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ABSTRACT 

The scalar potential of a magnetic field is represented by a 
series of spherical harmonics in a current free region which en­
closes part of the median plane. The problem is treated of 
finding possible volume current distributions to produce this field, 
so that the field is everywhere zero outside a finite region that 
encloses the current distributions. 
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I INTRODUCTION AND GENERAL PROCEDURE0 

Consider the magnetic field represented by the scalar 

potential: hI ;;/~.\. JV~ -1;, 15o{' t-S) . JJ~/1t1- r 
{< ;t- j 

where (1""' f) th ) is a spherical coordinate s ys t em ,) ) T 

l"'~ld('H) / "/:. ~ - e ,and r~lp....'Y) is a solution of the 

Legendre equation 
~ Lll)ooo)L. l~~'){ Mr-~) ­

dy'l,. 
which is an odd function of 1. This report is primarily con­

cerned with the current distributions required to produce the field 

(1.1) in a finite closed region of space ~ which encloses a part 

of the median plane. 1?i is surrounded by another region ~ finite 

in extent in which the current distributions are located. The 

region ~t, is all space outside of 1i;. and is required to be 

field free. 
,(~) 

Equation (1.2) has two independent solutions ~)A.~~Y~ and 
I \'ho.)
{ci)\k+-,\ (~y) , which are respectively even and odd functions of Y . 
For small values of lyJ and large values of llJ>y' ' the following 

. ( 1 ) 
expans~ons represent rapidly convergent series for these functions: 

= cos WJ+ higher order terms 

= sinwy + ~[t;.~WI + 1~Wy] 

-I-{[-b&.L4It~h"~1/i~i+[t;/f-1H/j+ iit+11f~)YJ~MJ1} 
+ higher order terms. 
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where 

These functions are related to the associated Legendre 

functions r;:-~1~1) and q;(,~1) as follows:	 1 

(l)	 'YI'\ and k integral, 9ft + J< +-1 oJd 'hj .t..1{~·H)(h2.) 
~ } (1.4) 

t!~) l) I" ~ I~) . )
,,~)11= ~ 6t~rY) j ~",,"iry) = () iiI l';~Y _ 

(2)	 ~ and ~ integral, ~ ... k « I ell~"' ..) 1V\ t. WK+I) {k+~} 

Q ~) . I ) [~)ttL.) --R~) . t ~) ( 1 •5 ) 
l~~w.l) -:. L (0) tk.,) ~ ) 

I 

l~s1 ~ l) ~ ~+ I 

where the parentheses represent functions of ~and kwhich have 

not	 been evaluated. 

(3)	 ~ and k integral and 
~,,) 

In this case, it is usually stated in the literature that f(~.) and 
J?t1W'o) 

do not exist. However, this statement is only correct if4'tP+P 
these functions are required to be single valued on the sphere. 

