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A. PHASE MODULATION IN NONLINEAR FILTERING

Consider the sketch in Fig. VIII-1 of a nonlinear filter. The linear networks hl ..... hn

are chosen to provide a satisfactory representation of the input signal x and its past his-

tory. For the purpose of this report we are interested in the nonlinear, memoryless

part of the filter, shown as f in Fig. VIII-1.

Mathematically, y = f(x 1 , ... x n); that is, y is

h a function of the linear network outputs. Wiener (1),

Xt f Barrett (2), and others have represented f by

h a series of orthogonal polynomials. This repre-

sentation corresponds physically to a system con-

Fig. VIII-1. Nonlinear filter. taining only multipliers as nonlinear elements.

The suggestion offered in this report is to repre-

sent f by an orthogonal trigonometric series that corresponds physically to a sys-

tem containing phase modulators.

To simplify matters, let us first assume that the signals x 1 ... . xn (Fig. VIII-1) are

distributed uniformly and independently over the interval (-Tr, 7r). Then the trigonometric

series for f is

f= Ckl . ..k cos klxl+...+k x +k ...kn (1)
kln...k n 1 n 1 n)

In Eq. 1 the sum does not contain redundant terms (e. g., the pairs k1,...,kn and

-kl, .. . -kn are clearly equivalent). With the assumed joint distribution of x1, .... xn ,

the coefficients ck k are given by

1' '" n

ck k - - ... f f(x1... x) cos klx1+...+knxn+kl' kn dx 1...dxn
1 n (2w) -w -Tr n

(2)

Equation 2 can be derived with the aid of the orthogonality of each term in Eq. 1. The

phase angle kl .. k is chosen to maximize the corresponding ck l ..k and c0  0 is
1. n 1 n

one-half the value given by Eq. Z, with . = 0. (This is equivalent to the standard

multidimensional sine-cosine series.) Now, let us briefly examine the physical
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Fig. VIII-Z. Phase-modulation system.
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Fig. VIII-3. Series construction.

realization of the foregoing mathematics.

In the block diagram of Fig. VIII-2, the cosine of a signal is produced by carrier-

demodulating the output of a phase modulator. The phase 0 is determined by adjusting

the phase-shift network. The major engineering problem is to obtain a sufficiently wide

linear phase deviation in the phase modulator. This problem may be solved by the use

of frequency multipliers, although care would be required to prevent loss of carrier

phase synchronism. At any rate, the physical problems do not appear insurmountable.

In Fig. VIII-3, a system analogous to one of the terms in the series of Eq. 1 is out-

lined. The box PM represents all of Fig. VIII-2, with x replaced by klx 1 + ... + knXn ,

and 4) by Ok k n Hence, f can be constructed from a parallel combination of the

systems of Fig. VIII-3 with outputs adjusted according to the coefficients ck . . kI n
These coefficients might be found experimentally, as illustrated in Fig. VIII-4. The

meter M is assumed to multiply the two incoming signals and average the result. By

adjusting 4k . k for a maximum reading on the meter, we obtain the correct phase
1 n

angle, and this maximum reading gives ck .k (For a more accurate phase-angle
1"" n

indication it is possible to adjust the phase angle for a null on the meter. The correct

value of 4k k differs from the null value

x by 90°.)

I P M Note that the signals x 1 , ... ,x in Fig. VIII-1

n" need not be distributed uniformly because a

y suitable nonlinear, memoryless, monotonic

Fig. VIII-4. Coefficient and phase transformation can correct any such non-

analysis. uniformity. If these signals are not independent,
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two choices are open. Either the size (number of terms) of the series of Eq. 1 is deter-

mined in advance, and all coefficients are solved for simultaneously or orthogonal trigo-

nometric terms are constructed, and the series is built up from these orthogonal terms.

In the latter case, the better choice would be to orthogonalize all trigonometric terms of

a given "degree" to all those of lower "degree" ("degree" is defined here as Ikl I + +

I knl ), just as Wiener (3) does with polynomials. Then it would just be necessary to solve

for all coefficients of terms having the same degree simultaneously.

