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ABSTRACT 

The equilibrium properties of an intense, radiation-pinched, electron 

beam, which is neutralized by positive ions in the laboratory system, are 

studied. The motion of a test electron in such a beam is treated statis­

tically, taking into account radiation damping and collisions with positive 

ions. By requiring that the calculated distribution of electrons as a function 

of distance from the center of the beam be equal to the distribution assumed 

in writing down the equations of motion, an expression for the equilibrium 

current is obtained. An expression for the equilibrium minor radius of the 

beam in terms of the acceleration per turn available is also obtained. An 

apparent discrepancy between the value of the equilibrium current as 

obtained in the present report and the value given by Budker1 is explained 

in terms of assumptions about the energy distribution of the electrons. 

* Supported by Contract AEC AT(1l-1)-384 
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INTRODUCTION 

1 2 Budker has recently' , proposed an accelerator in which the interior 

of a neutralized relativistic electron beam circulating in an exterior magnetic 

field serves as a guide field for the acceleration of high energy particles. The 

advantage of such a machine is the fact that a relatively small magnet (of radius 

100 cm, say. and H =2 x 103 gaus) is needed in order to maintain a cir­

culating electron beam capable of providing focussing forces for protons of 

energies in the Bev. region. 

In the present report the equilibrium properties of a circulating electron 

beam which has been neutralized by residual gas ions are investigated. The 

method differs considerably from that of Budker although the basic idea of the 

"radiation pinch" is retained. An approximate stochastic equation of motion for 

the electrons is written down and a density distribution of electrons as a function 

of radial distance from the center of the beam is obtained. This permits the 

calculation of the equilibrium value of (5 ~ where i is the electron current 

[Lo-b.
and (f::: V'f"C1- Subsequently the energy losses of the electrons by 

collision with positive ions and by radiation are calculated and an expression for 

the minor radius of the beam as a function of the radiation loss per turn is ob­

tained. 

At first sight it seems that there is a discrepancy between the results of 

the present report and Budker's results. A closer look at Budker's work, how­

ever, reveals the reason for the discrepancy. 
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A. Qualitative description of the motion. 

It will be assumed that in the laboratory system the electron beam has 

been completely neutralized by ionization of the residual gas molecules. Further­

more, the net charge density within the beam will be supposed to vanish, or, 

equivalently, the distribution of ions as a function of distance from the center of 

the beam is equal to the distribution of the electrons. Under these circumstances 

the electrons will be subject to three types of forces. 

1) A strong magnetic field, HB ' resulting from the intense electron 

current will be present. It will be assumed that HB/'7 Hext. , where Hext. is 

the external guide field. 

2) The reaction of the intense electromagnetic radiation provides a 

dissipative force causing, among other things, a damping of the transverse 

oscillations of the electrons. 

3) The electrons will be continually scattered from the positive ions. 

The small angle scattering tends to increase the amplitude of oscillations 

through a random walk process. Large angle scattering can cause ejection of 

electrons from the beam. The latter will not be included in the final equation 

of motion but will be treated in section (H) from the point of view of its limi­

tation on the lifetime of the beam. 

B. Motion in the absence of radiation and scattering. 

Since HB/7 Hext. , and since the major radius of the beam, R, is 

much larger than its minor radius} r*, it is natural to treat the motion of the 

electrons in the beam as if it were a linear beam. We choose the direction of 

motion of the electrons as the z-axis and introduce cartesian coordinates 
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r-- (x,y, z). Cylindrical coordinates (r, cp, z) related to (x, y, z) in the usual 

fashion will be occasionally used. 

The electron density will be assumed to be uniform in the z direction, 

and its dependence on distance from the center of the beam is assumed to have 

the form 
N

fer) ::h IT "loR r"-r ­

(1) 
.f-(r)~ 0 } 

where N is the total number of electrons in the beam. The magnetic field is 

then given by 

H~ ::: (2) 

.
where 7::. is the average velocity of the electrons in the direction of the beam. 

It is easilty shown that the equations of motion are 

(3) 

(4) 

and 

(5) 

eq. (5) can be integrated immediately to give 
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r- (x. y, z). Cylindrical coordinates (r, ep, z) related to (x, y, z) in the usual 

fashion will be occasionally used. 

The electron density will be assumed to be uniform in the z direction, 

and its dependence on distance from the center of the beam is assumed to have 

the form 
N r L. '('~fCr) :: 0R';:­

2-TT r" 
(1)

t-( r) ~ 0 
.) 

r> rJ.' 
) 

where N is the total number of electrons in the beam. The magnetic field is 

then given by 

(2) 

. 
where 7=. is the average velocity of the electrons in the direction of the beam. 

It is easilty shown that the equations of motion are 

(3) 

(4) 

and 

(5) 

eq. (5) can be integrated immediately to give 
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(6)� 

Define . With this definition. 

