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RESEARCH OBJECTIVES

A large part of the activity of the Microwave Spectroscopy group, both experimental
and theoretical, involves electron paramagnetic resonance. Much of this work involves
the study of paramagnetic centers in crystalline solids at microwave frequencies. In
general, we are trying to achieve an understanding of, and the development of a descrip-
tion for, the physical behavior of paramagnetic materials from a quantum-mechanical
standpoint. Interest centers here, as well as in many other laboratories, on interaction
mechanisms: spin-spin, spin-lattice and associated relaxation, line shape, and satura-
tion phenomena. Similar studies are being made on liquid paramagnetic materials.

Electron paramagnetic resonance in gases is being used as a sensitive analytic tool
for studying atomic recombination and diffusion rates of discharge products.

Problems associated with the design and operation of quantum-mechanical ampli-
fiers are being investigated on solid-state masers and, to a lesser degree, on lasers and
beam masers.

This laboratory is now also engaged in the investigation of the properties of metals
and other materials at low temperatures. Particular emphasis is being placed on thin
metallic films. Studies now in progress include a search among the transition and rare -
earth-metal thin films for superconductors, an investigation of electron tunneling on
single crystals of various superconductors, and a quantitative investigation of how the
transition temperature of superfluid helium changes with the size of the specimen.

R. L. Kyhl, D. H. Douglass, Jr.

A. ELECTRON PARAMAGNETIC RESONANCE IN FERROELECTRIC

POTASSIUM TANTALATE

A study is under way to examine the suitability of single -crystal potassium tantalate

(KTaO3 ) as a host lattice for certain iron group paramagnetic ions. We chose KTaO3
as an interesting host possibility because it exhibits a phase transition from a simple

cubic perovskite structure to a distorted ferroelectric phase near the temperature of

liquid helium (4. 2°K). This very low Curie transition enables us to conduct the electron

paramagnetic resonance experiment at a temperature at which the spectrometer sensi-

tivity is high, and, at the same time, enables us to hold the temperature of the crystal

just above its Curie transition, at which point electrostrictive strain coefficients may

be exceedingly large. Briefly, then, this study is concerned with electrostrictive tuning

of paramagnetic energy levels in doped KTaO3.

*This work was supported in part by the U.S. Army Signal Corps under Con-
tract DA36-039-sc-87376; and in part by Purchase Order DDL B-00306 with Lincoln
Laboratory, a center for research operated by Massachusetts Institute of Technology
with the joint support of the U. S. Army, Navy, and Air Force under Air Force Con-
tract AF19(604)-7400.
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Fig. VI-1. The crystal-growing furnace.

Thus far the major effort has been devoted to growth of good single crystals of potas -

sium tantalate. A flux method described by J. P. Remeika, I who used potassium

flouride, was discarded because only dark, small, highly conductive crystals were pro-

duced. A second method has proved quite satisfactory and is essentially the technique

used by C. E. Miller 2 to grow single crystals of potassium niobate. The crystal-

growing apparatus is shown schematically in Fig. VI-1. The melt is contained in a

100-cc platinum crucible and consists simply of Ta205 and a stoichiometric excess of

K2 CO 3 (or K2 0 since CO 2 is driven off during heating). Therefore, no extraneous or

contaminating ions are introduced into the melt as they are in the flux method. An

approximate partial phase diagram 3 for the Ta205-K20 system is shown in Fig. VI-2.

Selection of approximately 64 mole per cent K20 results in precipitation of the desired

KTaO3 while cooling the melt from approximately 1250"C to 1100"C. Because a seed

method is used, as shown in Fig. VI-1, the liquidus temperature must be accurately

determined. To accomplish this, light from a 1000-watt lamp is projected onto the

melt surface and the reflected light observed through a telescope and crossed polarizers.