Alternatively, we could orthogonalize all of the terms. The first term might be the

constant, 1. Then we have go = 1. The second term might be gl = cos (xl+ 1 ) + c 1 ( 1 )

with cl( 1) chosen so that gl is orthogonal to go for all "1. Then we obtain

[cos (xl +1 )+cl( 1 )] 1 dP(x1 ) = 0 (3)

where P(x 1 ) is the distribution function of x 1 . Next, we have

gZ = cos (xz+2 2 ) + c 2 (1' , ) cos (Xl1+l) + c 3(1' 2) (4)

with c 2 (4 1, ~Z) and c 3 ( 1' 2~) chosen to make g 2 orthogonal to gl and go. Thus we might

proceed through the first-degree terms, thence through the second-degree, and so on.

The complexity of this construction is obvious, but there is the partially compensating

advantage of having complete pairwise orthogonality of the trigonometric terms.

Finally, it should be pointed out that the analytical work suggested here is not diffi-

cult to perform when the signals x, .... , xn have a joint Gaussian distribution. For, it

is not difficult to see that a product of trigonometric terms can be reduced by various

identities to a weighted sum of terms of the form cos z, where z is a weighted sum of

x 1 ' ...' xn , plus a constant such that z= 0. Here the horizontal bar means "average

value of." But z is itself a Gaussian variable, and it follows (4) that

cos z = e -z/2 (5)

The z2 average is simple to compute for Gaussian variables, therefore the analytical

work is considerably simplified in this case.
A. D. Hause
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B. STATISTICAL MODEL OF COUPLED OSCILLATORS

Many systems of coupled oscillators can be viewed as systems in which the frequency

of each oscillator is affected by the sum of the outputs of all of the other oscillators in

the system - for example, a city's electric power supply system that consists of many

coupled generators. In this report, we shall propose a model of such systems from

which certain statistical characteristics can be determined. For our model, we shall

assume that the system consists of an infinite number of oscillators that are not phase-

locked. The practical question of how many oscillators must be coupled together in

order for our solution for the infinite system to be a good approximation is being inves-

tigated.

In describing our statistical model, let us focus our attention on one oscillator of

the system. It is acted upon by the sum of the outputs of an infinite number of coupled

oscillators that are not phase-locked. It has been shown that this sum, y(t), has a

Gaussian distribution, irrespective of the coupling or the periodic waveform involved (1);

it can also be shown that y(t) is a Gaussian wave. If we represent the output of the oscil-

lator that we are observing as exp[je(t)], then according to our model, the phase

angle, 0(t), is some function of the Gaussian wave, y(t). If 0(t) is a linear function of

y(t) - that is,

0(t) = f h(t-o) y(a) dr

we shall say that the coupling is linear. In general, the coupling is nonlinear, and 0(t)

is some nonlinear function of y(t).

A virtue of this model is that by means of it we can examine the general effects of

various types of coupling by studying the spectrum of

f(t) = exp(jF[y(t)]) (1)

for various nonlinear functions, F. It is interesting to observe that f(t) is merely the

output of a phase-modulated oscillator, as depicted in Fig. VIII-5. Thus we have an

electrical analog that is useful as an analog computer for determining the general effects

of various types of coupling. Without techniques of analysis, however, an experimental

analog is cumbersome to use because we then have neither a measure of how fine our

measurements must be nor any indication of what regions we should investigate for the

desired effects. The analytical technique has been presented by Wiener (2).

GAUSSIAN NONLINEAR PHASE MODULATED
INPUT, y(t) NETWORK MODULATOR OSCILLATOR OUTPUT

Fig. VIII-5. General electrical analog.
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Fig. VIII-6. Analog of coupling with second-order nonlinearity.

To illustrate this analytical technique, we shall determine the effect on the spectrum

of adding some second-order nonlinearity to the coupling of a linearly coupled system of

oscillators. Since any Gaussian wave can be considered to be the Gaussian white-noise

response of a linear filter, our general electrical analog of Fig. VIII-5 becomes the

system that is shown in Fig. VIII-6, and the general equation, Eq. 1, becomes

f(t) = exp(j[wot+g(t)]) (2)

in which

g(t) = mls(t) + m 2 s (t) (3)

and

s(t) = h(t-z) x(z) dz (4)

Here, h(t) is the impulse response of the linear filter, x(t) is a Gaussian white-noise

signal, and wo is the unmodulated oscillator frequency. The spectrum of f(t) is that of

exp[jg(t)] centered about the frequency o . We thus note that no generality is lost if we

assume that w = 0. We are then interested in the spectrum of
o

f(t) = exp[jg(t)] (5)

