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Abstract

We consider a collisional 2D model for a beam in a ring.
In the smooth focusing approximation the relaxation time
scales according to Landau’s theory, but the p.d.f of mo-
mentum jumps has a power law decaying queue. A new
hybrid regime is found for the equipartitioning due to the
interplay between collisional and collective effects. The
moments equations of a small perturbation to the KV dis-
tribution are analytically determined and the stability con-
ditions follow from Floquet’s theory.

INTRODUCTION

Our model consists in replacing the point charges of a
coasting beam (or trains of long bunches) in a ring with
parallel filaments, assuming strong longitudinal coherence.
Assuming axial symmetry for a beam of radius R, denoting
by n the particles per unit volume, we have that the number
of particles per unit length is Np = nπR2. Denoting by
� = n−1/3 the specific length, the number of filaments is

N = Np� = N2/3
p R2/3π1/3 . (1)

For a typical beam with Np = 1011 particles/m and R = 5
mm we have N = 106. In figure 1 a sketch of our filaments
is shown. Denoting by (xi, yi) the coordinate of a filament
in the transverse plane and rij the distance between the fil-
aments i and j, the Hamiltonian reads

Htot =
1
2

N∑
i=1

(
p2

xi + p2
yi + ω2

x0 x2
i + ω2

y0 y2
i

)− ξ

N

∑
i<j

log rij

(2)
where pxi = dxi/ds. The parameters on which H de-
pends, bare phase advances ω0 x, ω0 y and perveance ξ, are
N independent. Indeed we vary N keeping the charge per
unit length Q = N q = Np e and the mass per unit length
M = N m = Np mp fixed, having denoted by e, mp and
q, m respectively the charge and mass of a particle and of
a filament of unit length.

RELAXATION AND EQUIPARTITION

We have compared the results obtained by integrating
Hamilton’s equations for 2 with kinetic Landau’s theory,
whose 2D version we have developed. The relaxation
from any initial distribution ρ0 like KV to the Maxwell-
Boltzmann distribution follows an exponential law ρ =
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Figure 1: Real beam (top), the parallel filaments (bottom).

ρ0 e−αs + ρMB (1 − e−αs) and using an asymptotic ap-
proximation for the 2D Coulomb cross section it can be
proved that the relaxation time scales as N . By varying N
from 103 to 104 we have found that τ = c N with an un-
certainty ∆c/c comparable with the statistical error N−1/2

[1]. From Landau’s theory we have

τ = c
N

ξ3/2

εxεy

(〈x2 〉〈 y2 〉)1/4
(3)

where we have assumed a proportionality between the cut-
off of the Coulomb potential Rcut and the Debye radius
Rcut = R [kB T/(2ξ) ]1/2. This introduces a unique cali-
bration constant c, fixed by a single simulation. An excel-
lent agreement is found between the theoretical value of τ
and the simulations, see [2]. In figure 2 we show a compar-
ison between the simulations and Landau’s theory once the
calibration constant has been fixed.
When an unstable resonance like the Montague integer one
νx = νy is present, a dynamic equipartition occurs with a
time scale of order 1. In presence of a resonance which
does not cause a complete dynamic equipartition, colli-
sions inject particles into the resonance and an equiparti-
tion faster with respect to the pure collisional case due to
an interplay with dynamical effects is observed (see [3]).
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Figure 2: Comparison between a simulation (curves) and Landau’s theory (diamonds). The parameters are: N=2048,
εx(0)/εy(0) = 30/10 mm mrad νx0 = 5 (left), νx0 = 8 (center), νx0 = 9 (right), νy0 = 6.21. The colors refer to
different values of the perveance defined by assigning the value of the depressed vertical tunes: ν y/νy0 = 0.8 (red),
νy/νy0 = 0.7 (green), νy/νy0 = 0.6 (blue).