A very tiny sliver of KTaO3 is then dropped onto the surface and observed through the
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Fig. VI-2. Partial phase diagram for the Ta 2 0 5 -K 2 0 system.

telescope. The "floating" sliver is clearly visible, and in this way the melt temperature

can be adjusted to two or three degrees above the liquidus temperature at which point

the test seeds dissolve in approximately 30 seconds to 1 minute. The growth seed,

usually 3 or 4 mm square, is tied to the end of a 0. 125 -inch platinum rod with platinum

wire. This seed is lowered so as to touch the melt and then retracted slightly but not

far enough to break the meniscus. Crystal growth takes place while the seed rotates at

60 rpm. The direction of rotation is reversed every 30 seconds. Cooling the melt to

approximately 1100 0 C at the rate of approximately 40 C per hour results in KTaO 3 crys-

tals that weigh roughly 20 grams. As growth progresses the rotating crystal is lifted a

total of 5-10 mm during the 24- to 30-hour growth period. Pulling is in a series of

manual steps every 4-6 hours and is not continuous. At some temperature above

1090'C, at which the eutectic begins to form, the newly grown crystal is lifted approxi-

mately 1 cm above the melt surface and the entire crystal is cooled to room temperature

over a period of 3-4 days.

Occasionally the foregoing method failed to work because an immiscible foreign liquid

layer appeared to float on the melt surface, thereby preventing accurate determination
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Fig. VI-3.
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Fig. VI-4. The dc electrical conductivity vs temperature for KTaO3 .
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of the liquidus temperature. This difficulty has been traced to calcium impurities in the

Ta 0 5 . For this reason purchase of Ta2 0 5 has had to be on a selective basis, with only

those batches having less than 10 parts per million calcium acceptable.

Several KTaO3 crystals have been grown. Undoped samples that were grown from

Kawecki Chemical Company's optical grade Ta20 5 are transparent and colorless with

an absorption edge at 0. 350 microns and transparency to approximately 7 microns in the

near infrared. The average index of refraction in the visible range is 2. 6, and the elec-

trical resistivity at room temperature is approximately 1012 ohm-cm. Figure VI-3

shows a Curie-Weiss plot of 10 4/(X-33) vs temperature for this material. At room tem-

perature the low-frequency dielectric constant is approximately 220. From Fig. VI-3

the extrapolated Curie temperature is seen to be 1 K. The KTaO 3 crystals grown from

melts that are believed to be silicon-contaminated are found to have quite different prop-

erties. These crystals are very pale blue and are excellent electrical conductors, as

shown in Fig. VI-4. Hall-effect measurement at room temperature indicates electron

conduction with a mobility of 28 cm /volt-sec. A cyclotron-resonance study of this

material might be exceedingly interesting.

Addition of 0. 2 mole per cent Fe 0 3 to the low-silicon melt results in pale yellow

crystals that exhibit a rather complicated electron paramagnetic resonance spectrum

consisting of 10 lines at room temperature in the magnetic field region below 8000 oer-

steds. The spectrum exhibits cubic symmetry as expected. Further work on paramag-

netically doped samples is now in progress.

S. H. Wemple
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B. LINE SHAPES OF PARAMAGNETIC CHROMIUM RESONANCE IN RUBY

The line shapes of the main resonances in ruby present a source for several prob-

lems concerning the interactions of the paramagnetic chromium spins. Magnetic dipole

interactions between chromium ions, and between chromium and neighboring aluminum

nuclei, as well as exchange coupling between near neighbors, exert significant effects

on the line shape. A theoretical understanding of the line shape is in turn a prerequisite

for calculations that require the total area of the line, or the behavior of the line in the

far wings, neither of which is directly observable. Examples are concentration measure-

ments by electron paramagnetic resonance methods and quantitative application of cross-

relaxation theory.
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Existing theories of line shapes depend on moment calculations.1 Moments higher

than the second are, unfortunately, exceedingly cumbersome to calculate, and the sec-

ond moment alone can not be related to an experimental halfwidth without previous

knowledge of the line shape. For ruby, the calculated second moment appears to

mismatch that of the experimental halfwidths,2 and does not seem to satisfactorily

explain the concentration dependence of the halfwidth. 3

With the calculations presented here we obtain the complete line shape that is deriv-

able from dipolar interaction. The calculation is discussed, somewhat arbitrarily, in

four steps:

1. We solve precisely the problem of two interacting dipoles. Neglect of N body
N-2interactions introduces an error of order (n) , where n is the spin concentration.

