
Overview of detector descriptions

C. Cheshkova

for the ALICE, ATLAS, CMS and LHCb Collaborations

a Gesellschaft fur Schwerionenforschung mbH (GSI)
Darmstadt, Germany

Abstract
The present overview describes the detector description frameworks implemented by
the four LHC experiments. The main reviewed items include the detector geometry
implementation, the usage of alignment constants in the simulation and the reconstruc-
tion, and the storage and retrieval of the alignment constants. The review concludes
with a brief comparison of the experiment frameworks.

9.1 Introduction
Given the complexity of the LHC experiments and the
required tracking precision, the alignment of the de-
tectors is a challenging goal. During the commission-
ing and operation of the detectors several tasks are of
primary importance, namely reconstruction and simu-
lation with a misaligned detector geometry, develop-
ing and training of track-based alignment algorithms,
and estimation of the impact of the misalignment on
the physics. These tasks necessitate reliable and user-
transparent software frameworks in order to deal with
the detector geometries including misalignments. For
this purpose, all the LHC experiments have developed
detector description frameworks. These frameworks
are rather sophisticated packages with a wide range of
functionality. Therefore it is very important to keep
track of their current status as well as to exchange in-
formation for further developments in this field. This
overview aims to present briefly the frameworks of the
four LHC experiments by highlighting the common and
experiment-specific items.

The content of the overview is the following. A
common terminology is defined in Section 9.2. Sec-
tions 9.3 to 9.6 describe the frameworks employed by
each experiment. A discussion of the similarities and
the differences between the experiments is given in Sec-
tion 9.7.

9.2 Terminology
Given the variety of the terms used in the LHC exper-
iments and their sometimes controversial meaning, the
following terminology has been adapted for the needs of
the present overview.

– Logical volume (node): Representation of a de-
tector element à la GEANT [1], i.e., one logical
volume represents one or many real detector el-
ements. A set of logical volumes forms the de-
tector geometry hierarchy. As the logical volume
can refer to several real detector elements, it can
not be misaligned.

– Physical volume (node): Representation of a sin-
gle (unique) real detector element. It is coupled to
corresponding logical volume. The physical vol-
ume is used to handle the misalignment and any
other detector-element-specific information.

– Alignment constants: The objects which are actu-
ally stored in the Condition Database and used to
misalign the detector geometry.

– Default transform: The detector-element position
and orientation in case of the ideal (no misalign-
ments) geometry. By definition it coincides with
logical and physical volumes.

– Delta transform: A correction to the default trans-
form in case of a misaligned geometry. The delta
transform applies only to the physical volumes.

– Geometry overlaps: The overlaps between physi-
cal volumes at the level of the detector simulation
in the case of geometry misalignments. These
overlaps should be distinguished from the over-
laps caused by improper geometry implementa-
tions in the case of an ideal geometry.

9.3 The detector description framework in
the ALICE experiment

The detector description in the ALICE experiment
is based entirely on the ROOT Geometrical Modeler

83

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CERN Document Server

https://core.ac.uk/display/44182656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(TGeo) [2]. TGeo is a framework for building, brows-
ing, tracking, and visualizing detector geometry. Cur-
rently it is being used in many high-energy physics ex-
periments. It relies on a hierarchical model of logical
volumes (like in GEANT3 [1] and GEANT4 [3]) and is
independent of the transport Monte Carlo. The use of
TGeo has the following basic advantages.

1. It decouples the detector geometry description
from the transport Monte Carlo. Thus it en-
ables the use of the so-called Virtual Monte
Carlo [2], i.e., the detector simulation with differ-
ent transport Monte Carlo (GEANT3, GEANT4
or Fluka [4]).

2. The same geometry is used for tracking, recon-
struction, and visualization.

3. An advantage of using ROOT features related to
bookkeeping, I/O, histograming, browsing, and
GUI.

In TGeo the misalignments are introduced at the
level of the so-called TGeo Physical Node (PN). As de-
fined in Section 9.2, PN describes unique detector ele-
ment. It is fully identified by a path which consists of
the names of logical nodes. Each logical node is posi-
tioned in its mother logical node (container) by means
of a local matrix (Fig. 9.1).

