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Abstract
An iterative method for track-based global alignment is proposed. It is derived from
the Kalman filter and designed to avoid the inversion of large matrices. The update
formulas for the alignment parameters and for the associated covariance matrix are
described. The implementation and the computational complexity are discussed, and
we show how to limit the latter to an acceptable level by restricting the update to
detectors that are close in the sense of a certain metric. The performance of the Kalman
filter in terms of precision and speed of convergence is studied with simulated tracks.
Results from an implementation in the CMS reconstruction program CMSSW are
presented, using two sections of the barrel part of the CMS Tracker.

2.1 Introduction

This note describes a method for global alignment with
tracks that does not require solving a large system of
linear equations. The method is iterative, based on the
Kalman filter equations [1–3]. The alignment parame-
ters are updated immediately after a track is processed,
and the current best estimates of the alignment parame-
ters are used in the track fit. The update of the alignment
parameters is not restricted to the modules crossed by
the track, but limited to modules with significant corre-
lations to the ones in the current track. In order to keep
track of the correlations some bookkeeping is required.

The Kalman filter equations offer the possibility
to use prior information about the alignment from me-
chanical or laser alignment, and it is easy to fix the po-
sition of reference modules. The method is also highly
suitable for alignment relative to another detector.

Table 2.1: Notation for alignment-related objects

N . . . . . . . total number of alignable detector modules
dt . . . . . . . vector of true alignment parameters
d0 . . . . . . . expansion point of alignment parameters
d . . . . . . . . current estimate of alignment parameters
di . . . . . . . alignment parameters of detector module i
D . . . . . . . covariance matrix of d
Dij . . . . . . submatrix of covariances between modules

i and j
bd . . . . . . . . updated estimate of alignment parameters
bD . . . . . . . covariance matrix of bd

2.2 Sequential updating
Tables 2.1 and 2.2 show a synopsis of the notation that
is used in the following. All vectors are supposed to be
column vectors.

Table 2.2: Notation for track-related objects

I . . . . . . . list of modules crossed by the current track
k . . . . . . . size of I
m . . . . . . observations of the current track
V . . . . . . covariance matrix of m
xt . . . . . . true track parameters of the current track
x0. . . . . . expansion point of track model
x . . . . . . . predicted track parameters of the current track
C . . . . . . covariance matrix of x
bx . . . . . . . updated track parameters of the current track

The observations m depend on the track param-
eters xt via the track model f :

m = f(xt) + ε, cov(ε) = V .

The stochastic vector ε contains the effects of the ob-
servation error and of multiple scattering. Its variance–
covariance matrix V can be assumed to be known. En-
ergy loss is considered as deterministic and is included
in the track model. A preliminary track fit gives a provi-
sional estimate x of the track parameters [4]. The cur-
rent estimates of the alignment parameters are used at
this stage.

The observations also depend on the alignment
parameters dt, and the track model is extended accord-
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ingly:

m = f(xt, dt) + ε, cov(ε) = V .

The track model is linearized by a first-order Taylor ex-
pansion at expansion points d0 and x0:

m = c + Adt + Bxt + ε = c +
(
A B

) (
dt

xt

)
+ ε .

The corresponding Jacobians are given by

A = ∂m/∂dt

∣∣
d0

, B = ∂m/∂xt

∣∣
x0

with the constant

c = f(x0, d0)−Ad0 −Bx0 .

The expansion point d0 is either the nominal or the cur-
rently estimated module alignment, while the expan-
sion point x0 is the result of a preliminary track fit. In
addition, the Kalman filter requires a prediction x of
the track parameters, along with its variance–covariance
matrix C. This prediction has to be stochastically inde-
pendent of the observations in the track.

We first consider the case where an independent
prediction of the track parameters exists. This can be
an external prediction from an already aligned detector,
or external information from a vertex or from kinemat-
ical constraints. In this case, the update equation of the
Kalman filter reads

(
d̂
x̂

)
=

(
d
x

)
+ K (m− c−Ad−Bx)

with the following gain matrix:

K =
(

D 0
0 C

)(
AT

BT

) (
V + ADAT + BCBT

)−1

︸ ︷︷ ︸
G

=
(

DAT G
CBT G

)
.

