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ABSTRACT

The scalar potential of a magnetic field is represented by a

series of spherical harmonics in a current free region which en-
closes part of the median plane. The problem is treated of

finding possible volume current distributions to produce this field,

so that the field is everywhere zero outside a finite region that
encloses the current distributions.
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I. INTRODUCTION AND GENERAL PROCEDURE

Consider the magnetic field represented by the scalar

potential: V—— . B (H'S) 4:7%7 W""fl

where f?; 6, ¢ ) is a spherical coordinate system,

(1.1)

=H(+<) , y=1;-e , and g’z;.'{,&ky) is a solution of the

Legendre equation

Y
L& ,)Mw/)- T?»nyg, L*CM»*/) +[(k+Mk 2)- O(1.2)
Wthh is an odd function of y . This report is primarily con-

cerned with the current distributions required to produce the field
(1.1) in a finite closed region of space 7E2 which encloses a part
of the median plane. ﬁi is surrounded by another region 376 finite
in extent in which the currént distributions are located. The
Tegion ?ﬁ is all space outside of —i and is required to be
field free.

Equation (1.2) has two independent solutions L(h+ %'D and
%”mﬁ(ﬂhny) , which are respectively even and odd functlons of y
For small values of lyl and large values oflwy[ , the following

. |
expansions ) represent rapidly convergent series for these functions:

)
@9&53“7

cos!DVW higher order terms

sinuwy + 4[1‘”@“,7,,,7/%40[] (1.3)
+f )y o Jamiy s [ =)y s w7y Jesny }

+ higher order terms.
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where wh= [k“")(h"'n)_'”’b
These functions are related to the associated Legendre

functions ﬁ:;m“\l) and Q;('u,.y) as follows:
(1) am and K integral, om +K+]| ao‘cl, "’)4Mk‘”)(k+2‘)(l 4)

) ™ (sim I~ ) tin
Tl OLsmy 5 glen =0 Ly
(2) on and K integral, ms+k+| evem , m < Wﬁ'ﬂ)“‘*z)

) ) ™) o)
) — (Sim » : (1.5)
Q(h-fljh‘?) "(>L‘)tk+q Y) J ’Pﬂm‘smﬁ T-'-() !ij”
where the parentheses represent functions of 2nand lfwhich have

not been evaluated.

(3) wm and k integral and m7 ’(k+,)(k+1) .

*)
In this case, it is usually stated in the literature that 7'?&_“) and
s
@\Lk ) do not exist. However, this statement is only correct if
+
these functions are required to be single valued on the sphere.
”m N
The functions .'z)uw) and .%dw) | do exist in this case. If

we write W = LW, , then W, is real and the series (1.3) become:

g‘&"{‘ﬁy) = ”'y + higher order terms
b}
Lt
©)

These functions are not single valued on the sphere, but this causes

(1.6)
s%y’) - LMM{} + higher order terms

J

no difficulties in the situations treated in this report.

(4) Either mor k or both are fractional. The relations between

“"‘L +) a B ) h licated
an , are much more complicate
& ™)) i) W) Cer) ) P
in these cases. One should use * and L_) instead of
p+) & (k)

w)
the P(Q‘) and Qﬁ*l} as the former are respectively even and

odd functions of y, while the latter are neither even or odd.
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One is, however, greatly handlcapped because of insufficient knowledge

of the exact properties of the L—(h+0 and L-(k*o »

In this report we shall only consider the case where m and

k are integral*. Due to the fact that one does not have exact
N n

relations for [_ { s and L.[ , and because of the large
©) Lh) w) k-w) )
amount of information in the literature relative to the (k+y @and C@(pﬂ)

the latter functions are used in deriving exact relations. However, in
working out special cases, it may be found more convenient to use
approximations obtained from the series (1.3).

We shall further restrict the developments in this report to
the case where m+ k +1 is odd¥¥and shall require for the scalar

potential in GQL, the expression~

v= -% B, Ca+s) M/my)fwm%;ﬁ (1.7)
We shall now consider the field in the volume current dis-

trlbutlons of 7E, . The following function:

V =-vBly By st o w00 Tcsomg + v sinmd] (1)

where the v's are constants, represents a possible scalar potential

for a magnetic field in free space. The field components are given by:

¥ The cases where this condition is violated can be treated in an
approximate manner by using approximations obtained from the series
(1.3). In this connection, oneshould refer to references (2) and (3).