The functions ';~+l) ~ k;"',) do exist in this case. If 

we wri te W = l WI , then W, is real and the series (1.3) become: 

~~~fr) c.u.J.. lAJ,y + higher order terms 
(1.6) 

L~J ' .: J 
rtl) (k+1~""1) -- L~ w,J + higher order terms 

These functions are not single valued on the sphere, but this causes 

no difficulties in the situations treated in this report. 

(4) Ei ther ~ or k or both are fractional. The relations between 
~~ t: -N.~) ~)~	 and Y:t.. 1"'\ 1.. are much more complicated

~) .,)~) \J+,) ~'J' ~tflt+.} l~
 

in these cases. ~ne should use ~,) and ~(b') instead of
 

the F~l) and ~'l as the former are respectively even and
 

odd functions of y, while the latter are neither even or odd.
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One is, however, greatly handicapped because of insufficient knowledge
L) L~) 

of the exact properties of the ~) O~.+l) and lei) Ck.+-lj • 

In this report we shall only consider the case where m and 

k are integral~o Due to the fact that one does not have exact 

L~ L~relations for and and because of the large
l~) L~.,,\) C'J) (Itt I) ~ 

amount of information in the literature relative to the r: and Q01,+-1}It<.'t~ 

the latter functions are used in deriving exact relations. However, in 

working out special cases, it may be found more convenient to use 

approximations obtained from the series (1.3). 

We shall further restrict the developments in this report to 

the case where m + k + 1 is odd**and shall require for the scalar 

potential in tR Lo, the expression: 

k+-I.-n~) 
V= -r.. 13o LIH) 1{4v(~y)k"""f (1.7) 

We shall now consider the field in the volume current dis­

tributions of rr~ . The following function: 

(1.8) 

where the v's are constants, represents a possible scalar potential 

for a magnetic field in free space. The field components are given by: 

* The cases where this condition is violated can be treated in an 
approximate manner by using approximations obtained from the series 
(1.3). In this connection,one-sholitld refer to references (2) and (3). 

** The~case where m + k + 1 is even ~~y be developed in a similar way. 
The 1J~I) must be replaced by the Qi1.LI) in order that V be an odd 
functlon ofy.+ 
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~ _fv. ~+- 4'. s: lf1ttLkr,){/fSJ-1Jr-J!Jnllr S) ]/Yc.C8<;!"'4 +l!s~ "',]
'to - L: "p~) $ l_'')Jr. 

~ :::[v,,~1 j..V~<tt~)(~)~~/I+!51~J[(c,6'>~4 +vs~l] (1.9) 

'\~=~&pr:;:\)"'lIQQ~~Jh~·l(IHf~1&)lH.s)(ia+!)J[-1ft ~ ~4 .. 'VS ~lr~J 

We shall now assume that in the region of the current distributions 

the field is represented by {lo9} where ~~ and 1I~ are functions 

of v , ~~ and Lrf-} are functions of s s ~ and vs. are functions 
~ 

of cjJ In order that (1.9) represents a magnetic field G 15 --::: 0 ,0 

r"' or Ij!- ~ [J~ lJjf +d~ ~][~LI+SJJ:-J~ 1IH01-Si~·~J[1J;. ~ w.1 +1I.s ~"'4'J 

+Lrf;.t~) +V~ ~t~l J[~{k+tiJ+S)~~{k-4,(J+si43}J[tlI,. Uso ~ cp +-~ ~ 1m »< tJ 
~+,) ]S ~l (1.10) 

r, ~) l)l~) JL ~q -(k~)l[ d~ ~~/\ td~ ~~i1 0 
~ :'1,/ L'lf,!" ~~"f\o ~ '4'(/..+1) l't1'j;-}LI~)· +- 7-C)l~S) J - li T tI~ 'J :=. 

This will be called the divergence cbndition. It should be noted that 

the field (1.7) is of the type (lo9). Since surface and line current 

distributions will not be used, the boundary conditi.on between any two 

continuous regions bounded by coordinate surfaces is the continuity of 

( J3yt }E / B~ ), which is satisfied if and if only if u; and qf~
I 

are corrt Lnous , The current density ( (,r) L~ ) L, )may be obtained 

from 

