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ABSTRACT 

A radial sector FFAG accelerator has been constructed and 
successfully operated. In this 8 sector accelerator electrons 
are betatron accelerated from 25 to 400 Kev using both continuous 
and pulsed injection. The number of radial betatron oscillations per 
revolution may be varied from 2.3 to 3 and the number of vertical 
oscillations per revolution from 1 to 3. Calculations of these 
oscillation frequencies using various approximations are described 
and discussed. These frequencies have been measured statically with 
the unaccelerated beam and dynamically using an rf perturbing voltage 
on the accelerated beam. Results of these calculations and experi­
ments are in satisfactory agreement. Effects of misalignments have 
been measured and are in close agreement with calculations presented. 
A survey has been made over a large area of the betatron oscillation· 
stability region. The effects of the many resonances observed are in 
good qualitative agreement with theory. 
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I. INTRODUCTION 

In fixed field alternating gradient accelerators l (FFAG) the 

average guide field can increase rapidly with radius, permitting a 

large range of momenta in a narrow radial aperture, while the 

stability of radial and vertical betatron oscillations is maintained 

with alternating gradient focusing. FFAG accelerators are generally 

of the radial sector or spiral sector types, the designations re­

ferring to the geometry of the magnet edges. In radial sector 

accelerators the field direction reverses in successive magnets, 

while with spiraled sectors a much smaller field variation is 

required. 

In order to study some of the properties of FFAG accelerators 

and to confirm theoretical predictions a radial sector FFAG electron 

model has been constructed and put into operation. 2 The following 

article describes the orbit theory, the accelerator design and 

construction, the magnetic field measurements and the static 

measurements of the betatron frequencies. It discusses the accelerated 

beam obtained with pulsed and continuous injection, and the radio 

frequency measurements of the betatron frequencies, and compares 

the experimental values with the theoretical results. The effects 

of field perturbations and betatron resonances on the accelerated 

beam are presented and discussed. 

II. GENERAL DESCRIPTION AND PARAMETERS 

In this machine there are sixteen magnets (eight sectors) 

arranged in a ring (Fig. 1) with the field direction reversed in 

successive magnets. Away from the fringing region the fields have 

a constant magnitude along an equilibrium orbit. The overall 

scale was chosen large enough to give adequate access to all 
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components, and yet small enough so that parts would be easy to 

construct and handle and magnetic fields would not be too low. 

Betatron acceleration of the electrons is used for simplicity. The 

resulting accelerator injects electrons of about 25 kilovolts at 

a radius of 34 cme and accelerates them in magnetic fields varying 

from 40 to 150 gauss to an energy of about 400 kilovolts at a radius 

of 50 centimeters (Fig. 2). Although more than the 8 sectors would 

have allowed a smaller radial aperture and larger ~ values (the 

number of betatron oscillations per revolution), it would also 

have required a smaller vertical aperture and would have otherwise 

complicated construction. 

A summary of the design parameters is given in Table I. 

TABLE I. Design parameters for the FFAG electron accelerator 

N = 8 the number of magnet pairs (sectors). 

the ratio of the orbit radius to the 
radius of curvature at the centers of 
positive curvature and negative curva­
ture magnets. 

= 1.18 at the center of a positive curvature 
magnet. 

k = = 3.36 at every point in the machine. 
e- 1 = 25.740 the angle subtended by positive curva­

ture magnets. 

8-2 = the angle subtended by negative curva­
ture magnets. 

the angle subtended by "straight" sections. 

the inner and outer radii of the insider i = 32 ern } 
of the vacuum tank. 

r = 54 cm 
o 

G. = 4.0 cm the magnet gap at 32 cm radius.
l 

G/r = constant for all r across the useful aperture. 

Z = 2.41 cm the total vertical aperture available 
inside the vacuum tank at all radii. 
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III. ORBIT THEORY AND DESIGN 

This section discusses the orbit theory of the present accelera­

tor. Part A gives a general discussion of orbit theory in radial 

sector FFAGaccelerators, with special emphasis on the equations 

used in the later discussion. Part B describes the calculations done 

in the original design to arrive at a magnet geometry. Part C 

describes the calculations done after the accelerator was constructed, 

using the more powerful methods now available. 

A. Orbit Theory of Radial Sector FFAG Accelerators 

If the acceleration process, which is a small effect per 

revolution, is neglected the problem reduces to the motion of a 

charged particle of constant total (relativistic) momentum f in 

a static magnetic field. The equations of motion of such a particle 

may be derived from Jacobi's form of the principle of least action,3 

~ ('-(-/2+ ~ A ).dS =0 

s, (3.1) 

eIntroducing cylindrical coordinates (r, e, ~ ) and using as 
• dS • 

independent variable, a := Je ha s components (r, r, "S ) • Using 

these, (301) may be written 

e... • A';A ]' (de: c 
~) 1'; -»; + ~ [ 1'"A.,.. of- V' e + J 'f J;'&f -s: ct (3.2) 

e, 

and the equations of motion are the EUler-LaGrange equations using 

the "space" LaGrangian 

Consider the motion in the median plane (z =0) where the 

magnetic field has the form 
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(3.4) 

In terms of the relative deviation from a circle of radius r o' 
defined by 

the equation of motion following from (3.3) is 

;t "j" It. +1-J ( .J :;: /+-~, - - er; 130 (J+:t) ~f(e) 
dB- ,J(I+-':t)~+:(J.. 1(/r~/'+ XL c.f' (3.6) 

Three facts may be noted about (3.6). First, a particle of momen­

tum 11 s a t i sfLes the same equation about radius 1'/ as a particle 
Pi '(./ fe+1 

of momentum ~ about 10 if F := ( ~iD ) . It is thus clear 

that trajectories of particles of different energies differ from 

each other only by a scaling factor; the number of oscillations 

cp
 

per revolution is therefore the same. Such an accelerator is called 

a "scaling" accelerator. Second, (3.6) has an inhomogeneous term 

/ e Yo 8 0 Ire) 
and third, it has non-linear terms (arising both from kinematic 

effects and from the non-linear variation of field with radius). 

The non-linear terms are much more important than in conventional 

accelerators. Because of these non-linearities, the forced os­

cillation about the reference circle, caused by the inhomogeneous 

term, and the free oscillations about this forced solution do not 

superpose. The inhomogeneous term must be removed in order to 

calculate correctly the radial and vertical frequencies of oscilla­

tion. 

To remove the inhomogeneous term, the equations of motion are 

written about an arbitrary curve r in the median plane. Thus -e 

(3.7) 
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'11_:. =' ILJ . b =0 (3.8)
r .) - , 

. where ds is the element of arc length along Ee. The formulae 

(3.8) are the Serret-Frenet4 formulae with the torsion ; = o. 