*¥ The case where m + k + 1 is even may be developed in a similar way.
The must be replaced by the 4}4{ in order that V be an odd
functlgB of y. est)
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]:7/ 7;“)4—'? )]EQ//(H)(#S)?- U5l k+2[l+5) ]LZ/ commdf +lyfoinm ¢]

....[q/ 1 +% é;;’l%)(i-&s)ﬂfﬂﬁ) _-J[ feanmm &) +Vi “"'“’7"9{]

Z%_W)’f-‘mﬁfp (&+)"'VQ6J(+][ (149 4—4[;(%) I Ve i 4 w"‘&j

©

(1.9)

We shall now assume that in the region of the current distributions

the field is represented by (1.9} where q@; and QCq are functions

of v, °V;§ and Qﬂ%) are functions of s, 14; and ‘U; are functlons
In order that (1.9) represents a magnetlc field 57'23 o

of .
or VTB’ [Jﬁé@ A {%ﬂ][w/“yz ), 210 oo 414 ]
"‘I"FFM Vg }K:) [‘jz“rm[k-rﬁﬂs)ki}"w[/#%@“)(b )JEV Leame +Vg Cimmm cpj
(1.10)

: PUA
Cm}y[?r ﬁ.ﬁ*’ Qahhw{]&MACHé) @9CH6) [; pr ﬂ“ﬁﬁq+' &lﬂh%] =0

This will be called the divergence céondition. It should be noted that
the field (1.7) is of the type (1.9). Since surface and line current
distributions will not be used, the boundary condition between any two
continuous regions bounded by coordinate surfaces is the continuity of

;Z? :E’ ‘E; , which is satisfied if and if only if Zf and (Mé
are contlnous The current density ( C | L¢ ) may be obtained
from

977 ‘7X'i?>

and one finds: *
) ) . . i
* Whenever méuﬂ?) and H)(,mf) are written without their

argument”sin)y", the argument"siny"is to be understood.
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e, iy nO gt e o 45y st
-’"[gz g(,,)*d;t éwj[’&,(ns) +'2{.)[|+s) ﬂ-—?/‘_,mw f—"-’smmj

(1.10)
e, = [T G400 09 ”’J[wmw wksng]
L G Tutertet Al ] A o e

L””ﬂ e [ 7 T ﬁ@,,’][fz@[kw)ﬂﬁ) ) o e sy [t # Ve g]
- [‘\/73.‘. 'F(",H’Uq')? @h:’[ﬂl"’ (m) +0';('/(|+—s) JLV cor ™94 + Y Mm?]

In order to illustrate the general procedure of finding
current distributions which will produce the field (l1.7) in 7?: ,
we shall outline the procedure for solving certain special cases,

Figure I represents a section made

Qe by an azimuthal plane of a figure of
o :
r,g%fﬁ“l revolution. %, is the region between
”;ﬂ(.”ﬁﬂ th = 25 %8
- e cones y = <}, where -/£ % }{
’<;}Z??ﬁ‘ and S, are constants. ﬁ; is the region
\"\...\,\ whe re }Y,Z_Yt if—!é%‘ 4_59 and

the region where g 75i. for all r.
R_.is the region outside of /3, and
Fig. 1 - within 722 . It is represented by the
shaded portion of the figure. We wish to produce the required field
in iaiwith zero field in 025 . This may, of course, be done in many
different ways. One way will now be described. For this purpose CQ@

will be further subdivided as shown in Figure 2.
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In Figure 2, (1,0)
together with its mirror
image is identical with

K, . & is divided

into the regions (2.1),
Fig 2 (3.1), (1.2), (1.3),
(2.2), (3.3) and their
mirror images in the median plane. In the regions (2.1) and (3.1),
we assume that (ﬂﬁd,qé))ﬁévqé ) are constants, and that the current
density in each of these regions depends on 7’ in a definite way.
As soon as its dependence on 4 is assumed, its dependence on £
and ¢ is determined. The current density in these regions can
not be made independent of 7 , but it can be made small if y is
small. These conditions also require that l) = 0. We have in-
troduced two conical regions (2.1) and (3.1) between ﬁ; and l?.‘
It will be shown that two such regions are required to satisfy
the above conditions, except for certain particular values of ¥, and
75 , for which only one such region is required. In a similar
manner, (W%‘%g)mﬂ)ﬂg ) are assumed constant in regions (1.2) and
(1.3). The fields are assumed to satisfy the boundary conditions
on the spherical surfaces € =5,,5 = 5, , § = 8§ and the dependence
of the current density on § 1is specified in each.of the regions.
It will follow that £,. =0, It can be shown that two but no more
than two regions of type (§) are required between 7; and E} to
satisfy these conditions. The fields on the boundaries of the

regions (2.2) and (3.3) have now been determined. It remains
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It remains to find the fields and the current densities in these
regions, where only V. and V, can be assumed constant. Many different
fields can be determined to satisfy the required conditions.