Let us normalize h(t) by letting

h(t) = K (t) (6)

in which

K 2 = h 2 (t) d t  (7)

so that

42 (t) dt = 1 (8)

We shall also use the definitions:
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al = jmlK

a 2 = jm 2 K 2

Then from Eqs. 3, 4, 6, and 9 we can write

jg(t) = a I _
4(t-z) x(z) dz + a 2 0_ cc

00 00

In order to determine the spectrum, we shall first

of Wiener's fundamental orthogonal functionals:

c(t-z 1 ) (t-z 2 ) x(z 1 ) x(z 2 ) dz 1 dz 2
(10)

obtain the development of f(t) in terms

cc
f(t)= Z CnGn [(n)(t)]

n= 0

The autocorrelation of f(t) is

R(T) = f(t) f (t+T)

n= 0

(11)

(12)n!I Cn 2
I-o0o

The desired spectrum is the Fourier transform of R(T). The coefficients, C , of Eq. 11

will be determined by projecting f(t) upon the function space generated by a linearly

phase-modulated wave, v(t):

v(t) = expb f-
oo00

((t-z) x(z) dz (13)

Wiener has shown that the fundamental orthogonal functional expansion of v(t) is

If we = exp fine

If we define

00oo

y(t) =
-00

4(t-z) x(z) dz

(14)

(15)

then we note from Eq. 8 that y is a Gaussian random variable with a mean of zero and
a variance of one. The probability density distribution of y is thus

p(y) 1 exp 2)
(2T)

1 / 2

(2wr)
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The projection of f(t) is obtained by taking the average product of f(t) and v(t).

Eqs. 11 and 14 this average product is

f(t) v(t) = exp(Z b bC
p= 0

and from Eqs. 5, 13, and 16 we obtain

From

(17)

f(t) v(t) = 1 0/

()1/2 -o
exp (aly+azy eby exp (-) dy

1 (al+b)z

1 exp

(1i2a21/2 2(1-2aZ)

Thus we obtain from Eqs. 17 and 18

oo

exp b )

p=O

- exL (al+b)2
bPC exp

P (1-Za /2 2(1-2a2)

which can be written in the form

p=O

a2 ab + ab

bPC 1 exp 1 exp 1 - Za

(1-2a 2 )

The coefficients C can now be determined by expanding the

and equating like powers of b. Thuso 200 a

SbPC- 1 exp 1

p=0 (1-2a1/2 2(1-2a 2)

exponential in a power series

00 m n m+ 2 n
al a2b

m+n
n=0 m=0 m! n! (1-a 2)

(21)

The autocorrelation of f(t) is then obtained by use of Eq. 12 and noting from Eq. 9 that

al and a 2 are imaginary numbers. Thus, for example,

ICo2
1

exp

(1+4 a 2 12)1/

1c1 Z al I o I Z
1 + 41a2z
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The general expression for ICp 2 is complicated. The case in which we are interested

is that for small nonlinearities; that is, a 2 /al is small. For this case we shall obtain

an approximate expression for the spectrum. From Eqs. 20 and 21 we can write

oo a lbZ bPC = Co exp 1 -2a +
p=O 2

p=C no (1 al anbn

oo  a4 bn

n= 0 2 )n
a2

1+ b
a

1

With the assumption that a 2 /a 1 is small, we shall say that

oo

p=O
bPCp = C

0 al b n a2 (n)(n-1) a2
ZaZ2 n n! a z_I + nl -b + bn=O 2 al

By equating like powers of b, this expression yields the exact equation for

through C 5 . For higher orders of Cp, the basic approximation is found to be

2 2 a 2
a21/2

1+4a2
Z) :)/

(24)

C
p

(25)

By solving Eq. 24 for Cp, substituting this result in Eq. 12, and summing the resultant

series, we obtain a closed-form expression for R(T) after a considerable amount of

algebraic manipulation. The result is

(23)

R(T) = 1Co 2 eP(T) 1- ( p 2 (T) + 1 +4a 2 2+4p(T)+p (T) p 2 (T)

1

2 2  4
a2 1 - 4a a2

a2 4(T) - 2I,\ ,

4

1 + 4a 2

2 [I2+8p (T)+P (T)] p ( )

al

1 + 4a 2 2 3 4 4
2 a2 24+96p(T)+7p (T)+16p (T)+p () p (T)

1

in which

2 oo
a1p (T) = 2

1 + 4a 2

4(t) .(t+T) dt

(26)

(27)
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and the magnitude signs on al and a 2 have been omitted.