Denoting derivatives with respect to s by primes, it follows from 

(3.8) that 

r I -::: (/ + ;!) E + ;¥ 1""1 of- J I12 ., 
(3.9) 

and by using this, the variational principle (3.1) may be written as 

~ (IJ{!+ j)'+ K'9-s: f- c" [" 'A", + {t + ; }At; +- J 'A k]Jd5 ~O • 

s, ( f (3.10) 

The variational principle (3.10) is equivalent to a new "space" 

LaGrangian 

e
where ]jb is the vertical component of B along '::e. This term 

vanishes when a particle of momentum ? has the curvature ~ in the 

field B~Q, i.e., when its path r is a solution of (3.6). If 
Q -e
 

further r is chosen to have the period of the magnetic field, the
e-
homogeneous differential equations will have only this period in s. 
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The curve r which has these properties is called the equilibrium
-e 

orbit. It is a generalization of the equilibrium circle of conventional 

accelerators. Expanding (3.12) to first order in ~ and J gives the 

linearized equations of motion about such an equilibrium orbit 

I f~ -;1.: -=: 0 

=0, 

where 
::: 

(3,14 ) 

is evaluated on the equilibrium orbit Ee' In order to calculate n 

it may be noted that there is a unique relation between 8 and s 
_ - -,....­

5(9)=. j 
& 

!-r/-+ "'e"1- de (3.15) 
o 

and quantities along the orbit may therefore be discussed as 

functions of either s or @ The variable 

;2..7/5.if= S{.27r) (3.16) 

may also be used.
 

The magnetic field on the equilibrium orbit may be written using
 
..P 

Frs) := d(e) ::: (~)'~f(fl) (3.17) 

Then -k4 
;;:: (1' ) (lr€:') - (, r _. ) FrsJ 

~(e) .Bb >e(S) (3.18) 

and 
»e, JBb dl' dEb ;)8- :: - of .at ()r "RX 7e CJz (3.19) 

It is clear from Fig. 3 that 
;;Je ~.2 

=: Co'Sf ) "'" reCJ%/ dr '"Jz 

(3.20)dY'e 
=: - l'e .fa-.t, f

de 

- 7 ­



MORA 219
 

so that "klJ (j-) 5..ec t + d S:-~... rp9Bb/. := 
t'''e s» 'r=re 

Def ine I'" by /,.,10 :::';J FI3) and denote all quanti ties evaluated where ~ ~o 

with subscript o. Then 

z: 

(3.21) 

i.!owhere no = -ro 
The Eqs. (3.13) may be written as 

Z II f­ [ 
;;,

F (5) 

f'Joi:' f 
-=0 

(3.22) 

[ me> 
al­

I o 

Fr5) 

The extra term in the radial equation comes, of course, from 

the centrifugal force and always aids focusing. The firstof the 

terms common to both equations is the usual gradient focusing. The 

radial (vertical) motion is focused (defocused) by the gradient in 

magnets of positive curvature and defocused (focused) in magnets 

of negative curvature. The second term gives "edge" focusing 

(also called "wedge" or Thomas focusing) and arises physically from 

the non-perpendicular entry into and exit from the field. This 

term is large when the field is changing rapidly along the equili ­

brium orbit and is defocusing for radial (;t) motion and focusing 

for vertical CJ ) motion, since F' tan¢ <O(except where a straight 

section is placed in the center of a negative magnet). In a radial 

sector FFAG accelerator with a small k the edge term is important 

for vertical stability, though the effect on the radialmotion is 

small. It is clearly necessary in the design of an FFAG accelerator 

to calculate the equilibrium orbit carefully, since the edge focusing 

terms are sensitive to its variation. 
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It is instructive to consider an ideal field which goes from 

its full value (F(s) = 1) to zero (F(s) = 0) in an arbitrarily 

short distance at s = O. This is called the "hard edge" field. 

Then r' = - [;(5) and there is an instantaneous change of the slope 

or an orbit at the edge 
~(t:l) ta." ito)b /x') = j 14.-<'- ¢(S).J.(S) ::krs)cls ::;:­

/0<15' 

;3(0) 1(~()) 
1

~ ('1 ) = - ­
~ ~o 

Consider the (2 x 2) matrix which transforms the (1 x 2) 

vector whose components are X and 1t 
1 

for the radial motion (and 

~ and d I for the vertical motion). For the edge this matrix 

has the form: 

o 

I 
(3.23 ) 

where the positive (negative) sign is used for radial (vertical) 

motion. The hard edge theory is useful for preliminary calculations 

to investigate effects of some parameters such as k, magnet lengths 

and straight section lengths. It of course can give no information 

on effects of vertical gap size. 

The Eqs. (3.22) have periodic coefficients and the form of 

their solutions is given by Floquet's Theorem. 5 The transformation 

matrix M for one period of either of the differential EqS. (3.22) 

gives the phase change per sector~ by 

.L Trac e. [ M}
:<. 

(3.24) 
No­and the number of betatron wave lengths per revolution is V = 27r 

In radial sector machines the coefficients in (3.22) are even 

about the centers of magnets. If the transformation matrix from 

such a point of symmetry through a half sector is 
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(~ :) 
then by applying time reversal, the transformation matrix for the 

other half-sector is ( ~ 

and ~o- = aJ+bC (3.25) 

Note that a and b are linearly independent solutions of (3.22) 

and c and d are their respective derivatives, all evaluated after 

one half period. 

B. Design Calculations 

During the design of this accelerator, magnetic field measure­

ments had not been made, so that an experimental (felwas not 

available. The magnetostatic problem of finding fee) for given 

pole and current geometry is a very difficult one. The usual 

conformal mapping methods treat only two dimensional problems. 

However, in the present case, if effects of curvature and of k are 

neglected, so that the field is uniform radially, the problem 

reduces to the e-j plane and conformal mapping methods may be 

applied. It was desired to have fields equal in magnitude on an 

equilibrium orbit within positive and negative magnets. To satisfy 

this condition, fields from two conformal problems were combined to 

give an approximate F(s) along an assumed equilibrium orbit, taken 

to be the hard edge orbit. 6 Each problem had only one of the two 

poles in a sector energized. The problem was done in this way to 

include the different path length of the orbit because it is not 

perpendicular to the magnet edges and to include the shift of the 

point of zero field between the magnets toward the positive magnet. 

~ This latter effect OCCurs because the field is stronger in the negative 
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magnet than in the positive magnet at a given radius by a factor 

( t)~ + ­
Y'e / f'e ,where "f'e and Y'e are the radii of the equilibrium 

orbit in positive and negative magnets. This shift is about 2 mm 

in this accelerator and has a small effect on particle motion. 

The two magnets were assumed infinitely thick and infinitely long 

in the conformal mapping, so that effects of other edges were 

neglected. Since the field was assumed uniform radially, the 

variation of potential along the pole faces due to the scalloping of 

the equilibrium orbit was neglected. The return currents of the pole 

face windings at t~e magnet edges were assumed of zero cross-sectional 

area, giving a discontinuity in potential. 

The approximate F(s) found in this way can be used to find 

~ and re along the equilibrium orbit by using (3.18) and (3.20) 

to rewrite (3.6) as 
Frs) C!.-Mf 

I 
¢ 1= ­,/Jc> Y'e 

Y'e 
/ 

-= >UviJf (3.26) 

These equations cannot be solved in an unique way because 

F(s) must be recalculated for e~ch new equilibrium orbit. In 

practice, with an approximate F(s), the results seem quite accurate 

in that F(s) does not change much when recalculated along the new 

orbit. 

