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Abstract
The tracking resolution and vertex finding capabilities of the SLD experiment de-
pended upon a precise knowledge of the location and orientation of the elements of
the SLD pixel vertex detector (VXD3) in 3D space. At the heart of the procedure de-
scribed here to align the 96 CCDs is the matrix inversion technique of singular value
decomposition (SVD). This tool was employed to unfold the detector geometry cor-
rections from the track data in the VXD3. The algorithm was adapted to perform an
optimal χ2 minimization by careful treatment of the track hit residual measurement
errors. The tracking resolution obtained with the aligned geometry achieved the de-
sign performance. Comments are given on how this method could be used for other
trackers.

7.1 Introduction
Between 1996 and 1998 around 400 000 hadronic Z0

decays were recorded by the SLC Large Detector (SLD)
at the e+e− SLAC Linear Collider (SLC). The long
lifetimes of B and D hadrons results in tracks from
Z0 → bb and Z0 → cc events having more than one ori-
gin: fragmentation tracks form the primary vertex at
the e+e− Interaction Point (IP) while tracks from the
decays of the heavy hadrons form displaced secondary
vertices.

Fig. 7.1: Layout of the CCDs in VXD3: (a) cross-section
through the rz plane, (b) view from +z end with each line
representing one ladder supporting two CCDs

An important part of the physics programme at
SLD relied on the identification of these secondary ver-
tices [1]. The ability to do this depended on the tracking
resolution, and particularly the alignment of the vertex
detector elements. This paper describes the technique

developed for the internal alignment of the components
of the SLD vertex detector which allowed the design
performance to be achieved.

The SLD Vertex Detector (VXD3 [2]) consisted
of 96 charge-coupled devices (CCDs [3]) arranged on
3 cylindrical layers of supporting ladders, with radii of
2.7, 3.7 and 4.7 cm, around the IP as shown in Fig. 7.1.
The z-axis was parallel to the beam-line with the pos-
itive direction towards the North face of the SLD de-
tector. There were 48 CCDs facing the beam on the
South half of each ladder together with 48 outward fac-
ing CCDs on the North half, with an overlap of around
1 mm, called a ‘Doublet’, in the region near z = 0.
There was an overlap of similar size between neighbour-
ing CCDs in the same layer, known as a ‘Shingle’, in
the rφ plane, Fig. 7.1(b). The design of the VXD3, in-
stalled in 1996, was motivated by the experience with
the previous SLD vertex detector VXD2. In particular,
the Doublet and Shingle overlaps are a crucial feature
that not only secure the coverage and avoids gaps, but
were also introduced with tracking based alignment in
mind. Each of the 96 CCDs measures 8 cm in length by
1.6 cm width and houses 3.2 million 20× 20 µm pixels.
A charged track traversing a CCD leaves a hit consist-
ing of a cluster of several pixels, within each of which
the ionization charge was recorded. The centroid of the
cluster determines a point on the track trajectory with an
intrinsic resolution estimated to be around 3.5 µm.

Sets of such hits on different CCDs within small
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solid angular regions about the IP were assumed to have
been produced by the passing of a single charged track.
Charged tracks from the interaction region were iden-
tified and reconstructed initially in the Central Drift
Chamber (CDC) [4]. The helix parameters of each
track, in the 0.6 T solenoid field, were used to determine
the region of the VXD3 traversed by the correspond-
ing charged particle and to associate the track with the
VXD3 hits. Since the VXD3 hit efficiency was very
high most tracks that pass through all three layers of
the detector were found to associate with hits on three
CCDs (because of overlaps some tracks were seen on
more than three CCDs).

In a preamble to the full internal alignment the
CCD geometry was corrected for deviations from the
ideal geometry location and a flat surface with mea-
surements from a room temperature optical survey. The
calculated effects of gravitational sag were also taken
into account. Further, relying both on predicted effects
and observation of detector performance, the CCD data
were corrected for several shifted and smeared elec-
tronic channels in the 1996 run and for mechanical con-
traction inside the 200 K VXD3 cryostat (lowered again
to 180 K before the 1997 run). These initial corrections
determine the ‘nominal’ geometry of the detector, with
typically a few tens of microns precision, with which
the first data was reconstructed. Subsequently a χ2 was
calculated to measure the deviation of the linked VXD3
hit from the CDC track trajectory taking into account
the tracking resolution. Initially the VXD3 is treated
as a rigid body and globally aligned to the CDC by
minimizing the

∑
χ2 over tracks in a large number of

events with respect to the three translational and three
rotational degrees of freedom of the whole VXD3. The
impact parameter resolution at the IP of tracks fitted to
the combined CDC and VXD3 hit data then depended
primarily upon the CCD single hit resolution. This in
turn was the product of the intrinsic resolution and the
systematic uncertainties in the relative internal locations
and orientations of each of the 96 CCDs with respect to
the same set of six degrees of freedom. The aim of the
internal alignment was to remove the latter contribution
with the determination of these 96 × 6 = 576 geomet-
ric corrections. Before the physics analysis could fully
benefit from the vertex detector the tracking data had to
be used to improve the single hit resolution to 5 µm or
less, close to the true intrinsic resolution.