Fig. 9.1: Example of TGeo geometry hierarchy. The PN path
is shown on the top

The PN has a pointer to the last logical node in
the path. Thus the global matrix which transforms from
the local reference system of the PN to the global refer-
ence system is given by:

GLOBAL = LOC1 ∗ LOC2 ∗ ... ∗ LOCn (9.1)

where LOCi are the local matrices used to position the
Logical Nodes inside their containers. PNs can be cre-
ated for any Logical Node at any level in the geometry

hierarchy. Since the entire ALICE detector geometry
contains ≈ 2.5× 106 detector elements, the PN are cre-
ated on demand for selected alignable detector elements.
PNs are misaligned by changing the local matrix of the
last Logical Node in the path (LOCn). The default ma-
trix corresponding to the ideal position and orientation
of the PN is backup. The misalignment is automatically
active for the transport Monte Carlo or any other access
to the TGeo geometry. All PNs can be addressed by
unique symbolic names created during the geometry ini-
tialization. This allows for a proper identification of the
alignable detector elements disregarding a given geom-
etry implementation or version.

The ALICE alignment constants are simple
ROOT objects which contain the misalignment informa-
tion in a form of Delta Transforms [5]. The transform is
defined in the global reference system, i.e., it is applied
on the left side in Eq (9.1). The reference system is cho-
sen to make the misalignment independent of a given
geometry implementation (matrices LOCi in Eq. (9.1))
and to facilitate the use of alignment constants during
the alignment procedures based on tracks. Each align-
ment constant contains also a symbolic name that iden-
tifies the TGeo PN to which it is applied. In addition,
the alignment constants related to sensitive detector el-
ements have a unique (ALICE-wide) integer identifier,
which allows for a fast navigation during alignment pro-
cedures. The ALICE alignment constants are applied on
several levels in the geometry hierarchy (e.g., sensitive
detector elements, superstructures and entire detectors)
via a TGeo interface.

The alignment constants described above are
stored in the ALICE Offline Condition Database
(OCDB) [6]. The offline condition files are ROOT files
available to applications running on the Grid. For that
purpose, the condition files are registered into the AliEn
file catalogue with their corresponding logical names
and are stored in a Grid storage element. In ALICE the
condition data is uniquely identified by three parame-
ters:

– Logical path (for example, ‘TPC/Align/Data’,
‘TRD/Align/Data’)

– Run range validity
– Version.

It is worth noting that the ALICE offline condition data
are accessed only once per simulation or reconstruction
job. Within the ALICE OCDB framework, the align-
ment constants are stored as one array per detector. The
detectors store their arrays in separate files contained
in the corresponding detector folders (as shown above).
The ideal detector geometry is stored as a single object
(TGeo manager object) in the same OCDB.

During the start-up of a simulation or recon-
struction job, the alignment constants are read from the

84

OCDB and applied to the TGeo geometry. This is done
in a user-transparent way using the same code for both
simulation and reconstruction. Any further access to the
detector geometry (ideal or misaligned) is done only via
a TGeo interface. In some cases misalignments of de-
tector elements situated on two or more geometry hier-
archy levels have to be introduced. Then the alignment
constants are applied to the TGeo geometry in order of
their geometry level, namely from the highest level to
the lowest.

Frequently the application of detector misalign-
ments leads to volume overlaps. The latter can be in-
spected and visualized by means of the so called TGeo
Overlap Checker. In general, two basic methods to di-
minish the effect of the overlaps are used:

– Replacing a set of overlapping TGeo volumes by
TGeo Assemblies. The TGeo Assembly is a log-
ical union of two or more volumes and does not
have its own shape.

– Application of the misalignments on high-level
structures. Big movements are applied on high-
level structures, while the residual small move-
ments are left at the level of primitive detector el-
ements.

Fig. 9.2: The GeoModel geometry hierarchy. PV - Physical
Volume, FPV - Full Physical Volume. The Alignable Nodes
are shown as small circles on the connection arrows.

9.4 The detector description framework in
the ATLAS experiment

The ATLAS geometry implementation is based on the
GeoModel [7]. The GeoModel is a general-purpose
package used for the description of various geometry
structures. Its kernel contains a toolkit of geometry
primitives (shapes, materials, etc.). The geometry de-
scription within the GeoModel relies on a hierarchical
structure of Physical Volumes (Fig. 9.2).

The Physical Volumes are attached to each other
by Nodes. The Nodes encapsulates the transformation
used to place a Physical Volume inside its parent. The

support for geometry misalignments is based on spe-
cial Nodes, called Alignable Nodes. An Alignable Node
contains not only the Default Transform of the ordinary
Node, but also the Delta Transform which represents the
misalignment. Alignable Nodes can be created at any
level in the geometry hierarchy. In order to handle the
access to the position and orientation of the geometry el-
ements, the GeoModel uses so-called Full Physical Vol-
ume objects. These objects calculate and cache trans-
formations from the local to the global reference frame.
In case an Alignable Node from a higher level in the hi-
erarchy is modified, the Full Physical Volume cache is
invalidated and the transformation is recalculated upon
the next access to that particular volume.