In the second case, no independent prediction ex-
ists. The prediction x0 gets zero weight in order not to
bias the estimation. This is accomplished by multiply-
ing C by a scale factor α and letting α tend to infin-
ity [5]:

G = lim
α−→∞

(
V + ADAT + αBCBT

)−1

= V −1
D − V −1

D B(BT V −1
D B)−1BT V −1

D

with
VD = V + ADAT .

Because of GB = 0 the update equation of the align-
ment parameters can be simplified to

d̂ = d + DAT G (m− c−Ad) .

The update of the covariance matrix can be cal-
culated by linear error propagation:

D̂ =
(
I −DAT GA

)
D

(
I −AT GAD

)

+ DAT GV GAD .

Both terms on the right-hand side are positive definite,
so the left-hand side is guaranteed to be positive definite
as well.

The iterative update of the alignment parameters
needs some starting values. Mechanical and laser align-
ment can be used to obtain suitable starting values. Ref-
erence modules can be fixed by giving them very small
initial errors.

2.3 Implementation and computational
complexity

Let us assume that the current track crosses k detec-
tor modules. Their indices are denoted by the set I =
{i1, . . . , ik}. The dimension n = 2 k of the observation
vector m is small, in the order of 30 for the CMS Inner
Tracker. The matrix B is of size n × 5 and is therefore
small. The matrix A is a row of N blocks Ai of size
n×m, where m is the number of alignment parameters
per detector module (usually 6). However, only k out of
these N blocks are different from zero:

A =
(
0 . . . 0 Ai1 0 . . . 0 Ai2 0 . . . 0 Aik

0 . . . 0
)

The only large matrix in the update formulas is the prod-
uct DAT . It is a column of N blocks each of which has
size m×n. Complete computation of DAT would lead
to an algorithm that scales with N2. This is too slow for
practical purposes. There are two alternatives:

– Algorithm A: Compute only the blocks of the
modules in the current track, neglecting all cor-
relations.

– Algorithm B: Compute the blocks of the modules
having significant correlations with the modules
in the current track.

Algorithm A gives an unbiased estimate, but is subopti-
mal because of the missing correlations. Algorithm B is
nearly optimal, but it has to be guaranteed that D̂ is pos-
itive definite all the time. This problem is being studied,
but there is not yet a foolproof solution. In any case,
there has to be a tradeoff between speed and precision.

In order to keep track of the necessary updates, a
list Li is attached to each detector module i, containing
the detector modules that have significant correlations
with i. This list may contain only i itself in the begin-
ning and grows as more tracks are processed. If there
is prior knowledge about correlations, for instance be-
cause of mechanical constraints, it can be incorporated
in the list and in the initial covariance matrix. The length
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of the list can be restricted to a fairly small number, as
the correlations between detector modules that are far
from each other tend to be small. This leads to the fol-
lowing procedure for computing the updated alignment
parameters:

1. Update the list Li for every i ∈ I (see below).
2. Form the list L of all detector modules that are

correlated with the ones crossed by the current
track: L =

⋃
i∈I Li. The size of L should be

much smaller than N .
3. For all j ∈ L compute: (DAT )j =∑

i∈I DjiA
T
i . Each block Dji is of size m×m.

4. Compute: ADAT =
∑

i∈I Ai(DAT )i.
5. Compute: VD = V + ADAT and G. All matri-

ces involved are of size n× n.
6. Compute: m′ = G

(
m− c−∑

i∈I Aidi

)
.

7. For all j ∈ L compute: d̂j = dj + (DAT )jm
′.

In the beginning, the covariance matrix D is block-
diagonal and contains the prior uncertainty of the align-
ment parameters, derived from laser alignment and me-
chanical measurements. If required, it may also contain
prior correlations between different detector modules.
After each track, only the blocks in the list L =

⋃
i∈I Li

need to be updated. This is done in the following way:
For all j, l ∈ L compute:
D̂jl = Djl + (DAT )j(GVDG −

2G)[(DAT )l]
T

.

The computational complexity of the parameter
update is of the order |L| · |I|, and the computational
complexity of the update of the covariance matrix is of
the order |L|2. Restricting the size of the lists Li is
therefore of crucial importance.

The current proposal for building the lists Li is
based on the concept of a distance between two modules
i and j. Let us define the following relation:

i ∼ j ⇐⇒ i and j have been crossed by the same track.