We may modify the above example as follows: Y, is a given
constant for ?' 5_? L %_and a different constant for aé? 4%4‘2-"’-
This would make it possible to introduce more free space between the
copper windings in certain azimuthal regions for radio frequency
and other devices. The regions (2.2) and (3.3) which were closed
rings are now cut into sectorgpof rings by azimuthal planes at

Q= P, and¢? = ?,,

Another modification of the case illustrated in Figure 2:is

L

illustrated in Figure 3. ;?E is here bounded by several cones of
different y% , connected by a spherical surfaces. In this way one

can keep the region'TTCnarrow even for large s . In the figure, (1,11)
with its mirror image is ‘T?L . All the other numbered sections

with their mirrored images form 762. One could combine the above

two modifications so that 7’[ and 7{,‘ are functions of both 8§ and ?ﬁ

-

Figure 3
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In the case illustrated in Figure 2, the current distributions
required to produce the fields can be simplified if the angles Y
that bound the current distributions are chosen properly. This

is illustrated in Figure 4.

The same result is
achieved here as in the

distributions represented

in Figure 2, but the

2)f:a

angles Yo and Ye must

Fy. ¢

be given certain values.

The different regions into which 'F: is subdivided can be classi-
fied according to which of the quantities (Vp Y Y%, , %) 6 Y . % )
are not held constant. Thus if (4, ,%, , Y. ,% ) are held constant,
it is of type ( '7 ). If none are held constant, it is of type
( S"/y)d) ). 1InFigure 2, (2.1) and 3.1) are of type (y], (1.2) and
(1.3) are of type (5), (2.2) and(3.3) of type ( 5,7 ). In Figure 3,
(2.11), (3.11), (1.22) and (1.32) are of type , (1.41) (1.42),
(1.12) (1.13) are of type (y), (2.12), (3.12), (1.31), (1.21),
(1.32), (1.33) are of type CYS ).

One may desire to produce in 'ﬁ: not the magnetic field
represented by (1.7) but a field represented by the sum of such
fields corresponding to different values of M and k’ . Since the
equations involved are linear, the current density can be determined
for each term by the methods of this report, and the current densities
are then added vectorally to find the resultant current density.

It should be noted, however, that in this case one can not reduce
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the number of regions of type (7 ) between 72,- and f¢ to one, as
was done for the case represented by Figure 4. This is due to the
fact that the 75 and ¥, required for this to be done are functions
of Mand K . However, one never needs more than two such regions

- between K and 175 . This is true for regions of type (Yy), type

( 5) and type ()6).

II REGION OF TYPE ()/).
Y and Yy are functions of}/

( Vi Uy % % ) are constants.

Field: % = (AH ) (/145) [W ,+ ghn]“" p
% = (/+8 f . [VPé‘:leﬂ-F QWOL*'JA%&? (2.1)
. =m(/+5) [y P 4 (I):ZH] tsom
o

Current density:

‘/7773%7 "r" ~’m0"'9) "'Tchf P':: d\[ m,,,’:]apwsﬁ

Terys 0 .
. R ) kb B
Hm by Lp = (kH)U#S) '["}’;‘:%.)*% @h,]amwS

Divergence condition:

)
Izdﬁm olz_;_aty .0 (2.3)

We shall define K by the relation:

Y, )
d 7;‘%”) ;;'/g 4}6(#/) = (2.4)
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)
We shall make use of the relatlon
u»)

by /
;5&4¢‘J4c:’- [kf .zféJ (2.5)
(o) - Zlm I-'(l_lm\.yki—l f"l( +4,/IC+?

(2.6)
T P(,+L;ijﬁé‘+ﬁiﬁv

where (f

where P is a symbol for the gamma function. Making use of equations

(2.3), (2.4) and (2.5) one finds

dQL )
dve - K g N 44
_ﬁ ‘m ) 'J...) ) . ) = —— __@_.‘Z
o) - ()
7 ?k*')d d,ﬁ;i “'Qkﬂ)dd};g*! C[kﬁ) 5,)/ (2.7)

% £
7 C(k-HJ 7
We shall now require that k:is a constant. In this case, equations

(2.7) may be integrated, giving

()
qu._ /C(M Q‘kﬂ) kpa (2.8)
{k+1) .
%z—z%‘mm*k“ (2.9)