r­
and one finds ~ * 

.,J.--) Jt1f~) 
* Whenever I(".~k-.Y) and ~.;./,qi.,..r) are wri tten wi thout their 

argument •5 in; ". the argument "sin)' ., is to be under s tood 0 



In order to illustrate the general procedure of finding 

current distributions which will produce the field (1.7) in ~. 

we shall outline the procedure for solving certain special cases. 

Figure I represents a section made 

by an azimuthal plane of a figure of 

revolution. R is the region between 

the cones y = -=r,. where -Jf. S ~ Si • X· 
and e, are constants. ~ is the region 

whe re )yl ~ It and 

the region where S 7Si, for all y. 
~is the region outside of J?land 

Fig. 1 wi th in 'A?£. It is represented by the 

shaded portion of the figure. We wish to produce the required field 

in 1?i with zero field in {52£. • This may, of course, be done in many 

different ways. One way will now be described. For this purpose 62~ 

will be further subdivided as shown in Figure 2. 
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In Figure 2, (l.l\) 

together with its mirror 

image is identical with 

1l,.. ~ is divided 

into the regions (2.1), 

(3.1), (1.2), (1.3), 

(2.2), (3.3) and their 

mirror images in the median plane. In the regions (2.1) and (3.1), 

we assume that (~~)~»1f~J~) are constants, and that the current 

density in.each of these regions depends on r in a definite way. 

As soon as its dependence on 1 is assumed, its dependence on ~ 

and 1 is determined. The current densi ty in these regions can 

not be made independent of I ' but i t can be made small if y is 

smaLl ; These conditions also require that II = O. We have in­

troduced two conical regions (2.1) and (3.1) between 1f' and 12,
1 

It will be shown that two such regions are required to satisfy 

the above conditions, except for certain particular values of X' and 

1~ , for which only one such region is required. In a similar 

manner, ('II'P) VQ ) '\Ie) 'lf~ ) are assumed constant in regions (1.,2) and 

(1.3). The fields are assumed to satisfy the boundary conditions 

on the spherical surf aces s: = S, ,S = 5'1. , ~ = s,J and the dependence 

of the current density on S is specified in each of the regions. 

It will follow that i. .... = O. It can be shown that two but no more 

than two regions of type (~) are required between 1Q and RJ, to 

satisfy these conditions. The fields on the boundaries of the 

regions (2.2) and (3.3) have now been determined. It remains 
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It remains to find the fields and the current densities in these 

regions 9 where only y~ and ~~ can be assumed constantft Many different 

fields can be determined to satisfy the required conditions. 

We may modify the above example as follows: ~ is a given 

constant for f. ~1 '- t1a. and a different constant for 1'&' f Lf,"2Jr: 
This would make it possible to introduce more free space between the 

copper windings in certain azimuthal regions for radio frequency 

and other devices. The regions (2.2) and (3.3) which were closed 

rings are now cut into secto~of rings by azimuthal planes at 

~ = Cfl, and ~ = ~~ • 

Another modification of the case illustrated in Figure 2sis 

illustrated in Figure 3. Rf, is here bounded by several cones of 

different It ' connected by a spherical surfaces. In this way one 

can ke~p the region '11" narrow even for large ~ In the figure, (I,ll) 

with its mirror image is I?L. All the other numbered sections 

with their mirrored images form 7f~. One could combine the above 

