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A. HIGH-PERVEANCE HOLLOW ELECTRON-BEAM STUDY

This experimental program has been started to determine the nature of the interac-

tion between a dense, hollow beam and an external circuit. A magnetron injection gun
-6

will be used to form a beam of perveance 5-10 X 10-6 , with densities that are such that

W /p 1, or larger.

A gun has been designed and is now being built for use in a demountable vacuum sys-

tem. The beam cross section will be observed by the heating of a tungsten wire screen.

A. Poeltinger, A. Bers

B. ELECTRONIC LOADING IN A SYMMETRIC LLEWELLYN GAP

Large electronic loading of klystron resonators by high-density electron beams has

recently been observed experimentally. Beaver, Demmel, Meddaugh, and Taylor (1)

attempted to account for this loading by considering the effect of the potential depression

in the gap caused by space charge. Their approximate method was to consider a step

in beam velocity at the input and output planes of the gap region, and thus find the effect

of increased transit time on electronic loading. Kinematic theory, in which the effect

of space charge is neglected in the interaction, was employed.

It is possible to solve the small-signal equations for the behavior of a beam in a

one-dimensional gridded gap. The results for kinematic theory are well known. Bers (2)

solved the problem for a beam neutralized by immobile positive ions, but he accounted

for the time-variant net space charge caused by bunching of the beam. The problem of

the one-dimensional gridded gap with no gross neutralization of the beam is a special

case of the diode equations given by Llewellyn (3).

The relation between the gap voltage and the induced total gap current given by

Llewellyn (in mks units) is

V = I [2-2 e -_jWr-jT e ] + (1)

where V is the ac gap voltage at radian frequency w, I is the total ac gap current, T is
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the average transit time of an electron, I is the gap width, and I1 is the time-average

convection current of the beam.

Let po be the time-average electron density, and vo the time-average velocity at

the input plane. We now introduce the following parameters:

V= (mv) 2e beam potential at input plane

S= (Poe)/(E m) plasma frequency at input plane

G = I /V beam conductance at input plane

T = 1/vc transit time in the absence of space-charge fields

Introducing these parameters into Eq. 1, we obtain

I 1 G 1
V Go -jT O + ( p/2(2-2 e J -jWT-jTe-jW)

Now, I represents the total induced ac gap current. To find the electronic loading, we

must subtract from the total current

disp 2 -

which is the displacement current. The electronic loading is then given by

I disp 1 (
Y G p -jWT + (W /)2 (2-2e Tj-jWr-jrT ) +

(3)

We can now split YeI into real and imaginary parts.

ef = Gel + jBef (4)

where

WT(.T WT WT WSW
1G 4 sin sin -- -cos

G -- G

o2-8To( )p/2 (sin - cos T)cos + 16 (wp/w)4(sin T WT cos )2j

(5)

and
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4 (sin Tl os To cos - 4(w /)2 sin - 2 COs
-Y - c s 2 o -0 - P OS ]

F 2W( T .T\ WTl 6 /*s 11 T -WT WT'\
2

WToL[(To)-8To(P/)2 (sin-2-cos 2 2 + 16(P/w (sin 2 2 Cos-) J

(6)

Finally, we need to relate T to T . We can find T by solving the cubic equation

3 12 12
T 7+ 7 - 02 2 o

W
p p

For 0 < w < 4/3T , the real root in the range To < Tr 3To/2 should be chosen. For
p op

wp > 4/3T , electrons are reflected in the gap, and the Llewellyn theory breaks down.

Mihran (4) has obtained an equivalent expression for G e as a function of the

Llewellyn space-charge parameter and the angle WT.
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Fig. V-1. Electronic-loading conductance. The point where electrons are
turned around by space-charge fields is indicated by x.

Figure V-i is a plot of 2G e/Go versus WTo with (w p/) as a parameter. It is

interesting to note that in the theory of loading for a neutralized beam, an increase in

space charge produces a decrease in normalized electronic loading conductance at small

transit angles (2) (less than 3 radians), while the unneutralized beam theory predicts

an increase in normalized conductance with increasing electron density.

C. W. Rook, Jr.
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C. PROPERTIES OF WAVES IN ELECTRON-BEAM WAVEGUIDES

In Quarterly Progress Report No. 59, pages 58-63, we established the conditions

under which slow waves with negative phase velocity may exist in electron-beam wave-

guides with infinite magnetic fields. In the present report we shall establish the group

velocity of these waves, that is, the direction in which power is carried by these waves.

LOSSLESS
Bo / METAL WALL

0 META Aa Fig. V-2. Electron-beam waveguide that
z - ELECTRON Ar is uniform in the z -direction.
Z BEAM A

In the cylindrical system of a uniform lossless electron-beam waveguide (Fig. V-2),

if we use the linearized equations of motion and Maxwell's equations, a propagating wave

with time and z-dependence of exp[j(wt-pz)] satisfies the small-signal Poynting theorem

and the small-signal energy theorem (1). From these theorems we find

8 1 A A A A*
2A (ExH +VJ )- dd= 0 (1)

A [O E 2- H p 2 ] da = 0 (2)

1 A A* AA*
1Re f(EXH +VJ ) • da2

where V= (m/e)V • v, with vo the time-average electron velocity and v the small-signal

complex amplitude of the velocity; the circumflex on the field quantities indicates that
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they are functions of the transverse coordinates only; A is the cross section of the

waveguide; Ip = W /V , with wp the electron plasma frequency. Equation 1 gives the

balance between the small-signal electromagnetic power flow

Pe =- 2 Re jEX H da (4)

and the corresponding kinetic power flow

Pk =Re VJ d (5)

Equation 3 is an expression for the group velocity 8/ap; the numerator is the total

power flow, the denominator is the total energy storage per unit length of waveguide.

