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A. MEASUREMENT OF THE KERNELS OF A NONLINEAR SYSTEM BY

CROSSCORRELATION WITH GAUSSIAN NON-WHITE INPUTS

In the Wiener theory a nonlinear system is characterized by the kernels, hn , of the

functionals, G .1 For a Gaussian white-noise input, the functionals, G , are orthogonal

and their kernels, hn, can be determined by crosscorrelating the output with a multi-

dimensional delay of the input.2 In this report a procedure is developed for determining

the kernels of a set of functionals which are orthogonal for a Gaussian non-white input

process.

z(t) y(t) Fig. VIII-1. Nonlinear system with Gaussian non-white
noise input.

Consider that the system N shown in Fig. VIII-1 is to be characterized with an

input, z(t), which is a Gaussian non-white process. We shall assume that the power

density spectrum, zz(w), of the input, z(t), is factorizable. 3 It then can be written
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in which +zz(w) is the complex conjugate of zz(); also, all of the poles and zeros of
+ ) are zz++
Szz(w) are in the upper half of the complex X-plane. Thus zz ( ) and I/,zz(w) are each
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Fig. VIII-2. An equivalent form of the nonlinear system N.

realizable as the transfer function of a linear system. We can then consider the system

of Fig. VIII-1 in the equivalent form shown in Fig. VIII-2, in which the transfer functions

of the two linear systems, kl(t) and k2 (t), are:
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K1  +I (W
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Also, as shown, the system A is the system formed by the tandem connection of the

linear system k2 (t) and the system N. We observe that the input to the system A is a

Gaussian white process whose power density spectrum is 1 watt per radian per second.

Thus, as previously described, 2 the kernels, hn , of the orthogonal functionals, G , for

the system A are

(zw)n
hn(T '... Tn) n! y(t) x(t--T1 ) ... x(t-T) (3)

except when, for n > 2, two or more T' s are equal.

We therefore need to know the crosscorrelation function

S n(T 1' '' Tn ) = y(t) x(t-T ) ... x(t-Tn) (4)
yx

in order to determine the kernels, hn , of the system A. Since only z(t) is available to

us, we shall express the desired correlation function in terms of the corsscorrelation

between the output, y(t), and a multidimensional delay of the input, z(t). By substituting
the relation

0o

x(t) = 0 k l ( r ) z(t-c) do" (5)

in Eq. 4, the desired correlation function can be expressed aso00
yxn (T1 T.. n) =  kl 1) d l  k 1 (n) d n  n ( T  1 n-n) (6)

in which

n (T1' .. Tn )
= y(t) z(t+T1) ... z(t+Tn) (7)

yz

is the crosscorrelation between the output, y(t), and a multidimensional delay of the

input, z(t). In the frequency domain, Eq. 6 can be expressed as

n(1o . 'wn) = K 1(w1 ) K 1(w2 ) ... Kl(wn) " 5 n( 1" . ' n) (8)

in which
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1 _o-jc1 T1 noo-jon-n
n1 (W... n ) e dT ... e d n 4 n( T... T n )  (9)

yz (2r)n  oo -00 yz

and the transfer function Kl(w) is given by

Kl(w) = kl(t) e-jt dt (10)
-00

Substituting Eq. 2 in Eq. 8, we have the desired relation in the frequency domain.

n(1'...'''.. n
yz

Syxn(it . On) = )(wi +() (11)
yx :n. +(

zz 1 zz n

Either Eq. 6 or Eq. 11 can be used to determine the kernels, hn , as given by Eq. 3 in

terms of the measured crosscorrelation function between the output and a multidimen-

sional delay of the input, z(t).

Once the kernels hn have been determined, a representation of the system N is as

given in Fig. VIII-3a which can be redrawn as shown in Fig. VIII-3b. We note from

Fig. VIII-3b that the outputs of the parallel branches are orthogonal for the input z(t).

Thus, we have expanded the nonlinear system N in a set of functionals that are orthog-

onal for Gaussian inputs with a power density spectrum of 2zz(w). Note that for this

procedure, we never need construct either of the linear systems kl(t) or k2 (t). Once

the representation in the form of Fig. VIII-3b is known, the functionals that are orthog-

onal for the input z(t) can be calculated. We shall call these functionals L . The firstn
few functionals are:

Ll[h,,z(t)] = 5 hl(rl)kI(T1 -To1 )X(t-T 1 ) d-IdTI  (12)
00 00 00

LZ[h 2 , z(t)] = hZ(CI , ,r 2 ) k 1(T 1 -r 1) k 1 (-) x(t-T 1
) x(t-T2 )dr Idr 2d dTd2

0000 -00 00

- 21 h 2 ( 2 , 2 ) d, 2  (13)
-00

L3[h3zlt). = "'" ~h3("l' " ' "3 ) kl (Tl-l) kl(T- 2) kl(3-3 ) x(t-TI) x(t--T2) xlt-T3 )
-00 00

d 1dcT2dC 3 d dTzdT3

- 3(2w) 5 5 h3 ( 1 ' 2' 2) kl(T -1 
) x(t-T1 ) d IdT2dT 1  (14)

00 -00 -00
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Fig. VIII-3. Representation of the expansion for system N.
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in which

kl(t) =-- jwt dw. (15)
1 (too (u)zz

In terms of these functionals, the output of the system N for an input z(t) can be written

oo

y(t) = I Ln[h n , z(t)]. (16)

n= 1

In this manner, we have characterized the nonlinear system N with a Gaussian

non-white input in terms of a set of functionals, Ln , that are orthogonal for the given

input process.
M. Schetzen
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