two-rnodi f Lca t Lons so that fL' and (<& are functions of both G and ep . 

''' .. _ _ oi--------1 

Figure 3 
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In the case illustrated in Figure 2, the current distributions 

required to produce the fields can be simplified if the angles y 
that bound the current distributions are chosen properly. This 

is illustrated in Figure 4. 

The same result is 

achieved here as in the 

distributions represented 

in Figure 2, but the 

angles yr: and y" must 

be given certain values. 

The different regions into which ~ is subdivided can be classi­

fied according to which of the quanti ties (11,./,)11( oJ ~...) ) 'If...) .J Vc,.. ... V,s ) 

are not held constant. Thus if (~» 1f, } /}/t.,)?Ji) are held constant, 

it is of type ( 1 ). If none are held constant, it is of type 

( S"/ Y) 1 ). In Figure 2, (2.1) and 3.1) are of type {y/, (1.2) and 

( 1 . 3) are 0 f t yp e (s), ( 2 . 2) and (3. 3) 0 f t yp e ( ~)1 ). In Fig ure 3, 

(2.11), (3.11), (1.22) and (1.32) are of type ,(1.41) (1.42), 

(1.12) (1.13) are of type (1), (2.12), (3.12), (1.31), (1.21), 

( 1 . 32 ), (1. 33) are 0 f t yp e Cy5 ). 

One may desire to produce in ?Cl not the magnetic field 

represented by (1.7) but a field represented by the sum of such 

fields corresponding to different values of IJ11 and k Since the 

equations involved are linear, the current density can be determined 

f9r ea~h term by the methods of this report, and the current densities 

are then added vectorally to find the resultant current density. 

It should be noted, however, that in this case one can not reduce 
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the number of regions of type (y ) between tlt and R,L to one, as 

was done for the case represented by Figure 4. This is due to the 

f act that the Ii and r~ required for this to be done are functions 

of 111 and k . However, one never needs more 'than two such regions 

between 1fi and X£ . This is true for regions of type ( y ), type 

( s ) and typ e (I ). 

II REGION OF TYPE ()'). 

q;pand V~ are functions of y 
('lrt+) 1{:) ~ ~. ) are cons tants • 

Field:	 i == (~H ) (/-I-S r~['lfp~, +VQ(JJ.:.]~""f 
~ ::: ( 1+.5 f rVpL ~k'" ~~ ~ O':JALiJr'ttS (2.1 )
~	 C 71 ., ~ CR ,."" ~y- T 
• k	 ~ 

~== 1'1 (I +-5 ) ['lip ~:, +~ (1)..t+t] ~9r'~ 

Current density: 

'! 1TYD u.v i,.	 == - 'II1(I+-Sl_I[~ ~ + Jji Q,~\ )]~}t«.rI.T ( c)~ ~~I) fly fI(~1 T 

~ tg,y ~I ::: 0 (2.2) 

ij,,~ l; == f/c 4-))[1 +-S /-'[J~ p;>,} +~ ~:,] ~ 1;0 I 

Divergence condition: 

d~ 1~~	 + J~d~j = o (2.3)1 Y dy cA J 
We shall define Kby the relation: 

(2.4 ) 
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«f) 
We shall make use of the relation: 

/iHI t/:! ~1-') J~ ~l~) 
?(ffl) Jl+/ - lVtk.f'/ ~ ~ l.-[/::.HJ

Y CJ] ~y 
where r: = l'" r{I-I ....... ';:1 )r(J~+.J~!;:') 

/tIl r(l~k+~...)rL-{+51-:') 

(2.5) 

(2.6) 

where r is a symbol for the gamma function. Making use of equations 

(2.3), (2.4) and (2.5) one finds 
t1~""

Jif:=!t ~~ ~ Q;) 'r!~)
(k+~d II·,. _ )J 'h+, 

'I -rr 4' -;If 
(2.7) 

We 

J-fy 
shall now require 
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From (2.10) it follows thatlr 
~ 

can be split into two parts 
tiP,) -;r.;h) 
~ and ~ such that: 

y ~ 13")+ s- lJlfs(t) ~ 0 , ~I) .-:.= tJ 
~ /	 (2.11) 

and where 'g"'fJ.J = _ t: /((I+-S{~-.J, r ~ry r 

(2.12) 

Let us now apply these 

results to the situation 

represented in Figure 5, 

where we have three ('Y ) 