Then the relation “∼” is symmetric, but not transitive.
Based on this relation, we define the distance d(i, j) be-
tween detector modules i and j by:

1. d(i, i) = 0
2. If i 6= j and i ∼ i1 ∼ i2 ∼ · · · ∼ in ∼ j is

the shortest chain connecting i to j, the distance
is d(i, j) = n + 1.

It is clear from the definition that d(i, j) = 1 if and only
if i ∼ j. Also, it is easy to show that d has the formal
properties required by a metric:

1. d(i, j) = 0 if and only if i = j

2. d(i, j) = d(j, i)
3. d(i, j) ≤ d(i, k) + d(k, j) for all k.

There are several possibilities for building the list Li:

– The list Li contains all modules k with d(k, i) ≤
dmax.

– The list Li grows until the correlations have stabi-
lized. Then all correlations below an upper limit
are dropped. This approach is dynamic and adapts
to the track sample used.

– The ‘optimal’ correlation structure is determined
from simulated data. This approach is static and
has to be done separately for every potential track
sample (cosmics, beam halo, interactions).

Clearly, more detailed studies are required in order to
select the best approach.

2.4 The two-track fitter
With track pairs, vertex and mass constraints can be
used to improve the momentum resolution. Typical ex-
amples are the decays Z −→ µ+µ− and J/ψ −→
µ+µ−. Track pairs can be treated in the same manner as
single tracks if the five track parameters are replaced by
nine decay parameters:

– the position v of the decay vertex (3 parameters),
– the momentum p of the mother particle in the lab

frame (3 parameters),
– the two decay angles (θ, ϕ) in the rest frame of

the mother particle (2 parameters),
– and the mass m of the mother particle (1 parame-

ter).

The mass is constrained by adding a virtual observation
of the mass (theoretical value plus width). The Jaco-
bians of the observation vectors m1 and m2 of the two
tracks w.r.t. the decay parameters are obtained by the
chain rule:

∂mi

∂(v, p, θ, ϕ,m)
=

∂mi

∂xi
· ∂xi

∂(v,pi)
· ∂(v,pi)
∂(p, θ, ϕ,m)

.

Otherwise the formalism remains unchanged.

2.5 Results
The algorithm has been implemented in CMSSW [6].
We have tested its performance in two set-ups, a smaller
one with about 500 alignable modules, and a larger one
with more than 5000 modules.

2.5.1 Small set-up
The small set-up is a wheel-shaped subset of the bar-
rel part of the tracker [7]. It consists of 3 pixel layers
(192 modules), 4 TIB layers (162 modules), and 6 TOB
layers (344 modules). The modules of TIB and TOB
were aligned relative to the Pixel barrel, yielding a total
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of 506 alignable modules. The misalignment was simu-
lated according to

σ(∆u) = 100 µm, σ(∆v) = 100 µm, σ(∆γ) = 5 mrad

u and v are the local coordinates, respectively orthog-
onal and parallel to the strips, and γ is the angle of
rotation around the local z axis. Alignment w.r.t. v is of
course restricted to the double-sided modules. 10 000
muon pairs (20 000 tracks) from the decay Z −→ µ+µ−

were used for the alignment. The momentum of the Z
was distributed uniformly between 50 and 80 GeV/c.

The performance was investigated in four cases:

1. No correlations,
2. correlations up to dmax = 5,
3. all correlations,
4. all correlations with Z-mass constraint.

Figure 2.1 shows the final residuals of alignment in u,
i.e., the estimated shifts minus the true shifts, for the
four cases just mentioned. The residuals are centred
around zero. The RMS width of the distribution de-
pends on the number of correlations used, in just the way
one would expect. There is a significant improvement
from case 1 (no correlations) to case 2 (correlations up
to dmax = 5). Using all correlations yields very lit-
tle improvement, but the Z-mass constraint shrinks the
r.m.s. width of the distribution by almost 10%. The
corresponding results for the rotation angle γ look very
similar (Fig. 2.2). Using correlations up to dmax = 5
shrinks the width by a factor of 2. Using all correlations
is only slightly better, and the Z-mass constraint again
gives an improvement of about 10%.

The performance also depends on how many
alignment parameters are estimated concurrently. Fig-
ure 2.3 shows the evolution of residuals of the u-shifts
as a function of the number of updates. In the left-
hand panel only one parameter, namely u, has been mis-
aligned and estimated, whereas in the right-hand panel
all three parameters (u, v and γ) have been misaligned
and estimated. The final r.m.s. width is 11.0 µm in the
1-parameter case, and 20.4 µm in the 3-parameter case.
In both cases all correlations have been used.