A major goal of the project was to find a pre-
scription for combining the alignment data from particle
tracks in a deterministic way, so that a robust optimum
geometry could be obtained, i.e., one which does not
depend on the vagaries of the order in which parame-
ters were optimized, nor require many subjective judge-
ments to be made. We believe that this goal has been
achieved and will describe the mathematical underpin-
nings of the result.

A key tool which has enabled us to achieve
the result was the use of singular value decomposition
(SVD). We explain how the SVD technique was in-
tegrated into our alignment procedure to find an op-
timum χ2 minimization solution for the CCD geome-
try using the track data. In the following section we
give an overview of the method. In Section 7.3 we de-
scribe how the displacements of a CCD from its nom-
inal location perturbs the position at which a track hit
is observed. Section 7.4 discusses how hits from vari-
ous types of track data are included and the constraints
made on the detector geometry. A description is then
given in Section 7.5 of how these constraints are com-
bined into a global set of equations which have been
solved using SVD. In Section 7.6 examples are given of
the difference in the distributions of track residuals be-
fore and after the alignment. Finally in Sections 7.7 and
7.8 we make some concluding remarks and discuss how
the technique could be applied in the alignment of other
trackers.

A fuller description of the method and the devel-
opment of the alignment, plus a brief overview of SVD,
can be found in Refs. [5, 6].

7.2 Overview of the method
Although the CDC was used to identify charged tracks,
most of the observables used in the internal alignment
were calculated using just CCD hits. Various residuals
were defined, each of which can be described as a sim-
ple (linear) function of the misalignments of the CCDs
used in that particular residual, and a number of param-
eters which can be determined with sufficient accuracy
from the nominal geometry of the detector and approxi-
mate track parameters.

For the initial residuals studied, good quality
tracks were constrained to pass through two of the
CCD hits and the residual measured to the third, ref-
erence, CCD. Later more complex residuals were in-
cluded, each using up to four CCDs, as described below.

For each type of residual and given combination
of CCDs a set of tracks to be used in the alignment were
assembled. The measured residuals for each set can in
general be expressed as a polynomial of known track
parameters (here values from the nominal geometry are
adequate), and the unknown CCD misalignments enter
only in the coefficients of the various polynomial terms.
Thus fitting the measured residuals to the appropriate
polynomial allows each set of tracks to be reduced to
a few coefficients. It is then possible to write a matrix
equation Ax = c, where x is a vector of the n unknown
CCD misalignments, c is a vector of the m coefficients
fitted to the various sets of tracks and A is an m × n
matrix with elements determined from the nominal ge-
ometry. This equation can be solved to give the required
CCD misalignments, however, this does not take into
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account the errors and correlations in the residual fits. A
better solution can be obtained by redefining the basis of
coefficients from each of the residual fits such that the
modified coefficients from each fit have a unit covari-
ance matrix.

The equation to be solved then becomes TAx =
Tc, where T provides the suitable change of basis for
the coefficients c. The elements of T are calculated from
the covariance matrices of the residual fits. Solving this
equation with SVD effectively gives a more optimal χ2

fit for the unknown CCD misalignments x.

7.3 CCD misalignments and hit residuals
Figure 7.2 shows the degrees of freedom allowed in this
analysis for a pair of CCDs on one of the 48 ladders of
VXD3.

Fig. 7.2: Definition of the CCD translation δz, δr, δη and ro-
tation δα, δβ, δγ corrections to be determined, indicated for
two CCDs on the same ladder

The parameters consist of three translations, par-
allel to the edges of the rectangular CCD and normal
to the CCD plane, and three rotations about the normal
point in the CCD plane (i.e., the point in the plane clos-
est to the IP)

– δz : Translation in CCD plane in z direction
– δη : Translation in CCD plane in φ direction
– δr : Translation normal to CCD
– δα : Pitch – Rotation axis along width of CCD
– δβ : Yaw – Rotation axis normal to CCD
– δγ : Roll – Rotation axis along length of CCD.

Figure 7.2 also shows how the hit • in a CCD is
specified by the angle λ in the rz plane relative to z = 0
about the IP, and the distance Lφ across the CCD in the
CCDs own reference system. The alignment procedure
described here assumed that each CCD was approxi-
mately flat, with small shape corrections as measured
in the optical survey having been applied (see further
discussion on CCD shapes in Section 7.6).