.-:::::....-.._--------_._.-	 type, regions (2), (3) and 

(4) separating ff, and [(e · 
Figure	 5 

~liS identical with 

(1) and its mirror image. ~~ is identical with (5) and its
 

mirror image. The field in 6(i is given by (1.7) and therefore
 

1J~'1 = 1, ~/J = O. "Rt, is field free and therefore ~S"):. ~tfI __ 

= o. The continui ty of Ilf and ~ require thatp 

o -: Vp(r)-; ~ytr.,) o : ~r; .... ~¥}{Y.\ 

'lip/tiM : V:JlN 1/~"tYa): '1(/LM (2 •13 ) 

1Ipf'lty...~ ~ v: t)'...) ~(2) (~) :; VI$/"')(1..)
' "1l (~) )/ = p cy,)	 (J -- 11; (-f.) 
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(2.14) 

(2.15 ) 

Treating equations (2.8) in a similar way, we find 

kA~ r"(2.16) and (2.17) are two simultaneous equations that ~, and 

)(~) must satisfy. One of the ~~ may be chosen arbitrarily, 

and these two equations determine the other two ~ if the 

determinent of this coefficients is different from zero. This 

shows that no more than two current regions of the type considered 

are required between ~i and R~. Let us consider when only one 

,'- region is required. This case is illustrated in Figure 6. 
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c~) ~1;7v 

~) 1-::"/' 

~-".---'--- ._----~.-

Figure 6 

Equations (2.16) and (2.17) in this case reduce to 
')0­

If''"l[Q;~I){4fnY~) _Q~~I>,~y.)j '" - L"., 
( 2. 18 ) 

l(~lPZI(sLrn1') - r{~lls"H1ID --= 0 

The second equation requires that 
.... ~) (2.19)-p,j-l,{*t;irr ll~) -== TiP+I!Slrl y,) 

and the first equation gives 
tC- ) 

;(~:: - ---J/<c-f:....:...'__-~--

Gt.:/SJhJ.)- ~"Z./s," 1.) 

Substituting this relation in (2.8) and (2.9), we have 

~ 

CVJ9') ='lf ~lI(",(~'I1YJp + k~Q 
J1A'n-) A~' 
4J~"ll s.» ~) - '-'r(1e+,(~"" y.... ) (2.20) 

N~'(l) = ~2 lSi,,!,] + K~,o 
Qtl:)l) (SIt. y... ) - 4~ll s,'~ 'It ) 

One can determine }(~6 and K'I'D from the candi tions ~c~) = 1, 

'U
0.)
c~)= 0, and one finds thenq 
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(2.21) 

(2.22) 

The field and the current density may be easily obtained by 

substituting these equations into (2.1) and (2.2). 

III REGION OF TYPE (s ) 

1{,.) a,.J 1{-) are func tions of S 

( "JF) f1J~ ) 'Vt..J '\is) are cons tan ts 

Fie1 d: ~ = ~~~;['l4(k 101YH-~l- '!.Jj.ikn){t+sf{kloS)j ,if< .. } 

-0 M::J~)I 1< - (k+rJ 7 tJt*= tI;~il. 1ft) (1+5) .f 1I-,t IH) -l Sl'it""r (3.1) 

-(kr+i) 1~ - v: [ .. k
~ - ~ tk+tJ ~tJ C}+S') +?j~)(I+.~) .J~~ 'M ~ 

o 

Current density: 

(3.2) 

i.JTrr~ &»1 't ;: ..... 'PtZ:) f J~ L!+s}+ch-l (J-/_S)-U ..1)l Uo'm~ 
~o cls 7Jf J 

w;: Lt:: -h1;:d ~LI~l+ d~-)l,+~)-[J:~?)J~~~ 
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Divergence conditionJ.~ 

i
J~lk+4)(j+Sr- J~I U+2.)(I+S)-(kt )":= D	 (3 .. 3) 
~	 d5. 

We shall	 write: 
~ k. Jift-) ( I L 5 \ -( 1<.+ ~) == LlJS ll... ~j or d'S or 'j	 (3.4) 

We shall now require that L be a constant, so that L p and 'r will 

be independent of S .. 

From (3.4) and (3.5), we find 

and after integrating: 

I Lk
~) = L (2k+3)lJ+ 5) /
 

~/R+3) ( )- k)
 (3.6) 

L(hI) ( )+-~tfl( + L.) 0
 

l 21 t.5 )( k-I: Lf)
 

where L+ and L-t1 are constants"1\) v ~ 

If one substitutes (3.6) in (3 .. 1), one obtains expressions 
=" ~IIJ + ~)j

for the field components ~ We find that B == 0 15- where 

M x13~{I) -_ 0, but ~(~) ->v 'if is not perpendicular to l This 

differs from a similar situation in a region of type (7 )where 

~w is perpendicular to l!. However, the same thing can be 

achieved in this case if one replaces (3.4) by 

d*(,+s/ TJ~~ (/i-!.)-()t..t-3)= Ll (''''~f~ (3.7) 