In order to study the spectrum, the Fourier transform of Eq. 26 is required. It is

evident that the total transform of R(T) is a complicated function of frequency and would

be difficult to interpret. This difficulty may be circumvented by first expanding Eq. 26

in a power series of p(T):

R(T) = Co0
2  BnPn(T) (28)

n=0

When this is done, the coefficients B are found to ben

B =1
0

B 1 =1

B = + 2 Z2 2 (29)S 2 al a21

3 !
S  a2 1 + 4a2

3 3! a2
z

Now, the Fourier transform, F (w), of p n(T) is a positive function of w. Thus, from

the central limit theorem, the bandwidth of F (o) increases with increasing n as

it approaches its limiting form, which is a Gaussian curve. Hence the spectrum

of R(T) becomes more narrow as the coefficients B are reduced. We observe

from Eq. 29 that both B 2 and B3 are reduced for a 2 in the range

2a -32 1
a 2 < 12 (30)

which is within the range of the approximation given by Eq. 25. This implies that the

spectral bandwidth of a linearly coupled system for which this model is applicable may

be reduced somewhat by the addition of a quadratic nonlinearity!

The solution for this example was obtained in a straightforward manner by the

use of techniques developed by Wiener. For many types of nonlinear coupling, the

computation is involved because the solution involves integrals that are not readily

evaluated. An example of such a case is one in which there is some cubic non-

linearity. This case is of special interest because many investigators claim that

oscillators tend to synchronize as a result of the presence of a cubic nonlinearity (3).

However, even though the computation for this case is involved, the effect of the

presence of varying amounts of cubic nonlinearity in the coupling can be experimentally
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investigated by the use of the electrical analog depicted in Fig. VIII-5.

Our model was derived to represent systems of oscillators that are not phase-locked;

but in certain special cases, it can be used to represent systems of phase-locked oscil-

lators. An example is our initial one of an electric power supply system for a city (2).

Although the generators are phase-locked, it can be argued that as people in the city

turn electrical appliances on and off, the load presented to any one generator of the sys-

tem will fluctuate approximately in a Gaussian manner. Thus our model is applicable,

and it can be used to study the effects of various nonlinearities upon the spectrum of the

generators en masse.
M. Schetzen
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C. AN OPTIMUM METHOD FOR SIGNAL TRANSMISSION

It was brought to my attention after the publication of my report (1) that the solution

for the optimum combination of linear pre-emphasis network and linear filter for trans-

mission through a noisy channel was published by Costas (2) in 1952.

M. Schetzen
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D. PROPERTIES OF THE TRANSFORMS OF THE KERNELS OF

A NONLINEAR SYSTEM

The input-output relation of a nonlinear system can frequently be expressed by the

Volterra type of functional power series

y(t) = f ... K (t-T' .  t-' ) x(T) ... X(Tn) dT 1 . .dT (1)
n= 1 00 n
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in which x(t) is the input, y(t) is the output, and K n are the kernels. The multidimensional

Fourier transforms of the kernels are K 1(jl)' ..... Kn(jWl '' ' jwn) ..... We shall

develop the following properties of the transforms.

(1) The form of transform necessary for the corresponding impulse response to be

a real function.

(2) The nonlinear analog to real-part sufficiency and a generalized Hilbert trans-

form relation.

(3) The constraint between the gain and minimum-phase relations in each kernel.

(4) A criterion that provides a sufficiency test for the realizability of an nth-order

gain function.
th

(5) Necessary and sufficient conditions for the stability of a rational n -order

kernel. (The Routh criterion is generalized to provide a straightforward method of

testing stability of rational transforms.)