In the original design calculations, the above approximate 

method was used to find numerical values of ¢ and reo These 

values and power series approximations for F(s) gave power series 

solutions of (3.22) in various regions. In this way the elements 

of the transformation matrix were found numerically. The first 

effect investigated was the dependence of ~ on vertical gap size. 

It was found that if the vertical gap is constant rather than pro­

portional to the radius, then 1/ changes by about 20% across the z 
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radial aperture, due to the different fringing effects at different 
radii. This is approximately equal to the spacing between integral 

and half integral resonances, so that it was considered necessary 

to scale the gap with radius, though this increases the current 

necessary in the pole-face backwindings. The dependence of fre­

quencies on the form of F(s) in the fringing field was considered. 

The frequencies do not depend strongly on the shape of F(s), but 

are sensitive to the maximum value of ~ attained along the equili­

brium orbit, which depends essentially on the magnetic length of 

each magnet. Approximate forms for F(s) were used to determine 

parameters which would give the desired frequencies. 

Because of the different dependences of ~ and ~ on gradient 

and edge focusing, it is possible to vary (or "tune") the two 

frequencies independently. Changing k changes LJx more than 

and changing the "scalloping" of the equilibrium otbit by changing 

the relative currents in positive and negative magnets changes ~ 
z 

more than -V- x ' These eff ects were calcula ted by using a new value of 

no in (3.22) in the first case and finding the new equilibrium orbit 

in the second case to give new values of t and rein (3.22). The 

results of these calculations are 

,6~ 1 6fi. ...L f:J1e 
"'-' ~~ 2 ,• ~ 10"'=iT..(:: ~ ~V'J 

I::. Vt' A- I 6.8 "3 .16~ f"\.,
));. ;2 ­

V~ 3 -13 Bd 

where b B is the difference in f ield intensity between positive and 

negative magnets. 

C. Ex Post Facto Calculations 

After the construction and operation of the accelerator, various 

calculations, have been done to investigate orbit theory problems. 
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Using magnetic field measurements, (3.26) and (3.22) have been 

integrated numerically to find "1T x and -V z ' More extensive calcu­

lations have been carried out using the MURA IBM 704 high speed 

digital computer. The magnetostatic problem of the fields generated 

by the given iron and current distribution have been solved by use of 

a relaxation method proposed by L. J. Laslett7 and programmed by 

J. N. Snyder (the Forocyl program). This method begins with the 

observation that in a scaling FFAG accelerator the three-dimensional 

Laplacian problem for the magnetostatic scalar potential ~ may be 

reduced to a two dimensional problem. In the special case of a 

radial sector accelerator, the quantity 

-(~+/) 

(~) p 
(3.27) 

is a function only of the variables 

(3.28)/; : 
and satisfies the equation 

(3.29) 

JL is an odd function of ! with period one. 

Prescribed boundary values are entered on a two-dimensional grid and 

will be satisfied by the solution, which is given in the form of 

numerical values at points on this grid. These boundary values 

represent iron surfaces of infinite permeability." Effects of currents 

are taken into account by discontinuous jumps in ~ at grid points 

where currents are placed. 

The Forocyl program can also be used to integrate the simpler 

~~ )'llequation 
:;-a.. + ~'2. =0 (3.30)J _ 13 _ 
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with the same boundary conditions. This equation neglects effects 

of finite k and effects ~ the third (radial) dimension, which exist 

even when k = O. However, it may be seen that with k = 0 only the 

13 ~ is affected by the difference between (3.29)term of 

and (3-.30). The median plane fields (?!J-i, .= - 8/;. ) and their 
~1 ~ = o 

first derivatives, ( ~~) ,as determined from (3.29) or (3.30), 

differ only by finite k effects. The frequencies of oscillations 

are determined by these quantities in the linear approximation. 

The original design calculations correspond exactly to the 
. 

approximations used in (3.30) except that each of the poles,in the 

conformal mapping method of the design was assumed semi-infinite 

a 4imuthally and vertically; also, the variation of potential along 

the pole faces due to scalloping of the equilibrium orbit has been 

included in the calculations done with (3.30), but not in the design 

calculations. The more exact calculations done with (3.29) correspond 

to the actual magnets except for finite permeability effects. 

The magnetic fields generated by the Forocyl program are 

stored on a two dimensional mesh and used in the solution of the 

dynamical equations derived from the LaGrangian (3.3) in the Formesh 

program of the MURA Computer. This program is due also to L. J. 

Laslett and J. N. Snyder. 

Two separate calculations have been done with the Forocyl and 

Formesh programs. Both calculate -V- x and --V z with the magnets and 
currents of the present accelerator. Calculation 1 used (3.29) to 

generate the fields from the poles, while calculation 2 used the 

simpler and less accurate (3.30). Results of both calculations 

are given in Sec. IX . 
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IV. MAGNETS 

The general structure of the magnets is illustrated in Figs. 

4 and 5. The magnets have plane pole faces machined from forged 

slabs of SAE #1005 low carbon steel 1-1/8 in. thick. The pole 

face coils are wound with number 22 formvar insulated wire. Support 

for the coils is provided by a 0.025 in. dural plate in the shape 

of the pole face. Coil forms were machined from lucite with grooves 

for holding the wire 0.0005 in. less in width than the diameter of 

the wire. If the iron surfaces were equally spaced along equilibrium 

orbits, the pole face windings would parallel the equilibrium orbit. 

However, since the pole faces are flat and the gap increases with 

radius, it may be shown that, in the first approximation, these 

windings follow arcs of radius ~i( ;0 to terminate properly 

the magnetic potential at the surface of the iron, neglecting 

fringing effects. The coils were wound on the forms and the support­

ing plates were attached to the wires with an epoxy resin cement 

(Araldite 104 or Hysol 2060) which adheres to formvar and aluminum 

but not to lucite. After the cement hardened, the coils could be 

stripped from the forms. Due to progressively closer spacing of 

the wires with increasing machine radius, it was necessary to have 

two layers of windings over the outer half of the coils. The second 

layer was cemented to the opposite side of the supporting plate. 

Water cooling pipes run through the thick portions of the coil bundle. 

Field and field gradient measurements were made with a flip 

coil and fluxmeter. The flip coil assembly is mounted on a frame 

which permits radial and azimuthal positioning of the coil. Measure­

ments of the field were made in the median plane at a number of 

points along the centers of the magnets and azimuthally at three 
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different radii. Three coils are mounted on the shaft with the 

central coil used for field magnitude measurements and the three 

coils connected as in Fig. 6 for field gradient measurements. Coils 

1 and 3 are connected in series bucking so that when the fluxmeter 

indicates a null, the potentiometer reading is proportional to 
8 3 - 8. f).B 

; therefore k can be obtained directly from- B~ :: :B 
the potentiometer reading. This bridge method makes it possible to 

measure k to a relative accuracy of the order of 0.1%. 