Fig. 7.3: The effect on the apparent hit position in a CCD due
to adjustments in the six degrees of freedom

Figure 7.3 illustrates the effect on the apparent
hit position within a CCD for a track of fixed trajectory
when the CCD position is adjusted by movements in the
six degrees of freedom. Misalignments of the CCDs
cause the measured hit on the CCD to be displaced from
the true track trajectory by a residual amount δz along
the CCD length and δLφ across its length. The sign of
δz is such that it measures the z location of the hit mi-
nus the z location of the actual track in the plane of the
CCD. If the only degree of freedom of the CCD was the
δz correction, then δz = −δz, and it would be trivial to
‘unfold’ the required CCD alignment correction δz from
the measured residual δz . Straightforward geometric ar-
guments show that the more general form for the δz and
δLφ residuals can be approximated as:

δz = −δz+δr tan λ+δα r tan2 λ+δγLφ tan λ+δβLφ

(7.1)

δLφ = −δη+
δr
r

Lφ +
δγ

r
Lφ

2+δαLφ tanλ−δβr tanλ

(7.2)
where both residuals are measured in the plane of the
CCD.

Since the true track trajectory is unknown it
is necessary to identify hits on several (usually three)
CCDs associated with a track reconstructed in the CDC.
Good quality tracks were selected with a momentum of
at least 1 GeV. In general the track was constrained to
pass through two of the CCD hits and the correspond-
ing residual measured to the third, reference, CCD. The
small curvature effect of the charged track of known mo-
mentum in the SLD magnetic field (0.6 T) was taken
into account in the rφ plane. The relative lever-arm
weights with which each of the three CCDs contribute
to the observed residual was determined from the ideal
geometry to within a very good approximation (since
the alignment corrections are very small compared with
the dimensions of the detector), in all cases the refer-
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ence CCD was given a weight = +1. For example, an
observed δz residual is equated with the sum of three
weighted CCD contributions of the form of Eq. (7.1).
The CCD contributions to the tan λ terms in Eqs. (7.1)
and (7.2) are readily combined since tanλ is a param-
eter of the track itself which is common to all hits.
Terms involving Lφ require more care since in gen-
eral this value differs for each CCD even for the same
track. However, we determine Lφ on the reference CCD
and to a close approximation the value of this local co-
ordinate on another CCD i, Lφi, is linearly related as
Lφi = aiLφ + bi where ai and bi are constant factors
determined solely by the ideal geometry of the CCDs
concerned. Taking all of these terms into account leads
to the following general functional forms for the resid-
ual measured on the reference CCD for a given track:

δz =
∑

i

wi[ (−δzi + biδβi) 1

+ (δri + biδγi) tan λ

+ (riδαi) tan2 λ

+ (aiδγi) Lφ tan λ

+ (aiδβi) Lφ]
(7.3)

δLφ =
∑

i

wifi[ (−δηi + bi

ri
δri + b2i

ri
δγi) 1

+ (ai

ri
δri + 2aibi

ri
δγi) Lφ

+ (a2
i

ri
δγi) Lφ

2

+ (aiδαi) Lφ tan λ

+ (biδαi − riδβi) tan λ]
(7.4)

where the sum is over the contributing CCDs and their
signed weights wi were determined relative to the ref-
erence CCD, according to the geometric lever arm. For
example, the layer 2 reference CCD of a Triplet (de-
scribed in Section 7.4) is given a weight of +1.0 while
the layer 1 and layer 2 CCDs each contribute with a
weight wi = −0.5. Corrections to the non-reference
CCD contributions due to the fact that the CCDs are not
parallel in the rφ plane are determined from the ideal
geometry and yield the factors fi(∼ 1.0). For most of
the residual types a reduced functional form can be used
and these are shown in Table 7.1 and described in the
following section.

7.4 Residual types, distributions and fits
The internal alignment began by classifying the types of
tracking constraints as shown in Fig. 7.4 with the corre-

sponding residuals δ indicated in the rφ plane. In each
case there are analogous residuals in the rz plane. There
are 48 pairs of CCDs shown in Fig. 7.4 with the inner
and outer lines representing the North and South CCDs,
respectively. The six residual types used are described
below.

– Shingles - require a pair of hits in adjacent CCDs
within the same layer, plus a third, anchor, hit in
another layer. These constrain the relative posi-
tions of CCDs within a layer.

– Doublets - require a pair of hits in the two CCDs
on a single ladder (in the overlap region halfway
along the length), plus a third hit in another layer.
These constrain the relative positions of the two
halves of VXD3.

– Triplets - require three hits in different layers, ei-
ther all on the North or all on the South half of the
detector. These constrain the relative positions of
the three layers.

