment objects. In this case the framework has to check
that the application of each object in the set does not in-
validate the application of the others; when applying a
set of alignment objects during a simulation or recon-
struction run the framework transparently performs the
following two checks:

1. In case of alignment objects referring to physi-
cal volumes on the same branch, they have to
be applied starting from the one which refers to
a volume at the uppermost level in the physical
tree (container volume) down to the one at the

142



lowest level (contained volume). On the con-
trary, if the contained volume is displaced first,
the subsequent displacement of the container vol-
ume would change its temporarily correct posi-
tion;

2. In no case should two alignment objects be ap-
plied to the same physical volume separately.

The reason for the first limitation is in short that the po-
sition of the contained volumes depends on the position
of the container volumes. The reason for the second
limitation is that the delta-transformations are relative
to the ideal global position of the given volume [see
Eq. (15.5)], which then need not to have been previously
modified by the application of an alignment object refer-
ring to the same volume. The tools used by the frame-
work for checking that the two previous conditions are
fulfilled are, respectively:

1. Sorting the alignment objects based on a method
which compares the depth of the physical volume
to which the given alignment object refers.

2. Combining more alignment objects referring to
the same volume before applying them to the ge-
ometry.

During a simulation or reconstruction run the user can
consistently apply the objects to the geometry, hav-
ing the two checks described above transparently per-
formed.

An additional check is performed during a simu-
lation or reconstruction run to verify that the application
of the alignment objects did not introduce big overlaps
or extrusions which would invalidate the geometry (hid-
ing some sensitive parts or changing the material budget
during tracking). This check is done by means of the
overlap checker provided by the ROOT geometry pack-
age; a default threshold below which overlaps and ex-
trusions are accepted is fixed; the TGeo overlap checker
favours speed (checks the whole ALICE geometry in a
few seconds) at the expense of completeness, thus some
rare overlap topologies can eventually escape the check.

15.4 Access to the Conditions Data Base
An important task of the ALICE alignment framework is
to intermediate between the simulation and reconstruc-
tion jobs and the objects residing on the Offline Condi-
tions Data Base (OCDB) [5], both for defining a default
behaviour and for managing specific use cases. The
OCDB is filled with conditions (calibration and align-
ment) objects; the alignment objects in the OCDB are
currently created by macros to reproduce two possible
misalignment scenarios: the initial misalignment, ac-
cording to expected deviations from the ideal geome-
try just after the sub-detectors are positioned, and the
residual misalignment, trying to reproduce the devia-

tions which can not be resolved by the alignment proce-
dures. The next step is to fill the OCDB with the align-
ment objects produced from the survey procedures, as
soon as survey data are available to the offline. Finally,
these objects and those produced by alignment proce-
dures will fill the OCDB to be used by the reconstruc-
tion of the real data in its different passes.

The OCDB stores the conditions, making use of
the database capabilities of a file system three-level di-
rectory structure; the run and the version are stored in
the file name. If not otherwise specified, the OCDB re-
turns the last version of the required object and should
an object be uploaded, it is automatically saved with in-
creased version number.

The ALICE alignment framework defines a spe-
cific default storage from which to load the alignment
objects for all the sub-detectors; the user can set a dif-
ferent storage, either residing locally or on the Grid if
he has the permissions to access it. The definition of
a non-default storage for the OCDB, as well as its de-
activation, can also be given for specific sub-detectors
only. The user can also just switch off the loading of
alignment objects from an OCDB storage, or as a side-
effect of passing to the simulation, or reconstruction run
an array of alignment objects available in memory.

15.5 Summary
The ALICE alignment framework, based on the ROOT
geometry package [3, 4], aims at allowing a consistent
and flexible management of the alignment information,
whilst leaving the related complexity as much as possi-
ble hidden to the user. The framework allows one to:

– save and retrieve the alignment constants relative
to a specific alignable volume (automatic retrieval
from a Conditions Data Base is handled);

– apply the alignment objects to the current (ideal)
geometry;

– obtain from the current geometry the alignment
object for a specified alignable volume;

– transform positions in the ideal global RS into po-
sitions in the aligned global RS;

– set the objects by means of both global and local
delta-transformations.

These functionalities are built on the AliAlignObj base
class and its two derived classes, which store the delta-
transformation by means of the transformation matrix
(AliAlignObjMatrix) or by means of the six trans-
formation parameters (AliAlignObjAngles). The user
interface is the same in both cases; it fixes the represen-
tation of the delta-transformation whilst leaving several
choices to the user which have been explained in this
note together with their implementation.

143



The ALICE alignment framework fixes the fol-
lowing conventions:

– the transformations are interpreted according to
the local-to-global convention;

– the delta-transformation stored is the global delta-
transformation;

– the three parameters to specify the rotation are
the roll-pitch-yaw Euler angles, with the “active-
transformations” convention.

The framework also fixes the following default be-
haviours in simulation and reconstruction runs:

– objects are loaded from a default Conditions Data
Base storage, on a sub-detector basis;

– the set of loaded objects is sorted for ensuring the
consistency of its application to the geometry;

– the ideal and aligned geometries are saved.

Several choices related to the delta-transformation are
left to the user, who:

– can choose to set the alignment object either by
passing a TGeoMatrix or by giving the six pa-
rameters which uniquely identify the global delta-
transformation;

– can choose if they want the object to
store either the TGeoMatrix, using an

AliAlignObjMatrix or the six parameters, us-
ing an AliAlignObjAngles;

– can choose if the transformation to be passed is
the global delta-transformation or the local delta-
transformation; in this latter case the framework
converts it to the global one to set the internal data
members.

Acknowledgements
I wish to thank Cvetan Cheshkov and Andrei Gheata for
the opportunity of working together on the present topic.

References
[1] C. Cheshkov, A. Gheata and R. Grosso, ALICE

Internal Note, in preparation.
[2] http://mathworld.wolfram.com/

EulerAngles.html .
[3] R. Brun, A. Gheata and M. Gheata, Nucl. Instrum.

Methods A502 (2003) 676–680.
[4] http://root.cern.ch/root/doc/RootDoc.

html .
[5] http://aliceinfo.cern.ch/Offline/

Activities/ConditionDB.html .

144