THE MOMENTUM JUMPS

Landau’s theory assumes that the collisions are binary,
soft and frequent. The analysis of the time series for the
momentum jumps obtained by a very accurate integration
of the equations of motion in order to resolve the hard col-
lisions shows significant deviations with respect to the pre-
vious hypothesis. The momentum jumps are obtained after
subtracting the mean field motion in the interval ∆s, see
[4]

∆pk = p(sk)− p(sk−1) + ω2r(sk−1)∆s . (4)

The relevant feature is that in the p.d.f. of the mo-
mentum jumps a slowly decaying queue is present due
to the rare hard collisions. The distribution can be
fitted by a Student distribution Σ(3) (see figure 3)

ρStud(∆p, β) =
1
π

∫ ∞

0

cos(u∆p)e−uβ(1 + u)βdu

� 2β

π

1
(∆p)4

for ∆p →∞ . (5)

The p.d.f. decays algebraically with the fourth power and
has a finite variance. As a consequence the central theorem
applies. However approximating the process with a Wiener
noise is rather crude, since the contribution of the hard col-
lisions is lost. The behaviour for ∆p → 0 is a Gaussian
whose variance σ can be analytically estimated according
to σ2 = 1

2ρs(r)ξ2N−1 log N . Another relevant param-
eter is the decorrelation time (∆t)dec � �/vrel log3 N �
(Nρs(r))−1/2 v−1

rel log3 N , where v2
rel is the average of the

square modulus of the relative velocity. We propose to ap-
proximate the effect of collisions with a stochastic process
whose p.d.f. is the observed one. The mean field dynam-
ics is described by a PIC code, which solves the Poisson-
Vlasov, with the desired accuracy provided that the number
of pseudo-particles is large enough. The time step (∆t)PIC

can be chosen much larger than the ∆t used in the mi-

croscopic simulations. Letting n = (∆t)PIC/(∆t)dec,
the momentum change to be inserted in the PIC simula-
tions is (∆p)PIC = ∆p1 + . . . + ∆pn, where ∆pk are
chosen randomly according to the Student’s distribution.
In order to preserve the kinetic energy, the momentum
is renormalized according to p′i = C(pi + ∆pi) where
C2 =

∑n
i=1 p2

i /
∑n

i=1(pi + ∆pi)2. With this choice the
relaxation and equipartition processes observed in the mi-
croscopic model are well reproduced.
An alternative is to write the Fokker-Planck-Poisson-
Vlasov equation including a Student’s noise, imposing an
Einstein-like relation between drift and diffusion coeffi-
cients in order to preserve the second order moments. The
integro-differential equations for the p.d.f, typical of Levy
flights, render this approach quite involved.

THE MEAN FIELDS LIMIT

A consequence of the scaling law for the relaxation time
τ ∝ N , is that in the limit N → ∞ the mean field theory
is recovered. This limit has been recently proved in a com-
pletely rigorous framework [5]. In the periodic focusing
case no stationary limit distribution exists, nor any rigor-
ous result proving that the mean field theory is recovered as
N →∞ is available at present. However there is strong nu-
merical evidence that this is the case. The collisional model
for N large (≥ 104) and a PIC code with a large number
of pseudo-particles (≥ 106) give the same results within
1% for hundreds of betatron periods. In this case since the
hard collisions need not to be resolved the time step re-
quirements can be relaxed and the ”collisional code” can
be used to explore the collective effects just as a PIC code.
Other consistency checks come from the analysis of col-
lective instabilities. To this end an analytic approach based
on the equations of moments for the linearized Poisson-
Vlasov equations has been developed. The equations for
the moments of order k couple only to the lower order mo-
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Figure 3: Horizontal component of momentum jumps ∆p x: time series of the jumps (left), histogram of the momentum
jumps and fit with the Student’s distribution (center left). Plot of ρStud× π/2 for β = 1 (center right). Plot of log[ ρStud×
π/2 ] versus log ∆q (right).

ments and read

dµ

ds
= A(s)µ(s) A(s + L) = A(s) (6)

where µ is the moments vector. The matrix A(s) is deter-
mined analytically and the eigenvalues of the monodromy
matrix M = X(L), where X(s) is the fundamental ma-
trix, determine the stability condition. The agreement in
the emittance growth rate between predictions of the mo-
ments theory and PIC simulations is good (see [3]).
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