– Pairs - require a pair of back-to-back tracks from
Z0 → µ+µ− or Z0 → e+e− events, each giving
a hit in layers 1 and 3 (layer 2 is ignored for Pairs).
These constrain opposite regions of the detector.

– VXD3 vs. CDC Track Angle Matching - the an-
gle of high momentum tracks measured in the
CDC is compared with the angle measured in lay-
ers 1 and 3 of VXD3. The angular discrepancy
is converted into a residual distance on a refer-
ence CCD. The residual uncertainty was deter-
mined from the CDC track as well as the CCD
hit resolution.

– IP constraint - on average tracks measured in lay-
ers 1 and 3 should project back through the real
interaction point. For this constraint the IP is al-
lowed to float in the xy plane. In addition to the
6× 96 CCD corrections a further two, δx and δy,
are introduced for the deviation of the IP from the
nominal position. Hence there are a total of 578
alignment corrections to be determined. The con-
tribution to the constant term i⊥1 near the bottom
of Table 7.1 is given by:

i⊥1 = f(δCCD)− δx sin φi + δy cosφi (7.5)

where f(δCCD) is determined using Eq. (7.4) and
φi is a constant taken to be the average value of φ
for each residual region.

The full set of functional forms is listed in Table 7.1.
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Table 7.1: Functional forms for fitting the various residual types, NI lists the total number of independent residual fits involved
while NC is the number of coefficients determined

Type Functional form NI NC

δs
z = s‖1 + s‖2 tan λ + s‖3 tan2 λ 96 288Shingles

δs
Lφ = s⊥1 + s⊥2 tan λ 96 192

δd
z = d‖1 + d‖2Lφ 48 96Doublets

δd
Lφ = d⊥1 + d⊥2 Lφ + d⊥3 Lφ

2 48 144

δt
z = t‖1 + t‖2 tan λ + t‖3 tan2 λ + t‖4Lφ tan λ + t‖5Lφ 80 400Triplets

δt
Lφ = t⊥1 + t⊥2 Lφ + t⊥3 Lφ

2 + t⊥4 Lφ tan λ + t⊥5 tan λ 80 400

δp
rz = p‖1 + p‖2 tan λ + p‖3 tan2 λ 28 84

Pairs δp
rφ = p⊥1 + p⊥2 tan λ 28 56

δp
φ = pφ

1 + pφ
2 tan λ 28 56

δc
λ = cλ

1 + cλ
2 tan λ + cλ

3 tan2 λ 56 168
CDC angle

δc
φ = cφ

1 + cφ
2 tan λ 56 112

IP constraint δi
IP = i⊥1 + i⊥2 tan λ 56 112

Total 700 2108

Fig. 7.4: Construction of the VXD3 residuals

The dashed and dash-dotted lines in the upper
right quadrant of Fig. 7.4 indicate the division of the data
into ten Triplet regions, while the dash-dotted lines only
indicate the division into seven regions used to define
the Pair, CDC angle matching and IP constraint resid-
ual regions. These boundaries are determined by the re-
quirement that each residual region involves a unique set
of CCDs. These divisions repeat in the other three quad-
rants by the symmetry of the detector. The 40 Triplet re-
gions correspond to the NI = 80 independent fits listed
in Table 7.1 since North and South CCDs are considered

separately for the Triplets.
For each type of residual and each unique com-

bination of CCDs n-tuples were accumulated contain-
ing the deviations δz and δLφ, and co-ordinates tanλ
and Lφ. These n-tuples were fitted to the functional
forms given in Table 7.1 to determine the coefficients of
the deviations and the covariance error matrix of the fit.
These fits were done using MINUIT [7] with an auto-
mated procedure to loop over the large number of resid-
ual type and CCD combinations involved. Examples of
the fits for a Shingle are shown in Fig. 7.5.

Fig. 7.5: An example of (a) δz and (b) δLφ residual distri-
butions as a function of tan λ for a Shingle in layer 2 before
alignment. The solid lines show the fitted curves.

Each of the points in Fig. 7.5 represents the resid-
ual obtained from one track. All residual fits were made
to data points obtained by binning the distributions in
tan λ (and/or Lφ) and averaging over the track data in
each bin to determine the data point with an error bar,
taking the intrinsic hit resolution into account. After
each fit the automated procedure included the search
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for and removal of outliers (assumed to be caused by
mis-linked tracks) and a refit to the remaining data if
necessary. This was particularly important for fits with
relatively little track data, and in all cases a visual cross-
check was made using a graphical fit display. The scatter
of the points about the fitted curves in Fig. 7.5 is due to
the intrinsic resolution.

The effects of the misalignments to be corrected
are seen as a parabola and non-zero gradient slope in
Fig. 7.5(a) and (b) respectively, as predicted by the cor-
responding functional forms for Shingles listed at the
top of Table 7.1.