Here, N = 3, n < 0. 01, so the neglect of higher-order interactions gives an error of less

than 1 per cent.

2. We formulate a statistical scheme for summing all of the pair interactions

throughout the crystal. Random distribution of spins is assumed over the long range,

but we leave open the possibility of short-range clustering.

3. We evaluate the integrals appearing in our formulation - a tedious, and not quite

straightforward, process. In this way, we arrive at the logarithm of the Fourier trans -

form of the resonance line.

4. We use machine computations to complete our calculations.

Step 1. The two-body Hamiltonian is

=(S +S2 + 2 g 2 P 3(- S1)(-S2S= gpH (S 1+S 2 ) - D Sz ) + J S 2 + S2  2  j (1)

The terms, reading from left to right, represent Zeeman energy, crystal field splitting,

exchange interaction, dipolar interaction. The physical situation includes cases in which

J is large and in which J is small. Accordingly we have derived the 16 X 16 Hamiltonian

matrix in the representations specified by

JM =  C(j 1 'j 2 ,J;mlM-mlM) j 1 , ml 2 ,M-m l  (2)
m

and

S_ (_)( m (2) + m(1) m (2). (3)
m m2 2 ml 2 2 m

The coupled scheme yields four submatrices corresponding to S I S 2 = 6, 3, 1, 0 with

only high-order transitions occurring between the different blocks. The transitions

within the 3-block have AE z gPH and can be expected to affect the corresponding main
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ruby line. Among the transitions in the 6-block, there are two with AE - gpH ± 2D,

respectively, so that here, too, we can expect some effect on the corresponding main

lines. The uncoupled case has 18 transitions, 6 of which are clustered around each of

the one-ion transitions. The six differ from each other in transition probability and in

the perturbation induced by dipolar energy and exchange. In Table VI-1 these transi-

tions are tabulated according to the following notation: transition probability = g;
22

energy perturbation = s - 3 (3 cos 2 - 1) + t - J.

Step 2. The statistical summing over pairs adopts the point of view used

Margenau's work on line shapes of gases. We consider some atom for which, in

Table VI-1. Energy perturbations and transition probabilities for
uncoupled pair transitions.

AE ° = gPH - 2D AEo = gPH AGo = gPH + 2D

g s t g s t g s t

3/2 -9/4 0 1 -3/4 3 3/2 9/4 0

3/4 3/2 -3/2 1 3/4 -3 3/4 -3/2 3/2

3/2 1/4 2 2 -3/2 -3/2 3/2 -1/4 -2

3/4 -1/2 -5/2 2 3/2 3/2 3/4 1/2 5/2

3/4 3/2 -3/2 1 -9/4 0 3/4 -3/2 3/2

3/4 3/2 3/2 1 9/4 0 3/4 -3/2 -3/2

in

the

absence of perturbations, AE = l wo For notational convenience,

spectrum so that wg - 0, and the total perturbation caused by all

the last term in (1) it is clear that w is a function of the position

we work with a shifted

other atoms is w. From

coordinates and quan-

tum states of all of the other atoms, relative to the one we are considering:

(4)

Each possible configuration of perturbers in this 4N-dimensional space gives some

value of w. The intensity for some particular value of w is given by

() S dr ... drN dql ... dqN 6[w-w(1...N, q ... qN)] (5)

where V is a normalization volume 5 dTdq, and 6 is a delta function. Replacing 6 by

W = (f l, 2, ... FrN' q1 2' ... qN ) "
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its Fourier transform, we have

1- 1 -ip q (rl ' N ' N
I(w) VN d ... d N dq... dqN e dp.