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and� requires that L, is a constant. 

From (3.3) and (3.7), we find 

-(k+1) J"..� Ie.. .J~, = L)(~+-Z) (It-S ) a~ ....----.:......:....--__{H·S } (a.s) 
~ l~k""'3) ) J, 

- Lk.~'J.) 
and "4.r) =... L, ( 1+ ~ )) + L.,.;.) 0 (3.9) 

/.J-1e+J) 
i l L,{ J""~ lk-+- L� (3.10)Vi-)� = '/ + r: ) c 

(2 k-la3 ) 

where l,40)O and L,_ Q are constants. Substi tuting (3.9) into 

(3.11) 

(3.12) 

Consider the situation 

represented in Figure 7 

which is analogous to 

the situation represented 

in Figure 5 in the case 

of a region of type (I ). 
Figure 7 
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Comparing (3 01) and (2 and remembering that ~£ is field free,07) 

it follows that: 
/\~ "11': I')1f'I) = '''If-} = 1-) = 0 (3.13)+ 1, 

Applying (309), (3.10) and (3.13) to this case and taking into 

account the continuity of the tr~, we find 

~ .ts-u -C.k.1) -[k-r~J 10.) t L -lk+&} t )-lk+ll1 '= (2.«.+'3)
~":~.j.:5.t1 ~ L/+$\) J+[,

II) 

&+Si) - (1+S~) -+- 1-, L! I+-s,.) - I+S, J( 3.14) 

(4) tk'H) [~-+l} L~[' lk';l) k+J' ·Lt'&.)r ~"l) ~1L:, [(I+~~ -Clot- S, ) J+ I (I+S,\ - [Ir~) + I LCI+';) - L\ ...~,j =-0 

(3.15) 

These are analogous to relations (2.16) and (2.17) for a region 
. h I I") L(3) ,(')j

of type (I). These are two simultaneous equations wh l.C L) I L-

must satisfy. One always requires two such regions between Ri 

and G<.. ,since (3.15) can never be identically satisfied 

by special values of s. The situation represented by Figure' 

in a region of type (, ) does not appear for a region of type (S ). 

IV REGION OF TYPE (r) 

~ and % are functions of f. 
(~1f~ 'V-+-o 'It) are cons tants · 

Field: 73; = (k+ I ) (h· s tr;:" [rVt.CA!r> .... f + 'lis ei ... .".?J 
a k ~ J1f= (1+5') JJht [vt~~~ +1j,~-, 

1 

~-1
0 

= 'fit ( I+S l Pic:, [- 'lie; .;lC.. 4rl 1 +-!Vs ~'-'-tP 
] 

~() 
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Current density 
, 

if TT r; COSI t1" 
E; 

'tTt; COS! i! a 
if = 0 

Divergence 

\/.t' (4.3)-""11::0­

'Eo 
Divergence condition~ 

*
0- ~ sin /lnl + t!74 cos t)nj ­

71' 
We shall also write 

01% sin ~~ =Y (4.5)
cos#f + II? 

and require that It be a constant in each region of type 

Then 9 we find for the current density: 

'Ill!; 
"80 

If.7T ,~o 

~o 

so that the current densi ty is independent of 1" 
From (4 and (4.5), one finds04) 

~ '= ices III? ; + = /fsinnoI 
and integrating (11,7), one has 
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cos "'ho I + ~ 1) 

ana Loqous to the si t ua tions in regions of type (.f) and of 

type (~ ) 0 

Let us now consider If: and 

tc: separated by three 

type ( 'f) r eq i.ons ~ (2) 9 

(3) end (4)0 This is 

.i~,Lus tra ted in Figure 8, 

which represents d cross 

section through the 

median p.'L8ne" It should 

be noted that 1(, and ~ 

Figure 8 must be separated at 
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at other values of f . Using the same methods as were employed 

in regions of type (! ) and type (5 ), we find the two equations: 

N")[~ '" ~. -tu? ~ ?~ +t{t~ f:. -~-fJ to N(2)LUg"":.. - tr.) It- ~I ] ~ M\ 

(4.12)II" [A.-Jtr.1Y- ~"1J, J+ )I(1.~#r '1- 4I.-",-p.].j. NaJ[~~? - #>-1-1<~J -;: LJ 

lJ/\1r-)
which the must satisfy. It follows that no more than two 

type (f ) regions are required, and for special values of f , only 

one may be required. This case is illustrated in Figure 9. In 

this case, equations (4.12) become: 

I' 

/'IP.f~ 'tf\. ~ - ~ "" cPJ= ~ III. (4.13) 

N[?)[ ~~A. - /J.-~~] ::;. 0 
( 4 .14 ) 

From (4.14) it follows: 