As one would expect, the approach to the problem is a generalization of the approach

to the properties of linear transforms described by Lee (1) and Mason (2). The transform

pair that we shall use is

K(S 1 , S) = f k(tl, t 2 ) exp(-S 1tl) exp(-S t 2 ) dt 1 dt 2  (2)

k(t1 2= J - - K(S 1, S2 ) e e dS dS (3)

where S= 1 + ji1, S2 = 2 + jW2 . We are concerned with functions whose region of

convergence includes the imaginary axis in each variable so that the Fourier transform

is included in the definition of Eqs. 2 and 3. All properties will be illustrated with the
th

two-dimensional case, but they hold for the n -dimensional case.

The first property follows trivially from Eq. 2. If we consider S 1, S 2 to be real

variables, the integrand is a real function for all real impulse responses. This implies

that K(S1, S2) has the form of a real function of S 1 and SZ . Thus, the most general

rational transform corresponding to a real second-order impulse response is

N N

. j aijS 1 S
1=0 j I

K(S1, S2) (4)
M M

X Z b ijSI S
i=0 j= 0 2

where a.. and b.. are real coefficients. Since any kernel can be made sym-
lj 1j3

metrical, a.. = a.. and b.. = b...
1J 31 1 31
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1. Realizable impulse responses

We shall now consider realizable impulse responses and their properties.

Let k(t 1 , t 2) = 0 for either tl or t 2 < 0. A typical response is shown in Fig. VIII-7. We

can write

kz(t 1' t 2 ) = k (te t2) + kiii (to t) +

i e ewhere k (te, t, t denotes a function that is even with respect to the variables tl and t Z

as shown in Fig. VIII-8. We exclude the singularity function o(tl) po(t 2 ) and its deriva-

tives from the class of kZ(tl', t 2 ) to be considered. For a realizable system, it follows

that

= k( t ,t =Z k 2 (tl' ,t 2) tl' t 2 >0

Substituting Eq. 5 in the direct Fourier transform equation gives

K 2(jw1, j 2 ) = i00
-.co rr Cc [k' t , te+k '0 o + t, )+ iie t )]

X [coswltl coS W2t 2 - sin 1 tl 1sinw2 t 2 -j sin wltl cosW2t 2 -j coswltl sinw2 t 2 ]

X dt 1 dt 2

Taking advantage of the oddness and evenness of the various terms in the integrand,

we have

k i (te t) cos w1t 1 cos w ZtZ dt 1 dt 2

- k iii t, t sin w 1 sin w2 t 2 dt 1 dt 2

- j k2 0,t te) sin wtl cos Wt dt dt

ki (to, t2) sin olt 1 cos W2 t 2 dt 1 dt 2

By dividing K 2 (jw 1 , jw2 ) into its real and imaginary parts and then into even and

odd parts, we have

K2 (jl,' jw2 ) = KR jiWe jWe) + KR( 0, j ) + jK I(jwo, jwe + jK I (je , jiw)

where

124

iv(t ' t2)
k2 o 1e)

(9)

+ k2 te to)

e ii(te, t2)=i/to to)K Z 1 2 1 2

K 2 (j1' j2) =

-j i 0
S-oo -oo0
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KR eje , j e  = 0 k(t 1' t 2 ) cos elt 1 cos wZ dt dtldt 2
R I Z 0 0 1 Z 1 Z

KR(iwo jz) = - k 2 (tl, tZ) sin wit, sin wetZ dt 1 dt
0 0

K I (jew,j = - k (tl 2) sink? 1  cos 2t 2 dtldt 2I Z 0 0 kztots sin

(10)

(11)

(12)

Here, symmetry has been used to change the limits of integration.

Clearly then, the inverse transform corresponding to Eq. 10, Eq. 11, or Eq. 12, can

be used to find k(t 1 , t).

k( 1 , t2) (2 f 00 KR (je, jW) cos elt 1 cos .Zt 2 deldwz

The conclusion is that any one of the four parts of a second-order transform is suf-

ficient to specify the corresponding realizable impulse response. Similarly, for n = 3,

the transform can be divided into eight parts:

e e)e e o Leo ooe)

K 3 (jwj 1, 2,j 3 )= KR , ' 2, 3 + KR ' 2 3 +W ) K R  l' 2 3 + K R  1 ,  2 3

j[Ki(o oo~) +K o e e + KI( e) + K ( () ( e ee)]
+jKI Wl'2'3 o)+KI l'Y '3+K ', w3 + KI W2' W3

(14)

and any one of the eight parts is sufficient to specify the corresponding impulse response.