Y,
where K'PA and qu are constants. Substituting (2.8) in (2.1),

we flnd

—F" (ke )l1+5) [Kro y K, Q{/«] -

0

k|

%- = (1) [Kﬂojy ARLOV QpoyJoinnt - %i;)f’“w (2.10)
B ¢

"'é = %[kﬁo bt /(oOkH]“”‘“f

(4]
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—
From (2.10) it follows that‘B can be split into two parts

m
-

B” and 2?} such that:
=

T —y =2 —?g)'—’r:
F-8". B WBl0, BVP=0

(2.11)
=) k
and where F = - ? K__(H'S) ,ﬂi—r\ﬂnfﬁ
7 ey
The current density is giI:/en by:
ﬂ‘?ﬁ. Ly =~ Z;‘/’; (H-S) -'&&om\¢
M L g N
B& k!
4rr, [, = ﬁ__ C,I+S) sfﬁ/}nﬂ
ARG

o

Let us now apply these
results to the situation
represented in Figure 5,

where we have three (¥ )

typey regions (2), (3) and
(4) separating 7?( and ﬁg .
Figure 5
@\‘Lis identical with
(1) and its mirror image. @\& is identical with (5) and its
mirror image. The field in 0\,; is given by (1.7) and therefore
I\ (
ot _ 1 "U;(} = 0.

. ) %)
P ’ = F& is field free and therefore % ;,Vzi >

= 0. The continuity of 4/, and Y require that

O = me-_- V;v)(%) 0 - _Zég___' 'Zéw(m
Uhiy = %y, Uy t) = Y ) (2.13)
%0y = 17 oy (ARPARYATR
| =4/F,mc7,) 0= %o)(m
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Applying equations (2.7) to this case, we find

o)
%ﬁt w’Qhuw K (%:Axﬂ

k+t
(2.14)

and
‘M)Lym) {U::[yn—l) = Q( [ (ka”‘Yhy Qk-ﬂ}(%yﬁ-'}]
or ) &) Lol
V) = Ve ) = i m [. lton ) = Cheiloin ) ]
g 1y \ _ 1My,
/;/ﬁ)(yﬂ _ '\/"gg = 2':: [@W }f“‘ﬁ) 0&#){5 7)] (2.15)

W00 =) = Ko [0 gsin) = Guoilse )]

&w\
Adding equations (2.15) and making use of (2.13), we find

s G+ KL omm - Ggom ] + K 0 ompd= g = -G

(2.16)

Treating equations (2.8) in a similar way, we find

hyL (Sm/q)- ,)(smﬁ)] KE‘EM{S; h)/; Msmﬁ)}» K [ ™ )(&‘HY;) —-?i?, Sf’h“)]= 0( 2.17)

(2.16) and (2.17) are two simultaneous equations that Kfy, K

kﬁV must satisfy. One of the k%w may be chosen arbitrarily,
and these two equations determine the other two /(3‘ if the
determinent of this coefficients i§ different from zero. This
shows that no more than two current regions of the type considered
are required between Q?g and G?a . Let us consider when only one

'region is required. This case is illustrated in Figure 6.
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) 7
R
& 1
./"’M-J/ R

/ % v

Figure 6

Equations (2.16) and (2.17) in this case reduce to

[,
Q) o) - T o] = - Co
}]’ UD,&.H(SM*/,) -«'F[w)(s:‘ny,)] - 0
The second equation requires that

{#H) Slny,) 'th/sﬂ'f’y,

and the first equation gives

=)
/{(ﬁ: ~— ékﬂ
IS'H)")‘ 0[/4)/5'"7‘)

Substituting this relation in (2.8) and (2.9), we have

U g) = Orenfs1)

p = ~ Lew) * Key
4L“J9*¥)"4amf9"%'

)= B (51) + Rgo

(¥ , .
QU#)'){S'"Y*\ - 0221){ sHY)

(2.18)

(2.19)

(2.20)

One can determine }ﬂaoand k}» from the conditions 'ﬂﬁﬁy) =1,

o)
,UQ C}j)= 0, and one finds then
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(m) )
Q(k“gsm y) - Qﬁ')( Sie \/,) (2. o1 )
[’ (%S '
G(’k‘.“*'"’/») - QH)(SIH)';)
. B - Bl oy

Q(b,)(s'”'/n @{h y (574 A

The field and the current density may be easily obtained by
substituting these equations into (2.1) and (2.2).