7.5 The alignment matrix equation and so-
lution with SVD

The repeated application of Eqs. (7.3) and (7.4) yields
a large set of simultaneous equations which can be ex-
pressed in terms of a single matrix equation Ax = c,
where x is a column matrix of the 578 CCD and IP de-
grees of freedom, c is a column matrix of coefficients
measured in the residual fits listed in Table 7.1 and the
2108×578 elements of A, called the ‘design matrix’ are
determined by the ideal geometry:

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

...

...

...

...

...
...A(wi, ri, ai, bi, fi)...

...

...

...

...

...

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

δz1
...

δz96
δηj

δrj
δαj

δβj

δγj

δx
δy

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

s
‖
1(96)

s
‖
2(96)

s
‖
3(96)

s⊥1 (96)
s⊥2 (96)

d
‖
1(48)

...
t
‖
1(80)

...

...
p
‖
1(28)

...
cλ
1 (56)

...
i⊥1 (56)
i⊥2 (56)

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(7.6)
where, for example, the δηj denote the 96 CCD cor-

rections δη to be determined. With A and c known the
question is how to find the optimal solution to this equa-
tion for the alignment corrections x. Several features
of matrix singular value decomposition are listed in the
appendix of Ref. [5]. However, the important property
of interest here is that by inverting the possibly singular
m×n matrix A using SVD yields the m×n matrix A

+
,

such that the solution x = A
+
c minimizes the magni-

tude | Ax − c |. This ‘least squares fit’ minimization
of

∑
i (

∑
j Aijxj − ci)2 could directly be used to deter-

mine an alignment geometry, however, it does not take
into account the error and correlation information con-
tained in the covariance matrices of the residual fits. It

is necessary to redefine the basis of parameters for each
residual fit such that each covariance matrix takes a unit
diagonal form for the least squares fit using SVD to ef-
fectively become a more optimal χ2 fit.

Quite generally the n×n covariance error matrix
V for a fit to n parameters of vector p can be decom-
posed as V = HHT where H is a non-singular lower
triangular matrix. The new vector p′ = H−1p then
contains a set of n independent Gaussian variables with
a unit covariance error matrix [8]. We use the CERN-
LIB [9] routines TRCHLU to decompose the error ma-
trix of each residual fit V = HHT and TRINV to invert
the triangular matrix H → H−1. Multiplying each H−1

matrix into the relevant elements of c removes the resid-
ual fit correlations and with each of the new elements
having an error of unity. Symbolically we collect all of
the non-zero elements of the 700 triangular H−1 matri-
ces into a single 2108 × 2108 matrix denoted T and in
order to maintain the equality in Eq. (7.6) multiply into
both sides:

TAx = Tc (7.7)

yielding:
A′x = c′, (7.8)

where the rows of A′ and elements of c′ have been ob-
tained by the same linear transformation, under the op-
eration of T, from the rows of A and elements of c,
respectively. The new A′ matrix is then decomposed
according to the SVD prescription and the inverse A′+

constructed. Finally, the solution x = A′+c′ determines
a χ2 minimization over all the track residual data and
yields the 578 alignment corrections.

7.6 Results of vertex detector alignment
7.6.1 Including CCD shape corrections
After following the prescription discussed in the previ-
ous sections and correcting the geometry according to
the SVD solution, optimal resolution in the rφ plane
was effectively achieved. However the rz performance
was less satisfactory, particularly for high | tanλ|where
tracks make a large angle to the CCD normal and the
resolution becomes more susceptible to the radial uncer-
tainty in the CCD hit location. From the optical survey
data the shapes of the CCD surfaces had been fitted to
14 parameter Chebychev polynomials [2]. In particu-
lar, the CCDs were observed to take a 4th order poly-
nomial ‘W’ shape, seated on their glue attachments to
the ladders, along the z-direction, with deviations from
a flat surface typically a few tens of microns in size
(see Fig. 7.6). This systematic distortion of mechani-
cal origin was expected to be modified under the detec-
tor cooldown from room to operating temperature. In
fitting for the six alignment corrections for each of the
96 CCDs it had been assumed that the shapes were per-
fectly known from the optical survey. Examination of

64



the structure of individual residual region distributions
showed deviations from the assumed functional forms
listed in Table 7.1, consistent with the ‘W’ shapes not
having been fully corrected due to both the limited sur-
vey data resolution and the thermal difference between
the room-temperature survey and the VXD3 cryostat.
The effects seen in the residual distributions, indicated
that the resolution might be further improved by apply-
ing shape corrections based on the track data.