Since K R jwe, jwe completely determines the transform, one expects that there

i E Ek2(t
2 ,t 2

k (t It2 )

Fig. VIII-7. Typical realizable impulse
response.

Fig. VIII-8. Even part of impulse
response.
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exists a generalized Hilbert transform relation that expresses K R (J jw2 , KI j

and K e(jwe, j as explicit functions of KR(jw e joO) and vice versa. A typical relation
will now be derived.

2. Generalized Hilbert transform

Let k(t 1, t 2 ) be an arbitrary, realizable kernel that is Fourier-transformable.
Let

k(tl' 1 2 ) = (2r)2 f(t, t 2 ) d(tl' t2 ) for all tl' 2  (15)

We can choose f(t 1, t 2) to be any realizable function as long as it is not zero at any
point at which k(t 1 , t 2 ) is nonzero. This will specify d(t 1, t 2 ) in the range t 1, t 2 > 0.

The relation corresponding to Eq. 15 in the transform domain is

K(j 3 , Jw 4 ) =f F(jw3 -jw 1, jw 4 - w 2 ) D(jw 1 , jw 2 ) dw1 dw2  (16)

Let

2
f(t1 ,t 2 ) = () (t 1 ) exp(-at 1 ) _(t 2) exp(-a 2t 2) (17)

then

( 2 a, - 1 a2 2 (1)-j 2 ala 2  1 2 - j(al w 2+a2 w 1)

al +W1  a2  2 a 1 a +2

We note that if al = a2 , then, since k(t 1, t 2) is symmetrical in its arguments, d(t 1 , t 2 )
will be symmetrical. Since d(t 1, t 2 ) is arbitrary for either t 1 t 2 < 0, we can make it
an even function in both arguments. This implies that D(jw2 , jw 2 ) is real and even in
both arguments.

/*O a2 al -j(23- 1) a2 - j(4-WZ2)K(j2 2 D(j jw2 ) ddw 2 (19)
oo o a 1 + (w3- 1 ) a 2 4+ (W4-W2)

Since D(j 1 , j 2 ) is real, we have

K (=(1)2 00
oo  alaZ- (W 3- 1)(o4- 2)

KR j 3 jw4) = ()f (32 ))212 D(j j 2 ) dwldw2  (20)

Since D(jwl,Jw2 ) is even in both arguments, the even part of FR(jwl,J j 2 ) gives the
even part of KR(jwl, w2 )
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KR(3 Jw4) Trr() 00 00-00 -m

la 2

z 1 z D(jwl,' j) dwe dw
[a1+3- W 1 [a 2+(4- 2 2

Similarly,

2 00 00

00o oo00

-a 2[3- w1]

[a1 (3 1 2 a 2 42+2

D(jw 1 ,' j 2 ) dwldw 2

Let al = a 2 - 0. Then

aI

2 2 -T Wo 3-Wl)
a1 + (33-W 1 )

2
22 2 To0W4- 2 )

2 + (4 4- 2)

and Eq. 21 becomes

KR J 3 , jw = D(jw3'jw4 )

In Eq. 22,

e3 1 1
2 ti2 y-e

al + (W3 w1) 3 1

and this yields

13

_0 1 K el, e d
Tr 0C 3 -W 1 4 1

The complete imaginary part is

K(je3,jw4 ) = K I(je3, jW + KI jW3', JW)

where the second term follows directly from symmetry.

In retrospect, one notes that Eq. 28 could have been obtained by equating the inverse

transforms of Eqs. 10 and 12:

f 000 0
KR (e, je) cos t l cos t t 2 dwldw2

-f00 00
= - 0f

KI jwo, j( e sin lt 1 cos W t dt dt 2
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(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

Kdju3' je

K 0, j3 e)

KI JeO3 J4

-
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cos W 2t 2 dw 2 f0
- - c os w 2t 2 c

0

KR(jWee jW) cos w1t dwl

w2 0 Ki(jo, jWe) sin w 1t I dwl

But since the outer transform relation is unique, we have

KR(e, j ) cosW ul d l = - K(jwo, jw) sin w 1 1 dw 1

This is merely the linear relation with an arbitrary

directly.