It was observed that in the low field regions the results of 

measurements made on an isolated magnet were different from those 

made on the same magnet when it was flanked by other magnets. This 

was true even along the central line of the magnet where fringing 

is negligible. This effect is presumed to be due to the variation 

of permeability of the iron in the magnet return yoke with flux 

density. For this reason, the field measurements were made with 

guard magnets on either side of the one being measured to simulate 

actual operating conditions. 

In order to reproduce fields it was found necessary to return 

the current to zero whenever any changes in current were made. This 

current cycling was always done by switching off and on the primary 

power of the magnets; reducing the currents slowly to zero and 

raising them slowly gave different resulting fields from the 

switching process. This strong dependence on magnetic history was 

very evident in subsequent studies with the electron beam. 

The field gradient was adjusted by changing the number of turns 

around the return yoke until k and B at the injection radius were 

within ± 1% of the mean values. Since this was the only correction 

applied to the calculated current distributions, it appears that at 

least along magnet centers the iron may be considered to have zero 
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reluctance. The reinforcing currents on the return yokes of the 

magnets apparently compensate for the finite reluctance of the 

return yokes. Except for a slight deviation at the point where the 

second layer of the pole face coil begins, k remains constant to 

within ± 1% along the central line of each magnet. The field 

gradient can be changed for tuning purposes by running current through a 

separate twenty turn return yoke winding. This change of k does 

not scale, being greater at small radii than at larger ones. 

The magnet coils in the assembled accelerator are connected 

with the positive magnets in one series circuit and the negative 

magnets in a separate series circuit. This enables one to tune 

by changing the relative currents in the positive and negative mag­

nets. Power for the magnets is supplied by a selenium rectifier 

power supply. Although it would be a convenience, it has not been 

necessary to stabilize or regulate this supply to maintain steady 

and reproducable beams under favorable tuning conditions. 

V. ACCELERATOR CONSTRUCTION 

The overall structure of the accelerator is seen in Fig. 7, 

and a detail of a portion of the accelerator with one magnet 

removed appears in Fig. 8. The accelerator is built on a 1-1/4 

in. cast aluminum plate supported at three points by aluminum legs. 

This table is cut at two azimuths and cemented to an insulating 

sheet with thermo-setting plastic to avoid short circuiting the 

betatron accelerating core. Holes were precision jig-bored through 

the table and dowel pins, inserted from below through those holes 

into matching holes in the magnets, position all magnets to within 

0.001 in. The table is flat to within 0.003 in. The vacuum tank 

is made of welded aluminum, and is in two halves, bolted together 

with teflon gaskets again to avoid short circuiting the betatron. 
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The tank is evacuated with a four-inch oil diffusion pump backed 

by a booster oil diffusion pump and a mechanical pump. A refrigerated 

baffle is used and a vacuum between 10-5 mm and 10-6 mm of Hg is 

standard in this system. Access ports around the inside of the tank 

are provided at the centers of magnets except for regions obstructed 

by the pump-out manifold. There are also ports on the outside 

circumference of the tank between every pair of magnets except at 

the points where the two halves of the tank are joinedo 

Injection is by means of an electron gun of the type used in 

the University of Illinois 80 Mev betatron. It may be used as a 

pulsed or continuous source of electrons. For pulsed operation a 

delay line is discharged through the primary of a pulse transformer 

to provide pulses of from a few tenths of a microsecond to three 

microseconds in duration. Operating from a D.C. high voltage supply 

three milliamperes of continuous beam may be injected. 

The betatron core is excited sinusoid~lly by a 500 cycle 

generator to provide approximately 40 volts per turn maximum to the 

electrons. The 500 pounds of 0.014 in. transformer iron in the core 

are driven to ~10,000 gauss dissipating 6 kilowatts of heat at 

full excitation, and water cooling of the laminations is provided. 

An alternate pulsed supply employing FG 105 thyratrons has also been 

employed permitting more flexible acceleration programming. 

Without some additional mechanism to expand the equillibrium 

orbit away from the injector rapidly during the first few turns 

around the machine the beam might be lost due to striking the in­

jector anode, which protrudes radially about two mm beyond the 

filament; the 40 volts from the betatron core increases the orbit 

radius onlyO.08 mm per revolution at injection. The expander 

mechanism which is used consists of the circuit shown in Fig. 9a. 
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The 0.05~f condenser is discharged through the one microhenry 

inductance of the vacuum tank of the accelerator by means of a 

5C22 hydrogen thyratron. Since the thyratron will not conduct in 

the backward direction, this results in a voltage wave form across 

the accelerating gap which is approximately one half of a cosine 

curve having the resonant frequency of the 0.05;uf condenser and tank 

inductance combination, (Fig. 9b). Injection takes place during the 

second (positive) portion of the waveform and the electrons receive 

about 500 volts per turn at the peak voltage. Longer expansion 

pulses for use with longer injection pulses are provided with the 

same circuit driving a 2 to 5 turn coil placed around the machine. 

VI. STATIC MEASUREMENTS Of BETATRON FREQUENCIES 

The first tests of betatron oscillation wave lengths were made 

using a special injector which produces a continuous beam of electrons 

through a one millimeter hole in its anode. This injector was 

placed at the center of a positive curvature magnet; at the center 

of the next positive magnet a metal plate with several small 

equally spaced holes was placed to define rays of electrons. These 

rays then produced bright spots on a zinc sulphide fluorescent 

screen placed at the center of a subsequent positive magnet. These 

spots could be observed visually through a lucite port in the vacuum 

tank and their separations determined using a one millimeter grid 

ruled onto the screen. From Floquet's Theorem5 for linear oscillations, 

crx can be determined from the ratio of the separation of two radial 

images on the screen m sectors beyond the injector,bX
m, to the 

radial separation of two holes in the metal plate, A~l' when the 

injector, plate, and screen are at homologous points in the magnet 

structure: 
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A similar expres sion holds for (") z
 
With m ~ 2, values of 0- and 0- were found in the above
 x z 

manner for several tuning conditions. However, due to non-linear 

effects, (6.1) is only approximate. More accurate determinations 

o-'sof were made with the screen placed seven sectors beyond the 

injector. In this case, the machine was tuned (by varying the ratio 

of magnet currents) until a small group of rays came to a focus. 

In radial sector accelerators with non-linearities present, a group 

of rays can come to a focus only at the maxima of the oscillations 

of the central ray of the group. When such a focus is obtained, the 

path length between the injector and screen is an integral or half 

integral number of betatron oscillations of the central ray about 

the equilibrium orbit. If the tuning conditions for two successive 

nodes are know, for other tunings may be found by interpolation. 

Vertically, the current ratio tuning range is large and two nodes were 

obtained; interpolation between the nodal tunings agreed with a 

modification of (6.1) applied to the spacing of one pair of rays of 

quite different amplitudes. Since only one node was obtained radially 

(due to the smaller range of radial tuning) this modification of the 

two ray method was used to find cr:. The results for small amplitude 

are given in Section IX. 