'-.. sin ?'t';~::: sin IJr' ~ (4.15) 

Consider the special case 

when 1M ~~ is in the first 

quadrant. Then 

(4.16 ) 

Then from (4.13),
Figure 9 

pfJ= - (4.17) 

(4.18) 

(4.19) 
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Substituting (4.19) in (4.10), we find for the field 

"L. REGION OF TYPE (S~Y ) 
1ftt-Jind 'tf-) are functions of s: 

~ and '\1, are functions ofr 

~and ~ are constants. 

(5.1) 
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The divergence condition can be written in the form 

where f is a constant. This follows since the left hand side of 

the equation is a function of 1 ' and the right hand side is a 

function of S. We therefore obtain the two equations: 

(5.5) 

* See Appendix I - II 
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/I{:, -a UI+Sjr:"6J1. :>/ " Iv;, 0) r fJs[l.LIP~f4c:;;.~-t +-*o~Jlt.J} 

IJl.k v:.CJ+-s/-~ rv;.,lH-~)-(f;-f'i) L J ~q)",") ~ kI euJ,.~~ 
As soon� a s functions k and L ha ve been chosen, the above 

equa tions determine ( 'l1~ tV4 .) 'Ll+") 1;1'1 ) in terms of the arbi trary 

constants ('1f. nl) f 1, and arbi trary constants occuring
1) ~ ) t+)') 

in the functions If and L. When one ha s the problem of finding 

a current distribution in a region of type ()') s ), one generally 

knows the values of (V'P) 'lid,) 'Vt't1J 1(.) ) on the boundary of the 

region.� Sufficient number of arbitrary constants should be 

introduced in the functions K and L , so that there are a 

sufficient number of arbitrary constants to satisfy the boundary 

conditions. One must also choose the functions ~ and L in such 

a way a s� to advoid s ingula ri ties in ( flIJ>.J Vq ~ "It-» 1{-; } in the 

region considered. 

VI REGION OF TYPE (~1, 1)� 
~and 111 

are functions of S'� 

v;, a nd qJ~ are functions of 'I� 
1{.and 11~	 are functions of cj 

;"".� Field - given by (1.9) 

Current density - given by (1.1 

Divergence - given by (1.10) 
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(6.2) 

(6.3) 

(6.4) 

From which, we obtain* 

~ 

See Appendix I - II - III 
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The above equations determine the functions (~( 'VI!I 1.l1 1I~ 'lie JVs )
~ '1"..) "7) I 

in terms of the arbitrary functions }(, 1-, N, and the 

arbitrary constants Ii) p~ . Sufficient number of constants 

should be introudced in the functions K Land tI t so that 

the boundary conditions can be satisfiedo The J( , L and AI 
must also be chosen so as to advoid singularities in in the 

region under consideration. 

VII CONCLUDING REMARKS 

(l) The relations that have been derived in this report are 

exact. However, in working out particular cases, there may be 

mathematical difficulties in performing some of the calculations. 

In particular the integral occuring in (8.5) might be mentioned. 

In the case of such a difficulty, approximate results might be 
~itf,..) ~~) 

obta ined a s fallows. Repla ce the , /jt'H) and '11'~+-~ by 
(k) I ,14L ~04-I) and L-l ,....~t) respectively, and use the following 

to) te) 
approximations: 

) 
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Then (7.1) 

r-) 
Equation (701) replaces (2.5) and it will follow that if Ctk.J.l) 

is replaced by -VJ in any of the relations of this report, that 

valid results to this degree of approximation will be obtained. 

Futhermore~ these results will be valid for ~+k4' even as 

well as odd, and in fact for nonintegeral values of k.. and ~. 

This approximation is valid for large values of /wyli and small 