The improvement from using the correlations has
to be paid for by a substantial increase in computing
time. Table 2.3 shows the CPU time spent in various
parts of the algorithm. At first glance it may seem sur-
prising that using track pairs with a mass constraint is
faster than using single tracks. The explanation is the
following. First, the alignment interface is accessed
only once per track pair, and as a consequence the time
spent there is reduced by about a factor of two. Second,
the update is also called only once per track pair. Al-
though more modules have to be updated per track pair,
there remains a net gain of about seven per cent.

Table 2.3: Timing for the alignment of the small set-up.
Shown are the times for the algorithmic update (Talg), the re-
trieval of data from the alignment interface (Tint) and the up-
date of the correlation lists (Tlis). All times are CPU times and
are given in seconds.

Three estimated parameters
Talg Tint Tlis

No correlations 65 14 –
Correlations up to dmax = 5 1591 1228 73
All correlations 5260 3316 –
All correlations with mass
constraint

4827 1694 –

One estimated parameter
Talg Tint Tlis

All correlations 603 1870 –

2.5.2 Large set-up
The larger set-up comprises about a third of the en-
tire tracker. It consists of 3 pixel layers (505 mod-
ules), 4 TIB layers (1739 modules), and 6 TOB layers
(3961 modules). The modules of TIB and TOB were
aligned relative to the Pixel barrel, yielding a total of
5700 alignable modules. The misalignment was simu-
lated according to

σ(∆u,∆v) = 100 µm, σ(∆γ) = 5 mrad .

2000 muon pairs (4000 tracks) from the decay Z −→
µ+µ− were used for the alignment. The momentum
of the Z was distributed uniformly between 50 and
80 GeV/c.

The alignment was studied including correla-
tions up to dmax = 3. Figure 2.4 shows the final residu-
als of alignment in u, i.e., the estimated shifts minus the
true shifts, separately for TIB and TOB. Note that mod-
ules with less than 4 hits have been excluded, leaving
1530 modules in the TIB and 3250 modules in the TOB.
In the TIB, the r.m.s. width is down to about 20 µm with
no more than 4000 tracks, while in the TOB it is about
40 µm. Figure 2.5 shows the corresponding residuals for
the rotation angle γ. The r.m.s. width is about 0.9 mrad
in the TIB, and about 1 mrad in the TOB. The CPU time
required for the 4000 tracks is shown in Table 2.4.

Table 2.4: Timing for the alignment of the large set-up.
Shown are the times for the algorithmic update (Talg), the re-
trieval of data from the alignment interface (Tint) and the up-
date of the correlation lists (Tlis). All times are CPU times and
are given in seconds.

Three estimated parameters
Talg Tint Tlis

Correlations up to dmax = 3 4860 5196 97
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2.6 Summary and outlook
A Kalman filter for sequential estimation of alignment
constants has been developed and successfully tested on
a small scale and on a large set-up. Its advantages are

– No large system of equations has to be solved.
– The depth of the correlations that are taken into

account can be tailored to the problem.
– The errors of the estimated alignment constants

are available and can be used as a stopping crite-
rion.

The disadvantages are

– The computational expense per track is large, es-
pecially if all correlations are used.

– More bookkeeping is required.

Clearly further work is required to make the method op-
erational on the full tracker:

– The various approaches to the correlation lists
have to be studied.

– The method has to be tested on full scale and fur-
ther optimized for speed.

– The estimation has to be extended to the full set
of angles and shifts.
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Fig. 2.1: Residuals of the shift in u after alignment (small set-up). Top left: no correlations. Top right: correlations up to
dmax = 5. Bottom left: all correlations. Bottom right: all correlations with Z-mass constraint.
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Fig. 2.2: Residuals of the rotation angle γ after alignment (small set-up). Top left: no correlations. Top right: correlations up
to dmax = 5. Bottom left: all correlations. Bottom right: all correlations with Z-mass constraint.

Fig. 2.3: Evolution of the residuals of the shift in u versus the number of updates (small set-up). Left: one parameter estimated.
Right: three parameters estimated.
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Fig. 2.4: Residuals of the shift in u after alignment (large set-up). Left: inner barrel (TIB) Right: outer barrel (TOB).
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Fig. 2.5: Residuals of the rotation angle γ after alignment (large set-up)
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