The corresponding relation follows similarly:

KR W ) 1 KjWI , Jl'jW e dw1R J° 3' °4 T _ 3 -1 1 (

(32)

0 2 . Thus, one can write Eq. 29

(33)

Similar reasoning leads to a useful constraint relation between the odd and even parts

of the real part of K2 (jW1 , j 2 )

00 1 1

1 3 W2 KR 3 4 ) dw 3 dw 4
(34)

Similar relations follow for higher-order kernels. Starting with any one of the eight
terms in Eq. 14, we can find the other terms by a series of integrations that are similar
to Eqs. 28 and 33.

The next step is to generalize the idea of gain-phase relations in linear networks to

higher-order kernels.

3. Gain-phase relations

Let

log K(ju 1, j 2 ) = log IK(jw 1 j 2 )j + jO(jwl, '2)

= G(jwl , j~Z) + j0(jwl,jw2 ) (35)

where G(jwl, jwZ) is the gain function. Now if we can show that G(jw 1, jw2 ) has all of the

properties of a real part of a realizable, stable system function, then 0(w 1, W2) can be
determined by using the Hilbert transforms of the previous subsection.

Clearly, if log K(jW1, jw2 ) is a realizable, stable system function, then K(jw 1, jw2)
and 1/K(jw , j 2 ) are realizable and stable.
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First, write G(S 1 , S 2 ) and consider S1, S 2 to be real variables. Then G(S 1 , S 2 ) must

be a real function. Assuming that this condition is satisfied, we can write

G(jl 1,jw 2 ) = G jiWe, j o  + G (w, ju) (36)

If the even and odd parts of G(jl 1 , jw2 ) satisfy the constraints of Eq. 34, then

G(jwl, jw2 ) is the gain of a realizable system. This condition is sufficient but does not

appear to be necessary.

To prove the minimum-phase property, we have to show that any other realizable

system with the same gain function has zeros in the half-planes belonging to -l > 0 and

YZ > 0. Then we must show that this implies that the second function accumulates phase

shift faster for any path in the wl' w2 plane.

Let the original minimum phase kernel be KM(jw l , jw2 ). Consider a new function

A(j 1l, jw2)
H(jw1 , jw 2 ) = KM(l,2 B(j' j 2 ) (37)

with the constraint

jH(j 1 , jW2 ) = fKM(j l, j 2 )l (38)

This implies

A(jw 1  jw2 ) A(jw1 , jw2 ) A(-jw1 , -jw2)
B(jw 1 ,' j 2 ) = B(jl ' jw2 ) B(-j ) =1 (39)

and yields

A(jw 1 , jw 2 ) B(-jwu, -jw 2 )
(40)

B(jo'1, jw 2 ) A(-j l'1 , -j 2 )

Making the substitutions S 1 = +jw1  S2 = +jw 2 we obtain

A2(SI, S2) A(S 1 , SZ) A(S 1 ' S ) A(S 1 ' SZ) B(-S 1 , -SZ) (41)

B 2 (SI, S 2) B(S 1 , S 2 ) B(S 1 , S 2 ) B(S 1 , S 2 ) A(-S I , -S )

For this class of rational functions, we can write

2 2 3
A(S l , S 2 ) = a 0 0 + al 0 S + a0 1 S 2 + a 2 0 S + allSS + a 0 2S + a30

2 2 3 n
+ a 2 1 SS 2 + al2SS 2 + a03S 2 + ... (42)

and
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2 2 3B(S 1 , S ) = b + bl0S + b01S + b0S + bS1Sb S bS b S +b0b S2S + b30 S 100 10 1 01 2 20 1 11 1 2 02 2 30 1

2 2 3 n
+ b 2 1 S2 + b1 2 S S 2 + b03 S + ... b0nS 2  (43)

These conditions imply

A(S1' S 2 ) = B(-S 1 , -S Z )  (44)

The phase function can be written as

9(L' W2) = tan 2 2O{e 1 , )  
- 1 bl 10 -b 01 W 2 + b 30 W + b1 lelez + ...b -b. 2b - iW bo 2+

00- b20 1 - b11 12 b02 + '

3 2

- tan 2 2 (45)
b0 0 - b 20 1 -b 1 1 1 2 - b0 2 + '

We want to show that 6(w l , W2 ) is a decreasing function of we and w2 . Consider the

W1 - e2 plane shown in Fig. VIII-9; we want to study an arbitrary path that is subject
to the restriction that both wl and e 2 are either increasing or constant along the path.