values of t The results should be quite accurate for large 

accelerators. For small accelerators, a better approximation may 

be required. 

(2) It should be noted that regions of type (§t ) and type 

( 11 t) have not been discussed. All problems that have been 

contemplated so far may be solved without their use. If; however, 

relations for these regions are required, they may easily be 

obtained using methods analogous to those used for a region of 

type ( ~I ) together with the results of the appendices. 

(3) In another reference, another method was used for reducing 

the differential equations that appear in the appendix. In this 

method, these differential were solved, so that tVp wa s expressed 

as a function of 'V~, '1.[+)as a function of 11-) ,and ~ as 

a function of 1lJ" The functions (1f~) ~ 'V~) ) could be 

chosen arbitrarily to a certain extent, and the ('lfp) V~J 'V,- ) 

computed DOne ha s to be careful to chaos e the (tl~ rul-~ 1},:; ) 

so that singularities do not appear in the ( 'l1p
.) 

'IIf.t) '\Ie. ) • 
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The method used in this report would appear to be 5uperioro 

It might be called the parametre method t the auxiliary functions 

( If, L, )J) being the parameters. 

(4) The fields and currents are determined uniquely in the 

regions of types ( Y )$ (, ) and ( 9)0 This is achieved by 

the introduction of auxiliary conditionso These conditions result 

in current distributions that are relatively simple~ and should 

make the winding of coils quite practical In the regions ofo 

type (S91)$ and ( S') YJ rf ) there is a great deal. of freedom 

in the fields and current distributions. Thi~. freedom should be 

utilized to make current density distribution that would be 

pxactical for the winding of coilso Little is known at present 

about thiso One would expect that the most practical current 

distribution would have a mathematically simple expression. 

VIII APPENDIX I Reduction of the Diff~renti~l Equation 

:0 JCy) 

where of I 0 
Let us define t by : 

(862) 

then 
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Solving (8.2) for 'lIQ , substituting this value of V~ into 

(r.3) and making use of (2 05), we find: 

Noting that the left hand side of this equation has the integrating 
\ 

factor r=) ,we are able to integrate and we find 

~~I)
 
fw-.) ~ f ( J rt--) (~ 0(8. 5 )� 

Vp - ~ kHl~~ + ~') \J1 ~t[~ k - ~ ~') + k.e~~1 

where f}}1J
) 

() is a constant.� 

IX APPENDIX II Reduction of the Differential Equation� 

(9.1) 

Define L thus: (9.2) 
601k) _[1<.+11)1Ir (I+-s,; -) .,. 1(1 ( l+ S) L;;;c 
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Then, 

(9.3) 

Solve (f .2) for V';.) ~ substitute in Cr.3), and making use of 

(2.5) we find 

Noting that the left hand side of this equation has the integrating 

factor ( 1+-$ )(~""j., ,we are able to integrate and find, 

and using (1 Q2) we find 

where IV+JO is an arbitrary constant. 

X APPENDIX III Reduction of the Differential Equation 

-~~/lo-.p-rdltb'd/"f =.p. (10.1) 

tic ~ ~f 

Define Nthus: 

+ 'lit ~ r.....,p 

(10.2) 
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Then: (10.3) 

Solving (16.2) for V , one findst 

Vs .; !! - 'lI" Cen 'Ir-L (10.4) 

~~f 

Substituting Uo., ) in Vd.S\ and making use of 2.5, we find 

(10.5) 

Noting that the left hand side of this equation has the integrating 

factor ~~, we are able to integrate and find: 
~·~r 

(10.6) 

Substituting ~O.6) in (f~4), we find 