It was possible by the above method to study the variation of 

Clx with amplitude. The x amplitude was changed by moving the 

equilibrium orbit relative to the injector (changing the injection 

voltage). The tuning was then changed until a group of rays was 

brought to a focus (corresponding to an odd half integral number 
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of oscillations). The oscillation amplitude then is half the difference 

between the injector radius and the radius of the focused rays on the 

screen. With these data on the tuning change with amplitude for a 

given frequency, and the frequency change with tuning from the pre­

vious measurements, the results indicate ~ x is reduced by several 

per cent at 2 cm amplitude of oscillation from its value at zero 

amplitude. Since 0- is close to the major resonance, 2 ~ /3,x 

accurate quantitative interpretation of this data in terms of 'x 

versus amplitude is not reliable; however, the sign and magnitude of 

the effect agree with subsequent digital computer results. 

VI I . AOCELERATED BEAM 

A. Pulsed Injection 

With the standard pulsed injector, the accelerator is generally 

operated using the expander and injection pulses of a fraction of a 

microsecond in length. Accelerated beam may be detected either by 

observing x-rays from a target probe or by charge collection on the 

target probe. The electron energy may be deduced from the time delay 

of the beam pulse from injection, from the radial position of the 

probe, the electron revolution frequency (Sec. VIII), and from the 

x-ray energies. With 40 volts energy gain per turn, the beam reaches 

full energy in 160 microseconds. With pulsed core excitation, beam 

may be accelerated to an intermediate energy in the machine, allowed to 

coast there for up to five milliseconds, and then betatron accelerated 

to the target. It is of interest to note that the electrons detected 

after five milliseconds have traversed about 3 x 106 non-linear 

sectors. Such a coasting beam is attenuated considerably by gas 

scattering; measurements have been made on the half life of the beam 

by varying the turn on time for the second acceleration pulse. For 
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example, at a pressure of 2.5 x 10-6 mm Hq and a vertical aperture of 

about one cm the beam half life at about 300 kilovolts is 600 micro­

seconds. From charge collection, the beam is found to contain of 

the order of 108 electrons per pulse, no correction being made for 

scattering or secondary emission from the target. 

Under certain tuning conditions, considerable beam is captured 

and accelerated without the expander. It is observed that the beam 

intensity in this case is virtually unchanged by increasing the 

injector pulse length from a fraction of a microsecond to three 

microseconds, possibly indicating that the mechanism for missing the 

injector is related to transient space change effects. 

Although beam is obtained under a variety of tuning conditions, 

as will be discussed later, the most reliable operating region, and 

consequently the usual operating conditions correspond to x of 

about 2.75 and V z of about 1. 75. 

B. Continuous Injection 

Although the major purpose of this model is to study FFAG prob­

lems pertaining to the design of very high energy accelerators, a 

promising application of FFAG is in high intensity electron betatrons 

of medium energy using continuous injection. Since the guide fields 

are time independent, electrons of all energies are accelerated as 

long as the betatron flux continues to rise. To examine this 

possibility, the injector of the model was connected to a D.C. power 

supply and operated at about three milliamperes continuous emission, 

Accelerated beam was found over a full 600 microseconds, repeating 

every two milliseconds (the betatron flux period with sinusoidal 

excitation.) Tuning conditions to obtain beam were somewhat more 

critical than with pulsed injection using the expander. With 
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optimum tuning the electrons collected on the target prove gave a 

time average current of at least 1.5 x 10-8 amperes, or about 

108 electrons per pulse. Under these conditions the capture efficiency 

from the convent~onal betatron gun was quite low. From simple orbit 

theory it is not apparent in this case how electrons miss striking 

the back of the injector in the absence of transient space charge 

effects. One possibility is that a field perturbation with a strong 

radial dependence, such as electrostatic fields from the injector, 

could enable particle orbits to move away from the injector more 

rapidly than the average spiralling due to betatron acceleration. 

In order to realize fully the high intensity potentialities of 

continuous injection, injector systems designed specifically for 

the purpose must be developed. 

VIII. RADIO FREQUENCY EXCITATION OF BETATRON OSCILLATIONS 

In addition to the static one turn method of determining 

frequencies of betatron oscillation, discussed in Section VI, a dynamic 

method using the accelerated beam is also employed. This technique, 

previously used on the University of Michigan synchrotron,8 consists 

of applying an rf electric field perpendicular to the particle orbit 

and observing the frequencies of this rf which drive the betatron 

oscillations in resonance. 

A. Calculation of Rf Resonance Frequencies 

The rf frequencies which may perturb the beam can be easily 

found. Assume the rf field is uniform and a delta function of 

azimuth. Then the equation representing the x oscillations of a 

particle is approximately t' -9!1.-9- 7''YU ~ 
r' cJ'2..z ~ ':» .::: A e 0z. e 

?+- "'»1 (8.1 )
d1.9-~ 
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where m is an integer, is the rf oscillator frequency, and ff r f o 
is the particle revolution frequency; ~, the independent variable, 

defined in Eq. (3.16), equals 211 f t. 
o 

The x oscillation grows when 

(8.2) 

An integral number of extra betatron or rf oscillations per revolu­

tion clearly makes no difference in the phase of the force on the 

particle as it passes the rf kicker. 

If there are spatial gradients in the rf field, the relation 

for resonance is 

(8.3) 

where p and q are positive integers and / ~ Poft ~ if . 9,10 

It is also possible for the amplitude of oscillation to grow when 

p or q is greater than one and the rf field is uniform, if there are 

non-linearities present in the particle equation of motion; any such 

effects here would be masked by the ~ectric field gradients. 

B. Experimental methods 

To excite betatron oscillations in the model, rf is applied to 

a pair of small brass plates placed above and below the beam at the 

radius of the target probe. The rf oscillator, tied to the plates, 

is tunable from 5 to 60 Mc and delivers up to 300 volts. The 

electron frequency of revolution goes from about 35 Mc at injection to 

75 Mc at maximum energy. Throughout the measurements trt < ~ 

Both radial and vertical betatron oscillations can be excited by 

the rf on the plates, the electrons apparently seeing both radial and 

vertical components of electric field. A difference in beam behavior 

usually makes it possible to determine which oscillation is being 
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excited; when radial oscillations are driven, the beam is observed 

to strike the target earlier in time; when the vertical oscillations 

are excited, however, the beam strikes the vacuum tank and is not 

observed on the target probe. 

The rf frequencies which perturb the beam occur in pairs; that 

is, if tIl = (~-111) /0 is a resonance, then so is fY'f2 =(Yf7+I- ~)fc,. 
The sum of these two measured frequencies must add up to thef o' 

revolution frequency. If \J is known to within a half integerx 

by other methods, its value is then determined. Rf frequencies are 

found not only for 1f and 11 z' but also for 2 ')ix' 2V' z' andx 

v x + V z' as expected with gradients in the rf field. A typical 

set of frequency measurements, assignments and results is given in 

Table II. 