For any arbitrary path we can write e Z = g(wl). (The only exceptions are segments on

which w2 = K o , which can be treated separately.) Therefore, we can write the all-pass

part of our transform as

A(S 1 , S 2 ) A(S1' jg(wl))
B(S 1 , S2 ) = B(S , jg(w2 )) (46)

which is just a one-dimensional transform. If we can show that the system is

stable for any g(wl), then the pole-zero plot in the S 1 plane is symmetric about

the jw1 axis and the desired minimum-phase

property follows directly. The necessary
2 and sufficient conditions for a multidimen-

sional transform to be stable are shown

SA(S 1 , S )
3 in (d). It will be seen that stability of B(S 1, SZ )

PiA(S1, Wjg())

P2  implies stability of B(S1jg()). Clearly,

the all-pass term must be stable for H(S 1, SZ)

Fig. VIII-9. Paths in we, 2 plane. to be stable. Hence the desired minimum-

phase property is proved.

Therefore, the even part of any allowable gain function specifies a phase
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function through the use of Eqs. 28 and 29, so that the resulting system is realizable.

This system is not unique, but it has the minimum-phase property demonstrated above.

The extension of this discussion to a kernel of any order follows directly.

4. Stability of nth-order kernels

We would like to investigate the stability of rational transforms defined in Eq. 2.

For k(t l , t 2 ) to be a realizable, stable impulse response, it is necessary and sufficient

for the integral to converge for all l :0 -< a1 < c0 and 2 :0 -< a2 < 00. For rational trans-

fer functions, a generalized Routh criterion may be used.

Consider the denominator of Eq. 4. Instead of writing it as a double sum, we shall

construct a simple array of the coefficients.

2 3
S2 S2 S 2

a 0 0  a 0 1  a 0 2  a 0 3

S 1  a 1 0  all a 1 2

2
S 1  a 2 0  a 2 1

3
S l  a 3 01 30

Initially, we can apply the Routh test to a polynomial in Si:

2 3
P(S 1 ) = A + BS 1 + CS 1 + DS 1  (47)

where

3 2 1
A= a0i al ' C= a 2 iS2 , D = a30

i= 0 i= 0 i= 0

The requirements for stability are

A, B, C > 0 D > 0 BC-DA > 0 (48)

Since A, B, and C are functions of S 2 , we have to satisfy the inequalities in expression 48

for S Z:0 cr < oo. Assume a00 > 0. Then the requirement, A > 0 for all S : 0 <a-2 < oo,

implies that

2 3
A = a 00 + a 0 1 S 2 + a 0 2 S 2 + a 0 3 S = 0 (49)

can have no roots with positive real parts. Using the Routh criterion gives the require-

ments
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a03 >0; a0 a a01, a00 > 0; a02a00 > a03a01 (50)

Similarly, B > 0 requires

a 1 0 , a 1 1 > 0; a12 > 0 (51)

and C > 0, D > 0 require

a20 > 0; a 2 1 > 0; a 3 0 > 0 (52)

The inequality BC-DA > 0 requires that

al 0 +S 2 + a l 2 S(a+a 1 S - a 3 0 (a+aS 2 +a 0 2 S2+a 0 3 S = 0 (53)

shall have no roots with positive real parts. This implies the following inequalities:

al2a21 - a03a03 > 0; alla21 + a20alZ - a30a02 > 0; al0a21 + alla20- a 3 0 a 0 1 > 0;

a10a20 - a30a00 > 0 (54)

and

(a l l a 2 1 +a 2 0 a l 2 -a 3 0 a 0 2 )(a 1 0 a 2 1+a l la 2 0 -a 3 0 a01) - (alZa 2 1 -a 3 0 a 0 3 )(al 0 a 2 0 -a 3 0 a 00 ) > 0

Inequalities 49-54 must be satisfied for the transform to represent a realizable and

stable impulse response. If the region of convergence includes the jwl and jw 2 axes,

then failure to satisfy one of the inequalities implies unrealizability. If the region of

convergence lies to the right of the locus of singularities in the S 1 and S 2 planes, then

the transform represents a realizable, but unstable system.

The extension to n dimensions requires increasing the dimension of the array. The

Routh criterion is applied in succession to each dimension.

H. L. Van Trees, Jr.
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