With the δz and δα rigid body CCD corrections
already accounting for two of the five variables required
to parameterize a 4th order polynomial, three further
shape-correcting terms δq, δh and δt (representing the
displacement from a flat surface at 1

4 , 1
2 and 3

4 of the
distance along a CCD with both ends fixed) were intro-
duced.

The shape was treated as a tan λ dependent ra-
dial correction: δr → δr + f(δq, δh, δt, tanλ), where
the function f was determined by a few lines of straight-
forward algebra.

Substituting this redefined expression for δr into
Eqs. (7.1) and (7.2) and following the complete proce-
dure described in the previous three sections with the ad-
dition of the shape-correcting terms led to a new version
of the matrix equation Ax = c of Eq. (7.6). This con-
sisted of a 4160×866 design matrix A determined from
the ideal geometry, an array of 866 unknown alignment
corrections x (now including the δq, δh and δt displace-

ments for each CCD) and an array of 4160 coefficients c
determined from the original 700 residual fits with new
higher order terms accounting for the CCD shapes.

Fig. 7.6: Example of typical shapes of the two CCDs on a
ladder, as measured in the room-temperature optical surveys

Table 7.2: Functional forms for fitting the various residual types after the shape corrections were included, NI lists the total
number of independent residual fits involved while NC is the number of coefficients determined

Type Terms in functional forms NI NC

1 ta
n
λ

ta
n

2
λ

ta
n

3
λ

ta
n

4
λ

ta
n

5
λ

L
φ

L
φ
2

L
φ

ta
n
λ

L
φ
ta

n
2
λ

L
φ
ta

n
3
λ

L
φ
ta

n
4
λ

δs
z = s‖1 s‖2 s‖3 s‖4 s‖5 s‖6 96 576Shingles

δs
Lφ = s⊥1 s⊥2 s⊥3 s⊥4 s⊥5 96 480

δd
z = d‖1 d‖2 48 96Doublets

δd
Lφ = d⊥1 d⊥2 d⊥3 48 144

δt
z = t‖1 t‖2 t‖6 t‖7 t‖8 t‖5 t‖4 80 640Triplets

δt
Lφ = t⊥1 t⊥5 t⊥9 t⊥10 t⊥11 t⊥2 t⊥3 t⊥4 t⊥6 t⊥7 t⊥8 80 880

δp
rz = p‖1 p‖2 p‖3 p‖4 p‖5 p‖6 28 168

Pairs δp
rφ = p⊥1 p⊥2 p⊥3 p⊥4 p⊥5 28 140

δp
φ = pφ

1 pφ
2 pφ

3 pφ
4 pφ

5 28 140

δc
λ = cλ

1 cλ
2 cλ

3 cλ
4 cλ

5 cλ
6 56 336CDC angle

δc
φ = cφ

1 cφ
2 cφ

3 cφ
4 cφ

5 56 280

IP constraint δi
IP = i⊥1 i⊥2 i⊥3 i⊥4 i⊥5 56 280

Total 700 4160

65



The functional forms used after the shape correc-
tions had been included are listed in Table 7.2. Since
there was no track data to constrain the shape in the
high | tan λ| region of layer 2 and particularly layer 1
CCDs (as can be seen from Fig. 7.1(a) tracks from the
IP that traverse any part of a layer 3 CCD can only in-
tersect about half of a layer 1 CCD), a further 866 rows,
each with only one non-zero element, were appended to
the matrix A and the array c was extended downwards
with 866 zero elements. These extra lines were used
to apply conservative restraints on the geometry by ef-
fectively combining the dummy measurements δz, δr =
0±10 µm, δη = 0±2 µm, δα, δβ, δγ = 0±0.05 mrad
and δq, δh, δt = 0 ± 5 µm (δx and δy for the IP were
not ultimately constrained in this way) into the SVD χ2

minimization fit. The complete 5026×866 element ma-
trix A′ and the 5026 element vector c′ were obtained
from A and c, respectively, by Eq. (7.7) using the 16 332
non-zero elements of the effective matrix T. The latter
was obtained in turn from the residual fit covariance er-
ror matrices (plus the corresponding error terms from
the dummy measurements added above) as described in
the previous section. The matrix A′ was inverted using
SVD and the VXD3 geometry was corrected with the
866 elements of the solution vector x = A′+c′.

7.6.2 Achievement of design performance

The alignment procedure described in the previous sec-
tions requires only a single iteration to a given data set
to determine the corrected geometry. In practice, due
to a difference in run conditions and as the algorithm
developed, several aligned geometries were determined
for the data taken in 1996/98. Details of these can be
found in Ref. [6].