TABLE II. Determination of IT and 1/ from rf resonance frequenciesx z 
a b 

Measured Type of fo Assignments 
freq~ency oscillation Mc frf/fo frf/fO Results 

rf 
16.5 a .223 J. - \'FJ 
57.5 d 74 .778 -v: -I ~:::: 1. 78J 

23 ;; .311 3 -lTx
51 X 74 .690 ~::c2.69v -.:tx 

35 g (?) .466 (Vy +'l-J)-'f
40 ? 75 .533 t;--( v}: t~) 1-.'~+~= 4.47. 
27 :Y' .365 J.. v

(;' 
-,- ~ v~: 5.37 

30 'X .406 r 

a. Sum of the two f..,f· 
b. Other methods indicate that f or these tuning conditions ';(,5"<~ <.. 3 
and /,5"< ~.( z, 

The values of \T obtained in this way appear reproducible and 

reliable to better than one percent. No appreciable changes in the 
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, 'r '.s 
y have been observed when the vertical aperture was limited or 

when misalignments generated deviations of the equilibrium orbit. 

Tests near the injector indicated that the radial betatron oscilla­

tions are probably less than 1 em so the frequencies measured should 

be those for small amplitude oscillations. 

SEC.	 IX. THEORETICAL AND EXPERIMENTAL VALUES OF BETATRON FREQUENCIES 

Measured and calculated values of -V and l.l for the designx z 
conditions (no k correction, current ratio unity) are given in Table 

III. 

TABLE	 III. Comparison of measured and calculated betatron oscillation 
frequencies 

Dynamic Static Design Calculation Calculation Calculation 
measure­ measure­ calcula- 1 with Com­ 2 with Com­ with measur­
ment s ment s t'lons pu t e d f'le Ld s pu t ed f'le Ids ed f ile Ld s 

2.85:t 0.02 2.87 e o.oe 2.80 2.83 2.78 2.841' 0.05 

2.18 i: 0.02 2.12 t 0.06 1.80 2.02 1.86 2.13 i 0.10 

The dynamic measurements, obtained by methods described in 

Sec. VIII, and the static measurements, Sec. VI, are in agreement with 

one another. The dynamic measurements are most precise and should be 

used in comparisons with theory. The dynamic measurements have 

been done at various radii and within the limits of experimental 

-'1"'5error the v are independent of radius, confirming the scaling 

nature of the fields. 

The methods used in the design calculations are described in 

Part B of Sec. III and the other later calculations in Part C of 

Sec. III. Calculation 1 is done using the Forocyl program with 

effects of finite k included, while calculation 2 uses the same 

program with these effects neglected. 
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r·. Calculation 1 neglects only the finite permeability of the real 

magnets and should be compared with the measured ~$. The two 

values of J)~ are seen to be in excellent agreement. The 7% error 

in ~ may be partly due to finite permeability effects. It should 

also be noted that misalignments or finite amplitudes of oscillation, 

which are present in the machine but not in calculation 1, may 

change the:J~ because of non-linear terms in the equations of 

motion; these effects, which are discussed in Sec. VIII, are believed 

to be small for the accelerated beam. 

Calculation 2 makes essentially the same approximations as the 

design calculation and should be compared with it. The ~s are again 

in excellent agreement. The 3% difference in ~ z between the two is 

believed to be due mostly to the variations of poleface potentials 

included in calculation 2, but not in the design. Other numerical 

calculations have shown this effect to be of this magnitude and sign. 

Thus the large (approximately 18%) difference between the design and 

measured values of \lJ appears to be due partly to k effects (8%) 

and scalloping effects (3%) neglected in the design, while the 

remainder is due to effects such as finite permeability, misalignments 

and non-linearities. 

The calculation with measured fields and the experiments agree 

within the ascribed errors. The errors given for the calculation 

are due to positioning uncertainties (about 0.1 0 ) of the flip coil 

used in the field measurements. Measurements were made between the 

centers of two adjacent magnets. An error in the position of a center 

point can cause relatively large amounts to be added to or subtracted 

from the magnetic length of each sector, changing the scalloping of 

the equilibrium orbit and ~. 
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It i p of interest to note here the relative insensitivity of 

~ V;to the approximations of the different calculations, and con­

versely the sensitivity of ~. This sensitivity of ~ is particu­

larly pronounced in machines with large flutters and large equilibrium 

orbit scalloping, such as the present one. It is of course because 

of this sensitivity of ~ to flutter that such a broad range of 

~ may be easily covered by current ratio tuning. 

x. PERTURBATIONS 

Experiments and calculations have been performed to test the 

effects of machine imperfections or misalignments on the equilibrium 

orbits by displacing entire magnets. 

A. Calculation 

With misalignments, as in the present calculation, the period 

of the structure and hence the period of the equilibrium orbit is one 

revolution, rather than one sector. The displacement of the equili­

brium orbit from its unperturbed form is calculated below in the linear 

approximation. 

Since an entire magnet is moved in the experiments, the motion 

of a particle inside a displaced magnet is unchanged by the perturba­

tion. Therefore, the matrix which transforms the particle displace­

ment ~ and its derivative ot I through the magnet which is displaced 

an amount ~~ is unchanged. However, ~ in the unperturbed machine 

is replaced by ~-~~ at both boundaries of the displaced magnet, while 

cr' is unchanged at the boundaries. By transforming with matrices 

through the undisplaced remainder of a revolution the new equilibrium 

orbit may then be found. This method neglects changes in the fring­

ing field, which do not enter in the approximation used below. It 

should be noted also that in the radial experiments, the magnet dis­
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placement and orbit displacement are measured radially from the 

center of the machine and not perpendicular to the equilibrium orbit, 

which is "scalloped" even without misalignments. Since the orbit 

displacement is proportional to the magnet displacement in the linear 

approximation, the error cancels. 

The two magnets of a sector are denoted by the subscripts "a" 

and "b". Transformation matrices are used between the centers of 

straight sections. The transformation matrix for one sector 

(10.1) 

has	 the forml l
 

MI:; M ( "3 (1..};3)
 

and 

(10.3) 

It is convenient to define the vector 

(10.4) 

and choose i = 0 at the center of the straight section immediately 

after the bumped magnet. Consider b to be the displaced magnet. 

Then 

(10.5) 

is the displacement vector at the center of the straight section 

~ immediately preceding the bumped magnet. The equilibrium orbit is 

then the solution of the equations which follow from (10.5) and 

(10.6)(d;:~Jj =_ /!h ((f;~4'1 
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Defining (th:. ma;~)ix 

Mt' :; c:' J:' 
elements- by 

with at'di - b"Cl =1, (10.7) 

the combination of (10.5) and (10.6) gives the set of linear inhomo­

= (10.8) 

Using Ct..N"'dN "= ~usNr, the 

I 
6.~ 

?. ( I - c.'-.....;j N o:) 
(10.9) 

Displacements at homologous points around the machine may be found 

by applying the transformation matrix Ml to Yo' 

To find values for the matrix elements in (10.9) the "hard­

edge" approximation was used with an orbit geometry which gave 

V;t:: ~, 71) ~ = /,73 , values close to those for which the experi­

ments were performed, )/)( ::. ;), b 'I) ~ ::: /. 77. 