In ATLAS the alignment constant is defined as
the Delta Transform of an ‘Alignable Node’ [8]. For
primitive detector elements, the constants are defined in
the local reference frame, and for the high-level struc-
tures in the global reference frame. Two types of align-
ment constants are used. The first one represents a rigid
body transformation (rotation and translation). It is im-
plemented via the CLHEP HepTransform3D class [9].
The alignment constant is a container of a HepTrans-
form3D object and an identifier. The latter is a common
ATLAS-wide unique identifier of detector elements and
high-level structures. The alignment constants are ap-
plied directly to the detector geometry at several levels
in the hierarchy. The second type of alignment constants
is used to describe some fine corrections (e.g., module
distortion, wire sag). The constant consists of a vector of
float numbers and therefore its interpretation is detector-
specific. The fine correction constants are not applied at
the detector geometry level, but in the reconstruction at
the time the tracks are known.

For the Offline Condition Database (COOL) the
ATLAS experiment makes use of the same persistent
technology as for the event data [10]. The alignment
constants are written using the POOL [11]. The COOL
database records the interval of validity (IOV) and the
reference to the POOL file. The clients register call-
backs on the conditions data object. Then IOV services
take care of loading new data if IOV changes and trig-
ger callbacks. The ideal detector geometry description
is stored in a separate database. The GeoModel detector
geometry is constructed starting from primary objects
stored in the database. In this way, the ideal detector ele-
ment positions and orientations (Default Transform) are
initialized. The conditions data which handle the align-
ment constants contain a tag pointing to the database
entry with the corresponding geometry description ver-
sion.

The GeoModel detector geometry is a common
source for both the GEANT4 simulation and the recon-
struction. Moreover, the misalignment infrastructure is
identical in both cases.

Figure 9.3 shows two example distributions in

85

the case of a simulation with a misaligned detector ge-
ometry followed by a reconstruction with the ideal ge-
ometry and vice versa. During the simulation and the re-
construction, the detector geometry is handled by a De-
tector Manager object. This object transfers the align-
ment constants from the Condition Database to the Ge-
oModel Alignable Nodes. The misalignments are up-
dated via callbacks or explicit calls during the geome-
try initialization. In order to facilitate and speed up the
retrieval of the detector geometry during the reconstruc-
tion, the Detector Manager provides an access to Detec-
tor Element objects. These objects point to the corre-
sponding GeoModel Full Physical Volumes and cache
all the derived quantities. The reconstruction job ac-
cesses the geometry information via Detector Elements
only.

Fig. 9.3: Example distributions in case of a simulation with
a misaligned detector geometry followed by a reconstruction
with the ideal geometry (left) and a simulation with the ideal
detector geometry followed by a reconstruction with a mis-
aligned detector geometry (right).

The simulation with misaligned geometry throws
up some extra challenges in order to deal with vol-
ume overlaps. The potentially dangerous overlaps are
avoided by allowing for enough clearance between var-
ious detector elements. This is done mostly by resizing
and reshaping of detector-element envelopes. Some ser-
vices which are not of primary importance for a correct
detector simulation are artificially thinned or moved.
The detector misalignments are facilitated also by us-
ing alignable nodes at several levels in the geometry hi-
erarchy. The approach allows for larger movements of
big structures (detectors, subsystems, etc.) and smaller
movements of primitive structures (e.g., modules).

9.5 The detector description framework in
the CMS experiment

The misalignment framework in the CMS experiment is
based on a dedicated set of objects (called Alignable-
Tracker and AlignableMuon). These objects map the
tracker and the muon system geometry hierarchies from
the high-level structures down to the sensitive volumes
used by the reconstruction (Fig. 9.4).

Fig. 9.4: The CMS detector geometry description based on
AlignableTracker and AlignableMuon objects

The movements of the high-level structures are
propagated through the corresponding detector hierar-
chy. The sensitive volumes are identified also by a
unique CMS-wide identifier. The framework provides
an access to the Alignment object, where the latter rep-
resents the global position and orientation and the iden-
tifier of a sensitive volume. The geometry misalign-
ment procedure consists in movements applied at var-
ious geometry hierarchy levels and propagated down to
the sensitive volumes. The users can apply custom mis-
alignments by means of a set of pre-defined parameters
stored in special configuration files. In order to study the
impact of the detector misalignment of the reconstruc-
tion quality and train alignment algorithms, several con-
figuration files (‘misalignment scenario’) are prepared
for general usage. The configurations are supposed to
describe the expected detector misalignments as known
from the engineering design or from the detector geom-
etry survey.