Equation 2 gives the balance among the partial energies of the system which is required

for the existence of a purely propagating wave.

Combining Eqs. 2, 3, 4, and 5, we obtain for the group velocity

S+ + (P /Pk) 
(6)V 6

S:v o 1 + [(2Wm v )/Pk]

A 2A
where wm = 1/4 H 2 da. In the one-dimensional electron beam, P = 0 and H = 0,

m A e

hence the group velocity is v o , the time-average electron velocity, independent of both

density and frequency. For the confined-flow electron-beam waveguide, we find

aw 1+ (Pe /Pk (7)
ap o /C P

P /k/ kj

Equations 4 and 5 can be evaluated from the field equations given previously (2). Green's
A

first theorem applied to the E z field over the nonuniform cross section of the waveguide

gives

2 A 2 2dap q2fA 1 2 a

p E2 da + q A E da2p a

1dap+ VTEz daa 
(8)

p a

where p and q are the transverse wave numbers for the fields in the beam and in

the air spaces, respectively. We find
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P
e _

k

I(P-Pe 2-P 1 2
e pp

Iq2? P- lp21p

q2 z
a

where Pe = w/v . The bracketed terms of Eq. 9 depend upon the geometry of

the system.

As an example, consider an electron beam filling the waveguide. In this case, the

expression in brackets in Eq. 9 equals 1, and p2 is a positive real number. Equation 9

becomes

Pk (l1-Vck)
v 2

c 1 -p k

(1-v k)2
1-pn

pn

where Pk = p/k, v c = v /c, and pn = p /w. From Eqs. 7 and 10 we note

that four types of slow (P>k) waves are possible: two forward traveling waves,

Vg=c

TRAVELING WAVES

l +

Group velocity versus propagation constant for an electron beam filling a
cylindrical waveguide (w p/w = 10; v /c = 0. 1). The arrows indicate the

location of the p-roots as a function of increasing p.
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p > 0 with aw/8a > 0; a backward wave, P < 0 with aw/ap > 0; and a back-

ward traveling wave, p < 0 with aw/ap < 0. An example is shown in Fig. V-3.

A. Bers
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D. LARGE-SIGNAL KLYSTRON THEORY

Some results of a theoretical investigation of several schemes for improving the

electronic bunching efficiency of klystron amplifiers were presented in Quarterly

Progress Report No. 60, pages 98-104. In particular, the rebunching of an electron

beam by a succession of closely spaced (nonpropagating) gap circuits was analyzed. It

was shown that 100 per cent electronic bunching efficiency could be realized if the gap

circuits could interact with all of the beam-current harmonics. In the present report

we wish to present some results for gap circuits that interact with only the fundamental

component of the beam current. The equation of motion of the electrons in the distributed

circuit is

2 (t' 1 2 2 e 8Ec(t,t 1

8t2 p vt p o m at

where v is the electron velocity, t 1 is the time of entrance of a particular electron into

the circuit, wp is the electron plasma frequency, and Ec is the electric field that arises

from the induced charges on the circuit grids. In the present case, we would like to

constrain the circuit field, Ec, to be a sinusoidal function of t for any fixed z. To carry

out the analysis in closed form, however, it is necessary to assume (as in the multi-

harmonic case) that the circuit field does not vary with time for a particular electron.

That is, we shall assume that

Ec(t, t) = Ec(t 1) = E sin~ t Zo-

where z 1 is the entrance position of the distributed circuit relative to the input gap. The

difficulty with this last assumption in the present case is that it is inconsistent with the

first assumption of a sinusoidal field at some point z > z l. However, one finds that it is
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x1 (8)
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approximately sinusoidal, so the results were taken as an approximation to a true single

harmonic theory. Our theory does take account of all of the beam-current harmonics

that enter the circuit.

For such a distributed circuit of gaps, we found that the electronic bunching efficiency

could be 70 per cent with approximately zero velocity spread at the output gap. The

length of the circuit should (as in the multiharmonic case) be 1800 of plasma angle. Pre-

vious theories (1), which neglected all components of the beam current other than the

fundamental, predicted a theoretical efficiency of around 83 per cent. The form of the

gap reactance (which includes the free-space capacitance of the gaps) is plotted as a

function of plasma angle in Fig. V-4. It is qualitatively the same as the fundamental

gap reactance in the multiharmonic case (1); however, the magnitude is approximately

one-half as much.

The analysis given in this report and the analysis in a previous report (2) formed

the basis of the author's Master of Science thesis (3).

R. J. Briggs

References

1. A. Bers, Interaction of Electrons with Electromagnetic Fields of Gaps with
Application to Multicavity Klystrons, Sc.D. Thesis, Department of Electrical Engineering,
M. I. T., 1959.

2. R. J. Briggs, Large-signal behavior of electron beams, Quarterly Progress
Report No. 60, Research Laboratory of Electronics, M. I. T., Jan. 15, 1961, pp. 98-104.

3. R. J. Briggs, Bunching of One-Dimensional Electron Beams, S. M. Thesis,
Department of Electrical Engineering, M. I. T., January 1961.

106