By Floquet's Theorem,5 the displacements at homologous points 

lie on a sine curve of frequency V"" and amplitude A = ~d:+(a(dw+~tY:,')2­

which is invariant (independent of m). Calculated values of this 

invariant are given in Table IV. 

TABLE IV Maximum displacement of the equilibrium orbit with a magnet 
misalignment calculated at the centers of straight sections 

Wide magnet moved radially 1.6534 
Narrow magnet moved radially 0.3013 
Wide magnet moved vertically 0.8089 
Narrow magnet moved vertically 1.9423 

These sine curves are used in the graphical comparison of theory 

and experiment below. 
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B. Experimental Procedure 

Two experiments were carried out; one for radial misalignments 

and one for vertical misalignments. For the vertical bumps, a probe 

was used consisting of a wire mounted parallel to but about 1 em 

off the axis of a shaft which extended radially into the tank at the 

center of a straight section. The probe could be moved radially to 

detect the beam at different energies and by rotating it the vertical 

position of the beam could be found. This was done by observing the 

x-ray yield versus angular rotation of the probe. The scintillation 

detector is placed either near it or near a fixed broad target at 

a different azimuth and at a radius slightly greater than that of 

the probe tip. The vertical position of the probe where all beam 

strikes it corresponds to the equilibrium orbit at that azimuth. To 

determine the effect of one displaced magnet on the equilibrium orbit 

around the machine, the inverse experiment was done, finding the 

change in position of the equilibrium orbit at the probe azimuth while 

displacing each magnet vertically in turn around the machine. Dis­

placements were 0.045 in. produced by shimming. The experimental 

results are plotted in Fig. 10 with the theoretical curves. 

Radially, measurements were made by determining the radial separa­

tion between the probe and the fixed target (located in diametrically 

opposite straight sections) when the beam was divided almost equally 

between the two. This radial separation was found for a given rad~al 

displacement (0.062 in.) of each magnet in turn around the machine. 

The results are also given in Fig. 10. These are compared with dif­

ferences between calculated values in diametrically opposite straight 

sections. 

The error on experimental points vertically is due chiefly to 

determination of the probe angle. The readings were taken to the 

nearest 50, corresponding to an estimated error of about 0.4 in units 
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of the vertical bump .. All points agree with calculatons to better 

than 0.8 except one large error (Y3 for wide magnets). 

Radially, the experimental points are averages over data from 

outward and inward displacements. Occasionally the data were 

different, presumably due to non-linearities causing different phase 

shifts. The overall accuracy of the radial points is estimated to 

be ± 1/64 of an inch, corresponding to z 0.25 in units of radial 

displacement. All radial points agree with calculations to an ac­

curacy of 0.5 or better. 

The graphs indicate good agreement between the hard edge theory 

and the experimental results. 

XI. RESONANCE SURVEY 

The intensity of accelerated beam has been measured over a 

large section of the ~ - ~ stability region in this accelerator 

in order to study the effects of various resonances. 12 

A. Method 

The working point of the machine was varied by changing k and 

the magnet currents, as discussed earlier in Sec. III and IV. Since 

any changes in k do not quite scale the survey measurements were 

made fairly close to the injector. 

A region of the ~ - ~ plane was covered corresponding toV;
x z ; 

of from 1 to 3 and to ~ x of from 2~3 to 3. Measurements of the 

betatron oscillation frequencies were made using the rf resonance 

technique on the accelerated beam (Section VII). Intensity of the 

beam was indicated by pulse height on a scintillation detector. The 

frequencies were most conveniently changed by holding k constant and 

~ varying the current ratio and vice-versa. Intensities and measured 
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frequencies from one current ratio tuning run are shown in Fig. 11. 

Indicated are the possible positions of resonances, found by inter­

polation between points of measured frequency. A similar plot for a 

k tuning run is shown in Fig. 12. As indicated on the figures, a 

current ratio tuning run changes ~z almost exclusively while a k 

run changes only \lx' in agreement with part B of Section III. 

All of the data for this survey were taken with pulsed injection, 

using the"expander and the same magnet configuration. Due to differ­

ences in peak energy, beam length, and beam shape corresponding to 

different tuning positions, the photomultiplier pulse height is not 

exactly proportional to the number of electrons. However these 

corrections should be small relative to the range of intensities 

studied. 

B. Results 

The data from a number of tuning runs have been used to construct 

a contour map of beam intensity of a ~x ~ ~z diagram, Fig. 13. 

The contours indicate constant beam intensity, successive contours 

differing by v-iO in intensity. Outside the last contour, the 

beam intensity is not measurable. Table V presents the decrease in 

beam intensity in the regions of particular resonance lines, along 

with the stop band widths where the beam is completely destroyed. 

Also indicated are the number of places each resonance was crossed 

in the tuning runs and the number of places a decrease in intensity 

was observed. 
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TABLE v. Results of resonance survey 

Number ofcr.. Number of Percentage 
Resonance Places Places Decrease in Stopband 

Crossed Seen Intensity Width 
Integral 

.... 
\/3 = 1.0 2b 10C +0.08 
Vi= 2.0 5 100 ±0.12 
~= ib o 3.0 100 -0.10 
v~= 3.0 4b 100 - .12 

Half Integral 

:;;. \; = 3 4 4 100 ±0.01 
,::<. I,'j = 5 4 4 100 +0.02 
J.- .'J' = 5 2 2 100 :!0.02 

'~"".l~ -t ~'j = 4 4 4 100 +0.01

I)':, I '\-J = 5 3 3 100 +0.01
 
V'! -I-~ = 0 2 0
 

v-J- I 4 0
v. .. 

Third Integral 

4 4 0~j~ 5 5 2c 33c 
:;J J­
))0 = 7 3 14 70d
 
3\~, = 8 1 0
 

-, v'_ 
:Jv,t- 7 1 0 
3:\t = 8 3 3 100 ±0.01 

v t ;Z~~ = 5 3 3 85x " 
VJ' +:L\~= 6 3 3 80
 
V,f1.J;;,= 7 2 0
 
"';yl ;L J = 8 2 2 100 :to.Ol
 

or
.;1. v)' l' VJ = 6 2 0 
;2. V)' +vJ = 7 2 0
 
;) l.rx + I " = 8 3 3 75
 

),~'" 0 4 0~~ .. ;( ==
 
1 2 0
" J- V"..t= 

.2 I,r - v::: = 3,4 ~I 0 
.-t i 

Fourth Integral 

?,I1vj= 5,7,9,11 0
 
1vz = 11 2 C
 

V~+ 3~ = 6,7,8,11 ~\ 0
 
., '\i'~ "J = 9,10,11 ~I 0 
..\T~. )'\'}= 0,2 ~.1_ 0 
31T. - 1.T. - 4 1 0J K­

a. When not obscured by a stronger resonance 
b. At tuning limit 
c. Uncertain 
d. Undoubtedly due to .;l. -V~ + ~::-;., - SJ. 

j 
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c. Discussion 

Eq, (3.12) can be expanded in powers of X and J- to give the 

approximate equations of motion for the accelerator, considered as 

a perfect machine 

. d~ +- 1{:l.,t ­
d79~ 

J~ ~ 

~L + Vj J ­/ 

where the linear coefficient has been replaced by an equivalent 

frequency and the coefficients of the non-linear terms are periodic 

with period 2~/N in the azimuthal variable. 