The alignment constants are stored as Alignment
objects. As mentioned above, the objects contain global
position and orientation of sensitive volumes (Default
Transform + Delta Transform using the common nota-
tions defined in Section 9.2) and the unique identifier.
The same objects also contain all the alignment (or mis-
alignment) related information, like, for example:

– the applied misalignment scenario,
– the alignment algorithm used to produce the

alignment constants (e.g., survey data, hardware
alignment, or track-based alignment).

The CMS Condition Database is based on POOL.
Alignment objects provided by AlignableTracker and
AlignableMuon are stored in the database. Different in-
stances in the database have different tags (string defin-
ing content) and different intervals of validity. The ideal
geometry description is stored in a XML format.

The detector misalignment is performed in dif-
ferent ways for the simulation and the reconstruction.
During the simulation, the Alignment objects are read
from the condition database and applied to the detector
geometry via an interface to GEANT4. At the recon-

86

struction level, the Alignment objects are retrieved by
the same tools and then used to construct a reconstruc-
tion geometry. Thus the detector misalignments are ap-
plied automatically just before the start of the global re-
construction, while the reconstructed space-point posi-
tions are converted from the local to the global reference
frame. A custom misalignment can thus be performed
on any simulated sample of events. Despite some dis-
crepancies at the detector-element edges, the approach
presented above turns out to be quite satisfactory for de-
tector misalignments (or alignments) at the global level.

Fig. 9.5: The Geometry and Detector structures. The solid
lines represent the geometry hierarchy within the structure.
The dotted lines show the connection between the Detector
Elements and their corresponding Logical Volumes.

9.6 The detector description framework in
the LHCb experiment

In the LHCb experiment the detector geometry im-
plementation resides in the Detector Description
DataBase [12]. It is accessed via a transient detector
data store based on the Gaudi package [13]. The LHCb
detector geometry consists of two hierarchical structures
- Geometry and Detector structure. The Geometry struc-
ture is a classical example of a GEANT-like geometry
implementation. It consists of Logical Volumes with
certain shape and material. The Logical Volumes can be
replicated and nested within higher-level volumes. Thus
the detector geometry hierarchy is formed by position-
ing of volumes within volumes. The Detector structure
is coupled to the physical structure of the LHCb layout.
Its hierarchy consists only of the ‘interesting’ Detector
Elements (called Physical Volumes in the common no-
tation). Each Detector Element corresponds to a real
detector component and has knowledge of

– its position and orientation in the global and par-
ent reference frames,

– its exact place in the geometry hierarchy,
– the list of its daughter volumes which are not nec-

essarily detector elements.

A schematic view of the Geometry and Detector
structures is given in Fig. 9.5.

The detector misalignments are applied through
the Detector structure. They are handled by the corre-
sponding Detector Elements in the following way:

– Combine the local misalignment with the local
transformation matrix in order to obtain new local
position and orientation of the Detector Element.

– Use the link to the parent volumes to calculate the
global position and orientation of the Detector
Element after the misalignment was applied.

– Use the links to the daughter volumes to propa-
gate the misalignment down the Detector struc-
ture.

It is worth noting that the misaligned detector descrip-
tion is automatically available to the user.

The LHCb alignment constants are defined as
Delta Transforms of Detector Elements in their par-
ents’ reference frame. Physically the constants are
represented as rotations about pivot points followed
by translations. The alignment constants contain a
unique Detector Element identifier, which in general
is subdetector-specific. The current implementation of
detector misalignments allows the alignment constants
to be updated at run-time. In this case, a special update
manager service propagates the misalignment changes
to all the necessary parts of the detector description.
The run-time update of the alignment constants offers
the possibility to easily develop iterative alignment algo-
rithms. Owing to the flexibility of the detector descrip-
tion framework, the alignment constants can be general-
ized independently of their internal representation (e.g.,
Euler angles, matrix).

Like ATLAS and CMS, the LHCb Condition
Database relies on POOL. The alignment constants are
stored as COOL database records in the form of XML
strings. The records also contain an interval of valid-
ity and a version number. Loading of the alignment
constants in a given job is handled via the Condition
Database Manager. The Gaudi transient store is created
on demand.

