
XVI. NETWORK SYNTHESIS

Prof. E. A. Guillemin R. O. Duda H. B. Lee
Prof. A. Bers W. C. Schwab

A. CANONIC REALIZATIONS OF RC DRIVING-POINT ADMITTANCES

It is well known that the Foster and Cauer networks provide canonic realizations of
two -element -kind driving-point admittances. There are, however, other canonic reali-
zations of such admittances, if it is understood that the term "canonic realization" means
any realization involving a minimum number of circuit elements. Work is now being
done to ascertain the exact nature of these additional canonic networks. This report
presents what is probably the essential property of these networks.

We start with some general considerations. Assume that the RC network N realizes
the following admittance at a certain pair of its terminals:

ras ... + als
Y(s) (1)

s... + bls + bo

where a r , al', bo 0. When N is excited by a current source I(s) acting at its driving
terminals, and one of these terminals is taken as a datum, while the potentials el, e 2... eN are assigned to the remaining nodes of N in such a way that the second driving
terminal receives the potential el, then the matrix equilibrium equation for N has the
form:

Y1 1  Y1 2  "' YIN el I

Y2 1  Y2 2  Y2N e2  0

Yn1 .' Y nn eN 0

The admittance Y(s) can be extracted from these equations.

I - J
Y(s) = e (2)el Y11

11where Yll denotes the cofactor of yl. Since reduces to Eq. 1, Y I and Y must
reduce, respectively, to the numerator and denominator of Eq. I after their common

factors are divided out. If P(s) denotes the product of all such common factors, then
jYI and Y 1 1 must be expressible as follows:

Y = P(s) arsr. . .+als (3a)
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Y = P(s) r. .. +b 1 s+b (3b)

As is well known, IYI and Y 1 1 can be computed directly from the topology of N. If Noc
and N denote the networks that result when the driving terminals of N are open-

sc
circuited or short-circuited, the rules for this computation are

Y I = Z Trees of Noc

Y11 = Trees of N11 sc

Here, the value of any given tree is defined as the product of its branch admittances.

Because N is an RC network, the value of each of its trees involves a non-negative

power of s. Accordingly, one may expect Y I and Y 1 1 both to be polynomials. If, under

short-circuit conditions, the tree of Nsc involving the fewest capacitors contains q

capacitors, then the term of lowest degree in Y 1 1 will have degree q. This being the

case, Eqs. 1 and 3b require that P(s) contain q factors of the form (s+O). All remaining

factors of P(s) must be of the form (s+ai), a i # 0; if there are i such factors, then P(s)

may be written

P(s) = Ks (s+a.) q, i > 0 (4)
i

From Eqs. 3b and 4 it is clear that Y 1 1 must have the form

YI = Ks q  (s+ai)[sr... +bo]

= Ksr+q+i ... + (Kb a.i sq (5a)

where

q, i > 0 (5b)

The highest degree term in Eq. 5a arises from one or from several trees in Nsc

Clearly, each tree that contributes to this term must contain r + q + i capacitors, and

accordingly the number of branches per tree in Nsc, nsc, must equal or exceed r + q + i.

That is,

Csc > r + q + i (6a)

and

nsc > r + q + i (6b)

where Csc denotes the number of capacitors in Nsc. The lowest degree term in Eq. 5a
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arises from one or from several trees that contain q capacitors and n - q resistors.
sc

If R denotes the number of resistors in N , this means that

sc sc q (7)

From Eqs. 5b, 6a, and 7 it follows that

sc >r (8a)

R > r (8b)
sc

The equality sign applies only when q = i = 0. This concludes the general discussion.

There exist networks that realize Y(s), so that the lower bounds on C and R
sc sc

given by Eqs. 8a and 8b are realized (the Foster and Cauer networks, for instance).

Thus the definition of a canonic network, given at the beginning of this report, implies

that all networks which canonically realize Y(s) have:

C sc= r (9a)

R = r (9b)
sc

q = i = 0 (9c)

When conditions 9c are imposed upon Eq. 5a it is seen that for a canonical realization

of Y(s), Y 1 1 must have the form

Y11 = K sr. . .+bs+b (10)

Assume, now, that N realizes Y(s) canonically so that Eqs. 9a, 9b, 9c, and 10 hold.

The Kbo term of Eq. 10 can only arise from a tree of resistors selected from the r total

resistors of Nsc; this implies that

n < r (11)sc

This condition, together with Eqs. 9c and 6b, shows that n = r. Thus the Kb term
sc o

of Eq. 10 is due to a resistor tree of N which contains n = r resistors. But N
sc sc sc

contains only r resistors. Therefore the resistors of N must form a tree. Similarly,
_ - sc

the Ks r term of Eq. 10 arises from a tree containing r capacitors (hence all of the

capacitors of N sc) and possibly some resistors. But as all trees of N contain
sc sc

r branches, this tree cannot involve resistors. Thus the capacitors of N must form
sc --

a tree. Thus we find that if a network N canonically realizes Y(s) at a pair of termi-

nals, then Nsc has the following properties:

I. N contains a total of r resistors which form a tree.
sc

II. N contains a total of r capacitors which form a tree.
sc

It is not hard to show that for any Ns having properties I and II, the numerator andsc
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denominator polynomials of any pliers type of admittance have degree less than r, when

N is hinged. Thus if N canonically realizes Y(s) at a pair of terminals, we must find
sc

additionally that

III. N is unhinged.
sc

On the basis of several examples that have been worked out in detail, the properties

mentioned above appear to be essential characteristics of canonic topologies. That is,

it seems probable that on any network constructed in accordance with these three prop-

erties, the element values can be so adjusted as to canonically realize any RC admittance

having the form of Eq. 1, at any pliers type of entry. Work is now being carried out

which should provide a definite answer to this conjecture.

H. B. Lee
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