III REGION OF TYPE (s )

ng o Yy are functions of §

(Vp, Vp Ve , V) are constants

proa: 2= B[t lhetives vy (ko2 (o5 i
=)
gz i n/—ﬂ,@ﬁ[%(l-*sh Y, (145) [/G_]S"*’”"p (3.1)
o 4
%2 =~ U(+r>) [%—;CHQ)'(-}- m_)[“)-{[—,v).]c”% ?5
0
Current density:
qg:ﬁ-&my L, =0
‘ (3.2)
#_7%;9. oy ‘7 ku)}‘ 24_*7[&;)}‘_,.&%(,4.5) a8 b

SR T [0 o5 s

i
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Divergence conditiony:
- (k¢3)
cla%ék+-\)0+5)k— 4 v;., (k+2)(149) o (3.3)
$§
We shall write: (ks -
r . (k+3) _
%\%(HS)L + Ql_aiw_;_-)("},s) ""L. (3.4)

We shall now require that L_ be a constant, so that Lp and ey will
be independent of S .
From (3.4) and (3.5), we find

) k+?
Ay L(ke2) /), 5K Jtgy LR f)4s
G Llen) " A = SRS L) (3.5)

and after integrating:

= L(Z}(-}Z)(HQLk + Lho

%
Lh+3)(1- k)

t)

(3.6)

= Z.”G-I)(},LS)/“‘, + L-)a
i IZAfs)H(ﬂ)

where L+)0 and L-o are constants,
4

If one substitutes (3.6) in (3.1), one obtains expressions
=7 ) 3/
for the_‘,field components., We find that B = B + where
¢ -
VB = 0, but %’w is not perpendicular to I© . This
differs from a similar situation in a region of type ()l) where
2.

is perpendicular to However, the same thing can be

achieved in this case if one replaces (3.4) by

A 109"+ (10 o L 0y (3.7)
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and requires that L, is a constant.
From (3.3) and (3.7), we find
-(k
W - Lk (1es ] Az Ll (s )(au8)
ds [2k+73) > ds 2k
~ [+
and Yy = = L;('*ﬁ))( ¥ + Lo (3.9)
ZLk+3)
%, = L;(J-I—S)UG” + L'_ s (3.10)
(2R+3) ’ ‘

where L‘,‘,,O and L'_q are constants. Substituting (3.9) into

(3.1), we find:

2 oL T Tl Lt e
A 1+s)f ' e

‘(k&-?) .
) +oﬂd ‘ ﬁ_LM(lM) + Lo C148) b I p (3.11)

U

e+ $)
o eaFin{lent e Lo 009 ey

H

"h) ""m -id
so that now E =B ' Vxﬁ o, B0 - (3.12)
f?'=‘ = Zr (7%1+0
U+SJ“
Consider the situation
7 AW \5) G(% represented in Figure 7

which is analogous to

the situation represented
;/" ;’ in Figure 5 in the case
of a region of type (7 ).

Figure 7
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Comparing (3.1) and (2.7) and remembering that fi is field free,

it follows that:
5

)
v -1, Y=o, Y= Y, =o0 (3.13)

Applying (3.9), (3.10) and (3.13) to this case and taking into

account the continuity of the ¥, we find

ks 2 ik lesg) (k+2) -:[2-k+3)
(u-)h "{kﬂ) +5‘ 2 ]l)[_*sau‘i)(,“ k-ﬂ)] L?’?_CIS ~(lere (i5> (3.14)

[(HSHSI(H_(H&, mtl + L [(; s‘\(kw) [r+a) J yL )[C\ +5) o (\*G,Sb =

(3.15)

These are analogous to relations (2.16) and (2.17) for a region

- of type (7). These are two simultaneous equations which LHjL , L
must satisfy. One always requires two such regions between R:
and Gat , since (3.1%) can never be identically satisfied

by special values of s . The situation represented by Figure é

in a region of type (7 ) does not appear for a region of type (S ).

IV REGION OF TYPE (56 )
Y, and g are functions of ?ﬁ.
(74 'tfq A, V) are constants .

k .
Field: g = (/<+i ) (J+S ) ?H,[_’l/t.or-"""f + Vs ;*w.,f»\giJ

’%’ L) 74*-“ [viceam$ s ] (4.1)

Bpeoay = m ( )+s )"‘F/G,[ v, dinm@ + Vs U’“*"@P]
B,
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Current density

1}

4y, cosa/ L',,

(ps) é- Jﬁ*)[ﬂ/‘ Mmfgfa/%anm{]

B, (4.2)
cosvy (£ == Y cea ""9[ m
ﬁmﬁ 7Yy (H‘s)k ﬁé’; [ﬂ;; e P 3%/"‘ pj
l} = 0
Divergence
(k=)o) _ 2 p
F o T At o] 0

Divergence condition:

# sin W/ /Zs cosf,’n/dﬁ =0 (4.4)

We shall also write

. cos +a/% sin =/1/ (4.5)
%Zyj # p : mg 4.5

and require that”be a constant in each region of type (¢ ).