Part of the character of the non-linear terms is due to symmetry 

of the magnetic fields about the median plane: only terms of even 

power in J appear in the radial equation of motion and only terms of 

odd power in 1 appear in the vertical equation. Imperfections will 

add other terms to the right hand sides of the equations, such as 

1A. (7.9-) Z fJ 1-) u ( l.9-) being periodic with period 2 7r, its 

magnitude and Fourier components dependent on the imperfections. 
9 10

Moser and Sturrock have shown that when the radial equation 

contains a term of the form . .. ,_I 
U.-l- -m &;t; J 1 

where m, p~ 1 and q ~ 0 are integers, then there are resonant 

phenomena when 

( 11. 2) 

This relation results also from a term in the vertical equation 

of the form 

where m, f ~ 0 and q ~ 1 are again integers. There are stable 

oscillations up to some finite amplitude when f + q ;7 4 and in some 
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cases when f + q = 4. The relation 

pV;c. - t t.J '= -rn 

does not lead to instability. 

The integer m in (11.2) labels the Fourier component of the 

coefficient of the non-linear term which drives the resonance. A 

case of great importance is m = 8, the number of sectors in this 

machine. Here the periodic non-linear terms give rise to instabili ­

ties even without any imperfections. These are sometimes called 

inherent or sector resonances as opposed to the usual imperfection 

or machine resonances. 

Integral Resonances 

These resonances, driven by imperfection forcing terms independent 

of oscillation amplitudes, completely destroy the beam over a large 

stop band b v.... ;: i o. / . As seen in Section X on misalignments, a 

displacement of one magnet produces a comparable displacement of 

the equilibrium orbit, even between resonances. The equilibrium orbit 

undergoes large oscillations near resonance, so that a large stop 

band is easy to understando It is possible that part of the stop 

.. r' _­band about v 3 is due to difficulty in missing the injector. 

Half Integral Resonances 

Such resonances are driven by imperfection terms linear in the 

oscillation amplitudes. The difference resonances do not affect 

the beam, but the other resonances destroy it with a stop band 

width of b v"'" ~. i: O. 0 I , a band much smaller than that caused by the 

integral resonances. These integral and half .integral stop band 

widths are comparable to those observed in the Brookhaven analogue. 

Third Integral Resonances p+ ~ = 3 

Terms quadratic in oscillation amplitudes drive these resonances. 

- 36 ­

12 



,.
 
MURA 219
 

As seen from Eqs. (11.1) such terms would be present in this accelera­

tor even without any imperfections. The inherent resonances arising 

from these terms are .3)T
)t 

"':. 8' 

~+JJ73:i. 

Both of these resonances completely destroy the beam, with a stop 

band width of D V :.1 0.01. The third integral imperfection resonances 

often affect the beam, but never completely destroy it. The im­

perfection resonances which attenuate the beam are 
V;+.21T = ma 

u-»; t v;;:: s . 
13 

Again, no difference resonances are observed including 2 ilz - ~x = o. 

Fourth Integral Resonances 

Terms cubic in the oscillation amplitudes drive these resonances. 

Inherent resonances, from terms in Eqs. (11.1) are 

'/ v~ -- S 
J-.Vx+ JVj z: 8 . 

These resonances conincide with 

strong imperfection resonances, so no statements can be made about 

the above inherent resonances. No other fourth integral r~sonances 

are observed including the difference resonance 2 ~x - 2 1Iz = O. 

There appear to be no signs of any higher order resonances. 

The above results, including the lack of any difference resonances, 

are similar to those of the Brookhaven group and are in good agreement 
9 10with the predictions of the theories by Moser and Sturrock. 
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Figure 

1.� Schematic plan view of the radial sector FFAG model showing a 

typical equilibrium orbit. The wide (positive-field) magnets 

are radially focusing and vertically defocusing. The narrow 

(negative-field) magnets are vertically focusing and radially 

defocusing. 

2.� Magnetic field and electron energy as functions of the machine 

radius in the center of a negative-field magnet. 

3.� Geometry of the equilibrium orbit. 

4.� Schematic cross section of a magnet and the vacuum chamber. 

5.� A positive-field magnet. A portion of the pole-face winding� 

for the lower pole is visible.� 

6.� Circuit diagram of the null reading flip coil arrangement used 

to determine the field gradient index of the magnets. 

7.� Photograph of the complete accelerator. 

8.� Photograph of the accelerator with one magnet removed to show 

a portion of the aluminum vacuum chamber and a port containing 

a probe. One of the insulated gaps in the aluminum table is 

vis able as a dark line running across the table below the 

flange joining the two halves of the tank. 

9.a.� Circuit diagram of the expander used to prevent the beam from 

striking the injector. 

b.� Voltage waveform of the expander pulse. The relative timing 

of expander and injector pulses is indicated. 

10.� Effects of misalignments of mdividual magnets on the equilibrium 

orbit in the accelerator. 

a. Radial displacement of a wide magnet. 

b. Radial displacement of a narrow magnet. 
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c. Vertical displacement of a wide magnet. 

d. Vertical displacement of a narrow magnet. 

The ordinates of curves a and b are the differences between the 

displacements of the perturbed equilibrium orbits from the un­

perturbed equilibrium orbit at two diametrically opposite probes. 

The ordinates for curves c and d are the displacements of the 

perturbed equilibrium orbits from the unperturbed equilibrium 

orbit. Orbit displacements are in units of the magnet displace-

mente The positions marked on the abcissas represent the centers 

of straight sections between sectors. The curves are drawn 

through the calculated displacements (circles). Measured dis­

placements are represented by squares. 

11.� Beam intensity as a function of current tuning ratio with no 

current through the bk coils. Relative beam intensity as 

measured by the scintillation counter is plotted on a logarithmic 

scale. ~rx and V-z of the points measured by the rf resonance 

method are indicated above the curve. Points of crossing of 

certain resonances are also indicated. 

12.� Beam intensity as a function of ~~ current tuning at the fixed 

current ratio 1.10. Relative beam intensity is plotted versus 

the ratio of 4l current in the positive magnets to the main 

current in the positive magnets. vrx and ~z of the points 

measured by the rf resonance method are indicated above the curve 

along with certain resonances. 

13.� Resonance survey diagram. The region of the v- - Lr stabilityx z 

diagram covered by the experimental survey is enclosed within 

the dotted lines. Lines of equal beam intensity are drawn for 

each factor of ~ in intensity. The outermost intensity 

line represents a pulse height of 0.1 volt while the number in 

the center of each region gives the maximum pulse height of 
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