Both the simulation and the reconstruction make
use of the detector description and the misalignment
framework in the same way. However, the misalignment
in the simulation has several restrictions. First, the mis-
alignments can lead to volume overlaps. Second, the
construction of the GEANT4 geometry from the posi-
tion and orientation of the volumes given by Detector
Element objects is done at the initialization of a sim-
ulation job. Therefore there is no possibility to apply
run-time-dependent misalignments and the simulation
always runs with one set of constants.

87

9.7 Comparison of the experiment frame-
works

Despite the quite different implementations and
experiment-specific features, all four LHC experiments
share common ideas and procedures used to build their
detector description frameworks. In this section, we
compare and discuss the basic building blocks of the ex-
periment frameworks.

– Detector geometry implementation. All the ex-
periments except CMS use external general-
purpose packages to describe their detector ge-
ometries. Each experiment developed a set of
tools in order to provide a robust and user-
transparent way to access and modify the geom-
etry information. In this sense, ALICE is a bit
more specific, since the entire ALICE offline soft-
ware is based on ROOT and therefore the geom-
etry information is handled by direct calls to the
ROOT geometrical package (TGeo).

– Geometry misalignment. The misalignments in
the detector geometries are introduced via hierar-
chies of Physical Volumes. In the case of AL-
ICE and LHCb, these hierarchies are closely con-
nected to corresponding hierarchies of Logical
Volumes.

– Alignment constants. There are two main points
related to the alignment constants representation:
the type of the transformation (Delta Transform
or Delta + Default Transform) and the refer-
ence system in which the transformation is de-
fined. ALICE, ATLAS and LHCb use alignment
constants defined as Delta Transforms, while
CMS stores the misaligned position and orienta-
tion of the detector elements (e.g., Delta + De-
fault Transforms). The choice of the reference
systems varies from experiment to experiment de-
pending on the geometry implementation and the
way the misalignments are applied in the simu-
lation, reconstruction, or track-based alignment
procedures.

– Condition databases. All the experiments except
ALICE rely on the commonly developed POOL
package. The alignment constants are stored as
COOL database records in XML format. ALICE
has developed its own condition database infras-
tructure based on ROOT files stored on the Grid.

– Misalignment in the simulation and the recon-
struction. All the experiments use the same
framework in both the simulation and the recon-
struction. In the case of ATLAS, CMS and LHCb,
the detector geometry is interfaced to GEANT4,
while ALICE profits from the direct TGeo naviga-

tion which is independent of the transport Monte
Carlo. It is worth noting, that the LHCb detector
description framework allows for run-time mis-
alignment changes and therefore can be used di-
rectly in case of iterative track-based alignment
approaches.

– Geometry overlaps. Several different approaches
to dealing with volume overlaps have been em-
ployed by the experiments — adding enough
clearance between volumes, resizing of service
volumes, application of misalignments on several
levels in the geometry hierarchy. ALICE also
makes use of the special TGeo geometry entities
called Assemblies.

Acknowledgements
I am grateful to J. Palacios, A. Gheata, M. Gheata,
F. Ronga, G. Gorfine, R. Grosso, M. Clemencic and
M. Case for providing me with essential information and
for the useful discussions during the preparation of the
present overview.

References
[1] GEANT - Detector Description and Simulation

Tool, CERN Program Library Long Writeups
Q123.

[2] R. Brun, A. Gheata and M. Gheata, Nucl. In-
strum. Methods A502 (2003) 676–680.

[3] GEANT4 Collaboration, Nucl. Instrum. Methods
A506 (2003) 250–303.

[4] A. Fassò, A. Ferrari, J. Ranft and P.R. Sala, CERN-
2005-10, INFN-TC-05-11, SLAC-R-773 (2005).

[5] C. Cheshkov, A. Gheata and R. Grosso, ALICE
Internal Note, in preparation.

[6] http://aliceinfo.cern.ch/Offline/
Activities/ConditionDB.html.

[7] https://twiki.cern.ch/twiki/bin/view/
Atlas/GeoModel.

[8] https://twiki.cern.ch/twiki/bin/view/
Atlas/InDetAlignHowTo.

[9] http://proj-clhep.web.cern.ch/
proj-clhep/.

[10] http://lcgapp.cern.ch/project/CondDB/.
[11] http://lcgapp.cern.ch/project/pool/.
[12] https://twiki.cern.ch/twiki/bin/view/

LHCb/GeometryFramework.
[13] http://lhcb-comp.web.cern.ch/

lhcb-comp/Frameworks/Gaudi/Gaudi_
v9/GUG/Output/GUG_DetDescription.html.

88