Figure 7.7 shows the Triplet δz and δLφ residu-
als obtained with the aligned detector together with the
pre-alignment residuals derived from the optical survey
geometry. Since the Triplets cover the full volume of the
detector, that is over the full region of track acceptance
for all CCDs in all three layers, they provide a represen-
tative indication of the local alignment. The data used
for these Triplet plots correspond to charged tracks se-
lected with momentum greater than 5 GeV/c to suppress
the multiple scattering contribution.

The post-alignment RMS of the residual distri-
butions was found to be around a factor of four im-
proved over the pre-alignment RMS values. Similar
plots for all residual types, along with the mean and
RMS measurements, were a major guide in debugging
and refining the alignment algorithm. Indeed, only af-
ter taking into account the full residual fit error matri-
ces, with the operation of T as expressed in Eq. (7.7),
were the post-alignment residual plots observed to stand
out in a manner approaching the ideal performance, i.e.,
with an RMS dominated by the intrinsic CCD hit reso-

lution about an essentially zero mean as seen in Fig. 7.7.
Fitting a single Gaussian curve to each of the post-
alignment histograms in Figs 7.7(a) and (b) yielded a
width of 4.45 µm in each case. This number, depending
on the three Triplet CCDs, is divided by the geometric
weight factor

√
1.02 + 0.52 + 0.52 to yield 3.63 µm as

the single CCD hit resolution for both δz and δLφ af-
ter the alignment, well within the initial target goal of
5 µm and close to the intrinsic hit resolution. Erratic
variations in the residual distribution mean as a function
of the Triplet index that had been observed in the initial
data were reduced to the 1 µm level, as can be seen in
Fig. 7.8.

Fig. 7.7: Triplet residuals for 1997/1998 data obtained with
the original survey geometry (broad histograms with thick out-
line) and after the alignment (narrow shaded histograms)

The magnitudes of the measured geometry cor-
rections were typically O(10 µm) with the largest effects
being perpendicular to the CCD plane. A second itera-
tion of the global alignment, described in Section 7.1,
was performed after the internal alignment and gave
only minor corrections for the six rigid body degrees of
freedom of the detector as a whole. It should be noted
that the SVD procedure does not need to be iterated on
the same data set. This was expected given the relatively
minor nature of the approximations made in the analysis
and was confirmed by the observed negligible effect of
performing a second iteration of the internal alignment.

After the final alignment, the one hit resolution
for the Shingle, Doublet, Triplet and Pair residuals over
the whole detector was in general found to be consis-
tently better than 4.0 µm in both the rz and rφ planes,
very close to the true intrinsic CCD resolution, and de-
sign performance had been achieved.
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Fig. 7.8: Triplet δz and δLφ residual mean as a function of
the φ-dependent Triplet index (see Fig. 7.4), for the North
and South halves of VXD3, obtained before ¤ and after •
the alignment corrections (plot (c) made with different vertical
scale).

7.7 Conclusions on the alignment
With the internal alignment of the vertex detector com-
plete the charged track parameters were determined us-
ing a combined fit to the VXD3 hits and CDC (Central
Drift Chamber) track data. Compared with the VXD3
only Pair data discussed above, the impact parameter
resolution improves due to the inclusion of the layer 2
VXD3 hit and further in the rφ plane due to the CDC
information. The constant and momentum/angle depen-
dent multiple scattering terms for the final rz and rφ
impact parameter resolution at the IP in the 1997/1998
SLD data were determined to be:

σrz = 9.7⊕ 33
p sin3/2 θ

µm

σrφ = 7.8⊕ 33
p sin3/2 θ

µm (7.9)

where the constant terms depend primarily upon the
VXD3 CCD intrinsic resolution and geometry. In or-
der to achieve this design performance a great deal of
effort outside of the SVD analysis presented here was
required. This work included the initial optical survey
and corrections for electronics and mechanical effects
only briefly mentioned in this paper (for more details
see Ref. [2]).

Ultimately, however, only the SVD analysis had
the necessary versatility to simultaneously correct the
geometry of each of the 96 individual CCDs for three

translational, three rotational, and three shape-defining
degrees of freedom. The variety of residual types, in-
cluding the Pair, CDC matching angle and IP constraint
data, successfully incorporated into the SVD fit further
demonstrate the remarkable robustness of the technique.
The quality of the solution depended on the careful in-
clusion of the residual fit error information into the
analysis, as described in Section 7.5 and Eq. (7.7), to
adapt the least squares fit property of the SVD method
into an optimal χ2 minimization fit. The algorithm is
extremely robust with little need for ‘tuning’ except in
the treatment of effects where the real data is observed
to deviate significantly from the ideal model and any
assumptions used in defining the problem.

Although the size of the matrices involved ap-
pears daunting, only ∼ 1% or ∼ 35 000 elements of the
5026 × 866 matrix A were given non-zero values, and
these in turn were generally determined in a straight-
forward way from only ∼ 10 parameters describing the
VXD3 geometry in Fig. 7.1. Also, the large number of
non-zero elements involved in the T matrix and c array
were obtained from the residual data skims by auto-
mated looping over large numbers of similar fits each
identified by an index label. Much of the analysis was
an exercise in book-keeping.