We shall show later on that• 

ov r;:;: 10. We choose 0' =100 and note that 

X"L+ll. ~ I 
r'"1­

With the aid of equation (6) we obtain the approximate relationship� 

(7) 

. ­. 
For relativistic l.( r..o ) and &. is constant for all practical purposes. 

We shall approximate iCv...o) ~ i ~ i -x c.. The x and y dependence of 

• 
-;t:. contributes, therefore, only a small flutter to equations (1) and (2). By 

neglecting this flutter we can rewrite equation (1) as follows: 

~-r W"l.-X - 0 (I') 
) 

where 
e'l.-N 1c/-(oV)

W1..: - ­-- )"M1f~rl<"l.. «"I- r lkL 

I 

\)~ c, ('6 V) -r� 

- t r" •� 

-3By setting r* = 5 x 10 em, which we shall show later on is a reasonable 

value, we get 

W =3xlO" • 
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We can also get an idea of the kind of transverse velocities that will be present: 

C. Radiation Reaction. 

The relativistically invariant form of the radiation reaction force has the 

3
form 

). I r 0!.i7. 
(?Ai. is the four velocity with normalization U~:: - \) O'-~ 

1.__ 
'6"'L. ) 

Under the conditions of the present problem the, unfortunately non-linear, 

second term on the right is dominant. Dropping the first term gives, in three 

3
dimensional form, 

J:b ~ 
~:::-1£-1j
oft C 

where W is the total power radiated. Equation (1') is now modified to read as 

follows; 

., 
• t..'/. +6X+W '1-=0 (8) 

where 

W of course depends on x and y} but it is easily shown that� 

"'/ / 6 ~~ '7.� 
/ " w Pcv. ) 

that is, the energy dissipated per oscillation is small compared to the total 

energy of oscillation. This suggests using an appropriate average value, W , 

r-- instead of W. With this simplification the linearity of the problem, which is 

essential for the ensuing calculations, is preserved. Thus 
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tr>"l.:: \"li ( • G) db' .By lettl'ng I \ 
1.. 

see sectIOn , an su stltuhng we get 

6 = 
• 

D. Collisions with positive ions. 

In the collision of a highly relativistic electron with a practically 

stationary ion the momentum transfer is substantially transverse and given 

to a good degree of approximation by:4 

" t!.1­Af = bZ } 
where b is the impact parameter. 

The complete equation of motion, including scattering, takes on the 

form 

) 
(9) 

. 
A P " with a similar equation for the y motion. ~, x is the transfer of momentum 

in the x-direction in the (,' th collision. (9) can be written as 

(9 ') 

where cp. is the azimuthal direction of the i'th momentum "kick". 
'" 
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E. Statistical treatment of the motion. 

Equation (9') is not an equation of motion in the ordinary sense since our 

information about the right hand side of the equation is statistical in nature. This 

type of equation is quite similar to equations encountered in the study of the effect 

of quantum fluctuations on the motion of electrons in synchrotronsJ and has been 

treated by a number of author's(5) on the basis of Campbell's theorem. (6) 

The same technique will be adopted here. The result is 

Xl. /'fe. (~)J;;JbJ:~,J~'f'''5(t)I\'(i
 . ==- i:-ifA. ~Mv U b"l. '1,. (10)� 

h ' 0 -;fl"'-, 

Nc. 
is, of course, simply the rate at which collisions occur. 'PCb)J b

2.jrR. 

is the probability of a collision with impact parameter in the range (h, b+db). 

The distribution (1) implies that 

The distribution of (1/s is assumed uniform. S (t) is the solution of .. 

For the detailed statistical theory and for the conditions under which equation(10) 

is valid the reader is referred to reference(6). 

By making the above substitutions equation (lO)can be written as 

• 
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Integration yields 

(11) 

For we choose r*, the minor radius of the beam. bmin is chosenbmax 

so as to correspond to an energy transfer of ~ E.::: 2, '6 M (,.. "&.. , which is 

approximately the maximum energy transfer possible classically in this type of 

collision. This gives bmin = ~!.. 

After appropriate substitutions equation (11) reduces to 

(12) 

The probability distribution for r, ep(r) , is approximately given by6 

(13) 

F. Energy losses. 

In the foregoing it was assumed that 0 was constant. This will only 

hold if the energy lost by collisions and by radiation is constantly compensated 

for by some external means. 

The energy exchanged in a typical collision is (4) 

• 
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The energy lost per turn by collisions is 
b...""l' 

tV tfe,'I zJb 
l~h1C::-Jrl 

h~ 

tI tJeU~( ¥!) 
¥t1"-c...'L r_l,. 

The energy lost per turn by radiation is given by 

(14) 

-----=----­
~ r""l.. 