Then, we find for the current density~

(M) ’%)%,ﬁ,/

71t 008}/ ll,»

B,
Y 1 cos~7 =——/V()+5) i/e+/J'°""‘” (4.6)
5 |
LP =0

so that the current density is independent of ?
From (4.4) and (4.5), one finds

OM/?‘ = N cos m;t ;ls /Vsuwn% (4.7)

and integrating (1'/7/ one has
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N
i

N sin %7‘-# /}é,o (4.8)
”
- 4 cos an g + //S,o (4.9)

Substituting (4.8) and (4.9) into (4.1), we tind
= (K4)) {}+5) Pw;[”mm%#) N /VSUWWQ

R [y
—'Eat?wn wH3) ,k,[ Nm%w?”/;uw»ﬂ Nms;" ™)

4

and therefore ? = Ew + B . VXB! = O) Enz"ﬁ = 0
and ?u - 2¢ A/(H—g Mﬂ)

analogous to the situations in regions of type ()/) and of

i

—

4.10)

(4.11)

type (S ).
g Let us now consider 7?, and
! i
i / . E‘ separated by three
e - type { %) regionss (2),

(3) and (4). This is

i

i.iustrated in Figure 8,

e which represents a cross

(RC section through the

median plane. It should
be noted that K and 7?_3

Figure 8 must be separated at
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at other values of 73 . Using the same methods as were employed

in regions of type (/ ) and type (5 ), we find the two equations:

”9’[mh 4¢-MW}‘:{]+N{F@0MA~M«¢J ;-N(z)['aa”‘d‘ - om 41,] —-—m
W[ iy e o N ot e g T4 NP i o - #mind ] = 00 (4:12)

Ve
which the ,W %ust satisfy. It follows that no more than two
type [f) regions are required, and for special values of f , only
one may be required. This case is illustrated in Figure 9. In

this case, equations (4.12) become:

/V{ZZC"’”‘%“ mh\qé]-.--;m (4.13)
P 4 _ -
N smmpy - 2eind] 0(4‘14)

From (4.14) it follows:

“sin Mg = sin mc}, (4.15)
Consider the special case
when 0n¢' is in the first
quadrant. Then ,

s = T-mf  (4.16)
Then from (4.13),

Figure 9 o (4.17)
The boundary conditions for region (2) are L cov »uﬁ
(2 =)
"/gm@’}):" , VsTlg)=) (4.18)
VWigy=0 , 4"@)=0
~ Then ), = 1 sin m§ M= L (4.19)

1 Cos “YB
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Substituting (4.19) in (4.10), we find for the field
L 10

Gy = &) (ws) Fpysinomig +g)

go 2 "cos /;m;z;

B = (us ) AV sin o (¢ +0)
f Ty Tt cos/n g

ton) "")
Bj Len Y —-')'?SZ ) F cos%/¢,+¢’) + %él"‘s) te+1 )
B 4 cos w?
¢

2(1+5) Fﬁ{;)»)[ ._—L%Q 1-'}

Y REGION OF TYPE (8 )
Vernd 14, are functions of ¢
W and -'UQ are functions of')’ ‘

% ang ?/" are constants,

Field: % [%'& i @b‘ phorlys< e, (a2 ) w8y *27,@\4»#
B fgmngtofspsSenod ™ Jammp o
@é%if ‘»m[ru? 7t G o L5 2,0 Jcomg

Current Density

MWX b = *%[d% —ﬁiﬁv)‘f olj" O ))]Efﬂﬂ'*g) "‘V)[/“)[k#yﬁevu/
l/‘”’f?» e» / ”[%%f%ﬂ*ﬂ%lﬁsﬂ_}(w) j coo %50 (5.2)
iﬂ L‘ E‘r F**h'"?]ﬂ ¢ ]I 9 (ke Y5 -’[ﬂn[ys) J,@«u;(
Bs

- [”Pzrﬂ’“.fﬁ”*%@»] FENR N L )



- 24 -
MURA-339

Divergence

VZ_E 0@+0+ 49")] %,(m) +'1f1( )+s§ Jmm f
s (5.3)
+) % ?@)) + Qn—mﬁ %(k’f' )= 2 2o kizfoes) /wj

The divergence condition can be written in the form

d‘\f Oq O/_?&Q) J’ﬁ. k'“YH'SJk JW'/[k-ﬁXHS){
W M y 1, @0«0 w)(ae) +’V.(/+S) (kt)

(5.4)