(6)

Correlative to our approximation of neglecting N body interactions, N > 3, we have

additivity of the two-body perturbations:

W(rl. . . , ql' qN ) =  i(r ' qi ). (7)

This makes the integrals in (6) separable, and we have

N

I(w) = I e eiL dTdq eipw(r, q) dp. (8)

For the sake of clarity, we consider for a moment a simpler problem, in which there

is no multiplicity of quantum states and in which the integral over dT can be taken at

face value; that is, the distribution of perturbers is continuous and not confined to dis-

creet lattice sites. The bracketed expression in (8), which assumes the form - as
00

N - o, can then be handled as follows:

1 dT ePw( dT (1- eipw())j 1 - 1 - n'V(9)

where

V' = dr(l -ei p w( ) ) (10)

and n' is the number of perturbers per unit volume. We now may write

N

lim dT = lim 1 - = e (11)
N-co LN -o (o N

Returning to the complications peculiar to our problem, we work with the following

model:

(a) We consider a lattice as far as a radius ro. Beyond ro, the angular density of

lattice points is sufficiently great so that a continuous distribution may be used with

negligible error.

(b) We use the close-coupled scheme for r < r l , and the uncoupled scheme for

r > r , where r I < r .

(c) We consider exchange effects to be negligible for r > r o.
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One can show rigorously that steps (9)-(11) go through exactly as before, but with

I
V' 9

g k g

+

I
r.<r1 1

( - eip (- , sk)1-e)

(1-e i

rl<r.<r11o

1 d2co ipw(ir, s
+ g. d2 dr r 2 1-e

j 1o

(12)

where gk and s k refer to the relevant transition probabilities and quantum states in the

coupled scheme, g. and sj refer to the corresponding quantities in the uncoupled scheme,

v is the volume per lattice site, and n is the molar concentration of perturbing spins.

Step 3. We must now evaluate

(13)11 d cos 0 dr r  1 - exp sa V.

o

where a = pg2 2(3 cos 2 0- 1). The

gives

1 l

13

x isax
d cos 6 - 1

x xo

1 i
substitution x -- in (13) and a partial integration

ix isax
isa - isa o e dx

0 x
(14)

The first term in (14), after some transformations, yields

-ic ei(i/4)sgnc
Sy (T -3 ic)

o

where c = sg2 2 px k = Ic I , and y(a, x) is the incomplete gamma function. 5 The sec-
-2

ond and third terms trivially yield - and 0. The x integral in the fourth term diverges
o

at x = 0. If we replace 0 by t, we obtain for this term

5 d cos q{sa Si(saxo ) - isa Ci(saxo ) + isa log Isaxo0 + isa (y-log x ) + isa log t}

(15)

The functions Si(x) and Ci(x) are those defined by Jahnke and Emde.6

We observe that the logarithmic divergence is independent of 0. If the integration

over 0 were continuous, instead of being an approximation to a lattice sum, then
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d cos(3cos 2 - l)logt would still go to zero. Actually, t - 0 corresponds to r 3 -.

Analysis shows that under these circumstances the sum over 0 "becomes continuous"

faster than log t becomes infinite; that is, the summation over angles does in fact kill

the radial divergence. Stated in physical terms, an energy perturbation that falls off as

1/r 3 , or slower, gives a diverging effect as r increases. We are spared this catas-

trophe, however, because the angular dependence of the perturbation produces sufficient

cancellation.

The functions Si(y) and [logy-Ci(y)] are entire functions, so that there is no intrinsic

ambiguity in (15). To be able to continue, however, we must handle log y and Ci(y)

separately, and each has a branch point at the origin. Care is needed to treat both

singularities in an identical manner.