Thus with 0 V ~ 10, '( =100 we have l.J1{::= 103 
~; so that radiation losses 

are much more important. Actually W" is to a very good approximation equal 

to the total energy lost. This is so because We represents mostly energy 

converted into transverse oscillation energy of the electrons. The latter is 

all radiated away under equilibrium conditions (see next section), so that to 

the extent that heavy ion recoil can be neglected 

• 

G.� Equilibrium conditions. 

To obtain equilibrium two conditions must be satisfied. 

I)� The distribution function eP(-r) (eq. 13) must be the same as f('r) (with 
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appropriate normalization) given in equation (1). To accomplish this (approxi­

mate1y) we require that 

(15) 

This gives, using eq. (12), 

-3 -2
A reasonable range for r* is 10,,,,,<:: r* ~ 10 c.M' giving 

oV :::;. /0 (16) 

or 

l..­
17~ /0" 

« amperes 
.J 

(17) 

. 
where L is the electron current. 

2) Power equal to Wf{ must be fed into the beam. Equation (14) can be re­

written as 

.... r :::: ) 

or 

(18) 

where is the energy in kilovolt. radiated per turn. IfWkev is suppliErlWkev 

by means of a betatron type induction field eq. (18) can be rewritten as follows: 

) (18') 
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where E is the induction field in volts Icm. 

Equations (17) and (18) expresses the equilibrium conditions of the beam 

in terms of actual machine parameters, and are in this sense one indication of the 

feasibility of constructing such a machine. Naturally, many problems must still 

be solved before the final word on feasibility can be said. In particular, difficult 

questions about the macroscopic stability of such a configuration must be 

answered. These questions will not be treated in the present report. Stability 

against fluctuations in (5, however, can be discussed qualitatively in terms of 

equations (12) and (14). 

Suppose that 6 is slightly smaller than the equilibrium value; equation 

(12) implies that this will cause the beam to start blowing up. On the other hand 

increasing r* means that 14" decreases and if Wkev is maintained 

constant this will cause the electrons to be accelerated thus tending to restore 

't to its equilibrium value. This argument can be reversed for the case t 
slightly smaller than the equilibrium value. 

Another limitation is the loss of electrons from the beam by large angle 

scattering. We proceed to calculate the life time of the beam against single 

scattering. 

H. Single scattering life time. 

An electron will be ej ected from the beam if it acquires enough trans­

verse energy to overcome the attractive force of the beam and, as a results, 

hitsthe wall of the chamber. The minimum energy required for this is given 

by 
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(19) 

where f;. is the effective aperture .. 

Now 

substitution in (19) and integration yield 

4
In general 

for a collision with impact parameter b. All collisions with b ~ b • wheremax
/.I 

1. __ ~ 6 r:- will result in the ejection of an electron from the beam. 
~ ~l¥l.""~c.~~. 

The cross- section for ejection. 6. • is then given approximately by
e­

(20) 

. "" /Y"The life time of the beam is equal to the mean free ejection collision time. c... 

) 

Thus ;trrRl...r~1.. 

c NSe. 

'6r~~L(~'t 
etc 
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For 
3roll = "/-I: /0 C-W' ) rl' ::. IOclM) (NtAJ K'::: /0 0� 

we obtain ~ = 1. 6 seconds� 

I. Comparison with Budker I s results. 

The results of Budker's calculation of the equilibrium conditions can 

also be summarized in the form of equations (17) and (18). Equation (18) agrees 

well with Budker I s result, but our value of the electron current Ceq. 17) seems 

to differ by a factor of 5 from his value. The reason for this discrepancy lies 

in the definition of t . The a employed. in. reference (1) (henceforth to be 

tf 
called 0 ) is that of the electron "rest frame ". (f , the average ({ of the

0 

electrons in their "rest frame ", is given byl 

..o ~ 1+ ~.V. 

If the electron is supposed to move primarily in the transverse direction its 

't in the laboratory frame is given by 

But 1 + 00V:: 1.7 (see ref. 1), therefore� 

, J7 do Y t;. ~ '/. ~
 
l,., ::::. ~ 

'?f ~
 
which differs only by a factor of 2 from reference (I).� 

The question of whether ~ or t is more convenient for expressing
o 

the current depends on the assumptions made about the energy distribution of 

the electrons. If, as is assumed in reference (l), the electrons are in thermal 

equilibrium in some average rest frame moving with "velocity" Yo in the 
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laboratory frame, then 60 seems to be the reasonable quantity to use. It is 

important to realize, however, that the assumption of equilibrium implies a 

~ 

spread of I'V 2. 7 in ~ and hence a spread of .rv 2. 7 '00 in the laboratory 

frame. If for example "to ~01. -:; 30 Mev.) the energy spread of the electrons in 

the laboratory frame will be 9{) Mev. !! It is difficult to justify such an 

energy distribution, although admittedly, it depends on how the beam is created. 
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