—~ where fzis a constant. This follows since the left hand side of

the equation is a function of;y, and the right hand side is a

function of § . We therefore obtain the two equations:

dv,

776 J;,q) - ’“f‘*) f[’lé (h) + @/[,] (5.5)
d

%(hm/m) ﬂ/"" /,en)(m) ___70[%//”) + ,,,w{ J

From which, one obtains *

e o o i i IBGL]]

het T, + i [t K AE )

o) L*s
&+p

* See Appendix I - II
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) .
where %ﬁé") *%4&:) — K} an’ "jeo is an

arbitrary constant,

, ' 3
gy =(,+3)‘&*’) “, +ij L(!+s)’1ki’l%ﬁlz-’f ;-%C'*S) %‘ —”
'f ' L) LU — S v
1, = Lissy Lews® 2‘4» + Ju] Lo aiccs of ,L%cwﬁ—ﬁ]}
wRet, ’U:-CH'S)I‘"J- 4/,'-,'[)-'»5)»[#“): L 80 Yps) b 2 M‘%’y comalerd,

As soon as functions ff and L. have been chosen, the above
equations determine ( QG; Yy s Uy Uy ) in terms of the arbitrary
constants ( quo . q{h‘))fz ), and arbitrary constants occuring
in the functions ff and L . When one has the problem of finding
a current distribution in a region of type ()9: ), one generally
v, _
knows the values of (%GU 9, Q&w)‘%; ) on the boundary of the
region. Sufficient number of arbitrary constants should be
introduced in thé functions f( and [_ , so that there are a
sufficient number of arbitrary constants to satisfy the boundary
conditions. One must also choose the functions ;f and L in such
a way as to advoid singularities in ( ﬂ/?) 'qu) %) 'V(,—) } in the

region considered.

VI REGION OF IYPE (:Z7)9)
'\/l;,and ’1{7 are functions of
Y, and %@ are functions of Y
Y and VY, are functions of 4

Field - given by (1.9)

Current density - given by (1.1

Divergence - given by (1.10)
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The divergence conditions can be written in the form:

¥ _jg_)ﬁ"" J@:.:) J%v(kn) Hg)- ;”/**‘)(*9{“9 A‘W"“f ,%‘”’f 6.1)

0= MP U(.H} ’lf(?k,,, * '@ﬁ*’f +’Vl-)('*5)/( ) 7 ')/aqm¢+1/,ﬂw%fi
%
It follows that
‘J%f( kw)(/fs)ﬁ- d"/r'-;(/m)( ) (e
7 B - o
1{;[,_144)"".;, %’ﬁrs)-u«y s
cﬂ&»alﬁﬁﬂ 4% J ﬁ; ,
i e AR 6.0
8 % W’) + Y pku} A”/
- A% A | _
J-eam ik _‘PL_ -
Uy boorg *"4"‘:"“9 ~
where]é) and 7§,’ are constants.
From which, we obtain¥*
) ’ 2 > k 1
’ll;, LH)#{ a)*P‘[LO*S) %»JD[Q)C-M:):fs +%[n—s) j}%}']}
} ) *‘-l\-"‘ln.s JL- +< ﬁ)—:-f}
= Liw "2 009" Y16, p‘[“‘*“%* e 527

w
See Appendix I - ITI - III
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% = Frllhe” éﬁo}ww{%,ﬁ k-4 J}%@ KO =
% T (el A A )
Ve = bimmp{ %4}%"’”“‘*‘””% v e tl]
s T [ SR VS T e

Vs

it p
The above equations determine the functions (dB’V)UHJ’Z/Q/Q/‘ L Ve )
in terms of the arbitrary functions K, L , N , and the
arbitrary constants #14) fl . Sufficient number of constants
should be introudced in the functions k: , Z, and A/, so that
the boundary conditions can be satisfied. The k< R L and A/
must also be chosen so as to advoid singularities in uﬁ& in the

region under consideration.

VII CONCLUDING REMARKS

(1) The relations that have been derived in this report are
exact. However, in working out particular cases, there may be
mathematical difficulties in performing some of the calculations.
In particular the integral occuring in (8.5) might be mentioned.

In the case of such a difficulty, approximate results might be

&) ()
obtained as follows. Replace the 77#*0 and {Qk+9 by
k th
L}bz and L{b+d respectively, and use the following
(D) -H) (e)
approximations:
LM v LH v WY by = ]
iy Y eowy Gl T 7 -
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({0\-

Then kw

~J§L—

['l—
Equation (7.1) replaces (2.5) and it will follow that if <:(k40

-
/ﬁ-w) dL ,.) ~ (7.1)

is replaced by -w in any of the relations of this report, that
valid results to this degree of appro#imation will be obtained.
Futhermore, these results will be valid for M\ﬁ-k+} even as
well as odd, and in fact for nonintegeral values of é: and 2,
This approximation is valid for large values of {a;y/jfand small
values of ‘7 . The results should be quite accurate for large
accelerators. For small accelerators, a better approximation may
be required.