After a few more changes of variable, interspersed with partial integrations, (15) is

brought into the form

2i -ic 3c 2c 1/2 eiW dW - 3c 2c ) W1/2 dW (16)e 1 W e dW- \1 W dW . (16)
3x 0 W 0 W-c

Each integral has a pole at W = c and a branch point at W = 0. To guarantee equal treat -

ment, we evaluate the integral

13c W1/2 eixW dW 
(17)

and then specialize to x = 1 and x = 0. With u = xW and c' = xc, (17) becomes

-3/ 3c' ( 2c' 1/2 eiu du. (18)x 1 , u du. (18)

After a little maneuvering, the first term in (18) gives

.3/2) / 2 y(3/2, -3ic'). (19)

For x = 1, we use the well-known recursion relation for y functions to obtain

1 .3/2 1 1/2 3ic
2 2 y -- ,3ic - i(3c) e (20)

For x = 0, the expansion

oo Hn a+n

y(a, x) = n (21)
n=0 n!(a+n)

reduces (19) to-- (3c)3/2

The second term in (18) is handled by means of the following scheme:



(VI. MICROWAVE SPECTROSCOPY)

1/2, e du =
0

u1/2 iuu/2, e du -
3c'

u1/2 ju
u -c, e du.

The is evaluated as a contour integral in the complex u

choose the path shown in Fig. VI-5. Thus we obtain

0 = ri(k') I / 2 eik '

00  r(k')1/2 ik'

= rri(k') 1 e

+ il/2 S 0

plane. For c ' > 0,

1/2 e-y

y + ik'

+ (Tri)1/2 _ i 1/2 ik'
+ (i) -n e (k)/Zr( 1, ik)

As before, k' = Ic '.

The
3c'

1
is evaluated by expanding-c , in descending powers of u andU - C

u = 3k'(t+1). Each member of the series then turns out to be an integral rep

substituting

)resentation

of the confluent hypergeometric function, 1i, P -n;-i3k' , and, using equations

by Bateman, we obtain

u1/2 iu
,e du =

u- c

given

(25)

For c' < 0, it can be seen by inspection of (16) or (22), or even (13), that the result

will be i times the complex conjugate of the result for c' > 0.

Fig. VI-5. Integration path for c' > 0 in the complex
u plane.

Specializing to x = 1 is trivial, and merely involves replacing k' by k and c' by c.

Specializing to x = 0 again involves the series expansions for incomplete gamma func -

tions. The second integral of (16) then becomes

S3c'
0

(22)

(23)

(24)

oo

n=O

C 

t

3c,
(k') (-i) F(-n+-, -3ik' .
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03c W I /2 I/2 (NF-3 + i _W -C dW = c log - 2c.WC-3 (26)

A more direct approach to this integral will give an error of wr times the residue at c.

Tabulated integrals give a Cauchy principal value, but we have clearly not taken the

corresponding path ( -d- ) around c, in the partner integral.

Finally, we collect the integrated terms to obtain

V. = 4
J 3 -3x

o

rrk + (-3 + log

+ (-ic)/2 -ic 1 -ic -1/2 ( )
+ (-ic) e +- e (-ic)- y 2 , -3ic

oo

-ic

n=O

(-ic)n+1/2 -n + ,
(-ic) 2 -3ic) + (e 2 ic- 3 ) (27)

To cast this result in a form suitable for computation, we expand it into an ascending

series and an asymptotic series:

Ascending series:

Re V = os
j 3x 2

0O

4Im V - cj 3x I
0L

32c -- + cos c2

1
+ - sin2 2c + cos c

0

m=
m even

00

a c + sin c a cmmm
m= 1
m odd

0 ma c

m=l
m odd

00oo

sin c

m=
m even

ma c
m

m

am = -m 3P
m m m 1

p=0 P+2

Asymptotic series:

Re V 4 k 3 1/2 os
3 x o 3 2 3 I

00

m=2
m even

(30)

b k-m + sin (k+m
b k

m=3
m odd

oo

+ cos 2k

m=2
m even

-m
P (3k) - sin 2k

(28)