While only one iteration of the whole analysis
was required to obtain an optimal solution, we found
some benefit from tuning the geometry restraints dis-
cussed at the end of the last section. Applying a trivial
dummy measurement (δz = 0 ± 10µm, etc.) to each
alignment correction gives a fully constrained set of
alignment equations. This was of value early in the
analysis, for example, using the Shingle residual fit data
only together with the dummy restraints allowed a clean
test of the code relevant for the Shingle data only with-
out interference from the other data types. We also
found some benefit in artificially reducing the residual
fit errors by tuning an extra weight in matrix A for resid-
ual types that suffered from low statistics, for example,
the Pair data in the early run period. Such fine-tuning,
applied toward the end of the analysis, did not play a
significant role.

A further iteration of the whole procedure was
only necessary after a significant change in the data
sample or an improvement in the algorithm such as the
inclusion of the IP constraint or CCD shape-correcting
terms. The project began with the Monte Carlo stud-
ies as the first VXD3 data was being collected in 1996,
was refined as the data accumulated, and concluded in
May 1999 within a year of the end of the final SLD
run. Although some visible effects in the residual data
remained, for example, due to a slight bow shape across
the CCD width observed in a few Doublets, these were
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all too minor to consider further extensions of the al-
gorithm. The achievement of the design resolution
indicated in Eq. (7.9) has greatly benefitted the rich
programme of heavy flavour physics analysis at SLD
during the subsequent years.

7.8 Lessons for other trackers
The basic technique used could be applied for other
systems where: the required solution is a perturbation
described by O(1000) parameters which are small com-
pared to the dimensions of the system; constraining data
exists which can be expressed as a set of simultaneous
linear equations of the parameters. Clearly, as for any
method, the constraining data has to give adequate cov-
erage, not only for local corrections, but also for longer
distance corrections (sometimes referred to as ‘weak
modes’).

This work has demonstrated that it was already
possible in 1999 to handle simply and reliably the ma-
trices required in the case of VXD3 (inversion of sparse
matrices of order 5000 × 1000 elements) using dou-
ble precision arithmetic in modest times on a standard
workstation. In this case only ∼ 1% of the elements
of the design matrix had non-zero values. Given im-
provements since then in computer hardware and matrix
manipulation code it should now be possible to handle
problems several times larger.

Using Singular Value Decomposition provided
a robust technique for the matrix inversion and also
provided a measure of the degrees of freedom left un-
constrained by the constraint data. However, the basic
technique could be modified to use other matrix inver-
sion techniques, to give similar statistical dependence
on the data and the geometry.

The alignment problem of a tracker is greatly as-
sisted by a suitable design of the detector itself. Here
we would list as significant properties:

– Symmetry of the detector - this greatly assists
book-keeping and allows comparison of different
parts of the detector.

– Overlap regions - allow devices to be stitched to-
gether with a favourable lever arm.

– Large devices - obviously it is better to have a sin-
gle element (with fewer degrees of freedom) than
two with an overlap. Provided of course that the
single element has a stable shape with corrections
that can be described with a few parameters. In-
deed we would argue that it may be preferable to
use detectors where a deliberate bow has been in-
troduced if this leads to greater mechanical stabil-

ity and decreased shape uncertainty compared to
using flat detectors.

– Stability - the geometry (both devices and support
structure) should be stable with respect to time.
Thus changes due to temperature fluctuations, cy-
cling of magnetic fields, ageing under gravity/e-
lastic forces, etc., should be ‘small’, at least over
the period of time long enough to collect suffi-
cient track data for the alignment.

Before the technique could be successfully ap-
plied to a different tracker it would be necessary to iden-
tify the required constraint data, with sufficient coverage
to resolve all of the important degrees of freedom. This
could, as in our case be an iterative process, adding ad-
ditional terms and constraints as indicated by deviations
in the results. Indeed it is vital that the various resid-
uals used are replotted after applying the results of the
alignment, and checked for any systematic deviations.
Such systematic deviations can give vital clues to er-
rors in the models used and extra terms which might be
needed. In addition, if the results are being used in the
calculation of derived quantities (such as masses) these
should also be checked for systematic problems using
known references, again indicating the need for addi-
tional constraints. It is important that the constraint data
includes not only data to fix local affects (i.e., relative
alignment of neighbouring elements), but also data to
fix intermediate and long-range affects. In our case we
used back-to-back pairs, CDC matching angle and IP
constraints, but cosmic ray tracks could be another rich
source of such constraint data.
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