(2) It should be noted that regions of type (;?5 ) and type

( '\1)*) have not been discussed. All problems that have been
contemplated so far may be solved without their use. If, however,
relations for these regions are required, they may easily be
obtained using methods analogous to those used for a region of
type ( s7 ) together with the results of the appendices.

(3) In another reference, another method was used for reducing
the differential equations that appear in the appendix. In this
method, these differential were solved, so that ’pras expressed
as a function of QQ , 'Qﬁyas a function of Y- , and v, as
a function of 4 . The functions (MQ) q% @%) ) could be
chosen arbitrarily to a certain extent, and the (Qfﬂl Uy Y )
computed. One has to be careful to choose the ( UQ VUey Vs )

so that singularities do not appear in the ( ,UP; VZ) WQ ).
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The method used in this report would appear to be superior.
It might be called the parametre method, the auxiliary functions
(k, L, \J) being the parameters.
(4) The fields and currents are determined uniquely in the
regions of types ( y ), (s ) and ( ¢ }. This is achieved by
the introduction of auxiliary conditions. These conditions result
in current distributions that are relatively simple, and should
make the winding of coils quite practical. In the regions of
type (5, 7 J, and (S, )6 ¢ } there is a great deal of freedom
in the fields and current distributions. This freedom should be

utilized to make current density distribution that would be

- practical for the winding of coils, Little is known at preseht

about this, One would expect that the most practical current

distribution would have a mathematically simple expression.

VIII | APPENDIX I Reduction of the Differentisl Equation

e dT, | A% Q)
7}? 5t ?';L _%: =j()/) | (8.1)

—_ - —
W% k#a*’iQ 4“&;
where 9(7 ) is a given function of )’ . Let us define *f by:

w)

% V‘*’) +V OG’--H) = K (8.2)

)
then dcf* d - .
h, d7 ux 7;’“ %“ :(jk o
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Solving (8.2) for 1 , substituting this value of @b into
(¥.3) and making use of (2.5), we find:

j%‘MPJ-'d—”—jégés et [ %J% K _TL*-‘)] (8.4)

Noting that the left hand side of this equation has the integrating

factor P) , we are able to integrate and we find

le~1)

b B b o A )]

and from (§.2), we find

e Ko Bl y{gk-d,gd_gzrmy%zﬂ

G&:l' [by

where /Vp.)o is a constant.

IX  APPENDIX II Reduction of the Differential Equation

‘/,%/kﬂ)[ws) ”/"’P/(b?’[’*s)[k )- . (9.1)
7/07[/4—$)k + Y [H'Sj['e’w) } .

Define | _ thus: (9.2)

kK
%_(“.g k,))’. ‘Z{) H‘S)[ +4) l__
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Then,

B sl L (hoaf 105" fL (9.3)

Solve (7 .2) for ?j?_) , substitute in (7.3), and making use of
(2.5) we find

Fk) | (ke)(MeY), ok ki ) ,,"k .
Mo, 2 4 = %.Lz?f’“) P LRI ety (0.4)

Noting that the left hand side of this equation has the integrating

factor ( PP§5(k+2‘ , we are able to integrate and find,

_ '{k#l) N L_ 3
Yy =(+s) ZQ’E""”’ +-de L( ) (/zn)zéllit;)iJRUH) fﬁ_] (9'5),

and using (7 2) we find

k)
Yo = L(!-rss -(J+s>

L+ 0)

Ps[m*s) //énﬁ“/)ﬁa L(»s)@zk (9. 6), |

where (U, 1is an arbitrary constant.

X APPENDIX III Reduction of the Differential Equation

—%ﬂ"f"’“f) d‘Vs %M?

'UC Cﬂﬂ'h\, +(u$ %fhs¢
Define h/ thus:

- f (10.1)

Y, teonp 4V Raromp = N (10.2)
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Then: _.A_Q/_g L - d .,,OM/ 4o = /N (10.3)
Py 727 ~f , 7[
Solving (#.2) for U, , one finds
Uy = N- Y teomg (10.4)

g

Substituting (/ol'l) in (/4.3} and making use of 2.5, we find

AV _ mostmp vz fHing—mVewng

Fre %w +4l am»jb (10.5)

Noting that the left hand side of this equation has the integrating

factor B - , we are able to integrate and find:

At
‘Uc:/u.,\w?{ f__é,_ [/I/Vgunh¢ MNW"\? e rm;b]

Substituting (0.6) in (/4 4), we find

bl et fu [ d p e ol o] |

%%7)

(10.6)