(29)

Pm(3k) m

\r

m=3
m odd

(31)

i c - 1,TrkF 1,ic
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4Im kl/2 b k + b k-m

ImVj = os k+ m  m
m=3 m=2
m odd m even

+ cos 2k P (3k) - m + sin 2k I Pm( 3 k)- m  (32)

m=3 m=2
m odd m even

Here, the upper sign is for c > 0, the lower sign for c < 0,

bm = (33)
m

Pm = - 3-p-p+ . (34)

p=0

In (33) and (34) the notation (a)n means (a)n = a(a+l)(a+2) ... (a+n-l), with (a)o = 1.

The expression exp n - 7r g i represents the contribution of atoms that are

located at r > r to the Fourier transform of the resonance line. If one looks at the

leading terms in the ascending series and the asymptotic series given above, one finds

that this transform has, at least qualitatively, the expected properties. Asymptotically

it behaves like an exponential of the form exp(-a pI ), with a = (n/v)(8r 2 /9"3) E gj
This implies that the line is Lorentzian near the origin, with halfwidth equal to a. Near

the origin, the transform looks like a Gaussian; this, in turn, implies a Gaussian

behavior of the line in the far wings.

We notice that the real part of V. is symmetric in p and c, while the imaginary

part is antisymmetric. As a consequence, for cases in which Z g.s. = 0, the imaginary

part vanishes. If we had assumed this condition at the outset, the calculation would

have been enormously simplified. Actually, this condition does hold in general as a

consequence of spectroscopic stability, if the entire spectrum is considered. But for

individual lines it does not necessarily hold. The effect on the line shape of Z g.s. # 0

is the production of an asymmetry. Thus, nonsymmetric lines and nonvanishing odd

moments are possible.

If desired, all of the moments of the line can be obtained at this point. If

I(w) = elwP F(ip) dp
-then00

then
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Wm M H= (-)m a(35)

8(ip)m p=

Here, F = exp[-nV'(ip)], and F(O) = 1. These relations give

F(m)(0) = (-)m+l nV'(m)(0) + higher terms in n. (36)

Now V'(m)(0) is simply the mth coefficient of the Taylor series for V'. This series

can be obtained by expanding the trigonometric functions in (28) and (29) in Taylor series

and taking Cauchy products. The result is

o0> = 
1

<wI> = 0

Sm\ gm+1 n 2V
m l = (-) (37)

m> v 3

with

m k

V m)(0) = 2m-1 + -m -k m -k (38)

k=O p=O

where () are binomial coefficients.

Finally, in regard to r and x , we have made a rather elaborate analysis of the

error that is introduced as a result of integrating over continuous coordinate variables

rather than summing over lattice sites, from some r outward. The choice of r =
o o th th

6. 3 A, halfway between the 13 and 14

neighbor shells, is expected to introduce

an error of approximately 1. 0 per cent

08 as a result of this approximation.

Step 4. We have computed the V.'s,

their weighted sums, and the transforms

S' to which they lead. We have used the

parameters g, s, and v that are appro-

.o priate to the transitions occurring in ruby

0 with the crystal axis oriented parallel to

the magnetic field. Figures VI-6 and
0000 0006 00 2 008 0024 0030

VI-7 refer to the transition occurring at

Fig. VI-6. Fourier transform (magnitude). approximately 800 gauss at X-band, and
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are computed for a concentration of 0. 1 per cent. They show, respectively, the mag-

nitude and the angle of the complex transform. Although the nonzero angle implies an

asymmetry in the line shape, it is apparent that the effect is too small for direct

observation.

Actually, these curves are not exactly transforms of the resonance line, since the

contribution from the lattice sites at r < r , as well as the dipole interaction with the

surrounding Al nuclei, must still be included. We have worked out suitable computer

routines for inverting the transform, and for including the last two effects by subsequent

convolution. Final numerical results are not yet available.

W. J. C. Grant
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