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MIDWESTERN UNIVERSITIES RESEARCH ASSOCIATION*
THE REACTION OF A CAVITY ON THE BEAM CURRENT
J. Van Bladel
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ABSTRACT: This report investigates the action of a cavity gap on
the accelerator beam current. The point of view
will be to consider the gap as part of a cavity fed
from an input line, and not as a fixed voltage gener-
ator. The gap voltage is found ;:o be the superposi-
tion of two voltages: one related directly to the line
input voltage, the second induced by the passing
particle beam. The mathematics used in the report
are similar to those presented by Slater.l They
lead, in a rigorous manner, to the representation
of the loaded cavity in terms of current generators

and resonant circuits, a representation which has

often been used on intuitive grounds.

*Supported by Contract AEC #AT(11-1)-384

1. J. C. Slater: "Microwave Electronics.'" Ch. IV,
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I. General form of the equivalent circuit of a cavity containing currents.

(a) the normal modes of the cavity.

The cavity, with perfectly conducting
walls, is connected to an outside system

S through a coaxial line. We shall

assume that the frequency is suffic-

iently low for the lowest mode (the

TEM mode of elementary transmission

line theory) to be the only propagated
wave aiong the line.! LetTTbe a plane
Fig. 1 where all higher modes have been
attenuated. Voltage and current should be found in that particular plane. We
take the following sign conventions: current .positive when it goes into the
cavity through the center conductor; voltage positive when the center conductor
is positive with respect to the shield. The choice of a coaxial line input is a
natural one at thé frequencies involved in accelerator techniques, while -the
neglect of cavity wall losses will avoid mathematical difficulties.
The mathematical study of the cavity is based on the use of two sets of

eigenvectors. The first one is generated by the vectorial differential equation:

- 2 3
- o ok ¢, + &%ﬂ o =0 (1.1)
¢

1. This condition is not very restrictive in the present accelerator problem.
The second lowest mode is launched at a wavelength roughly equal to M{ R.*R,_‘)
where Roand R:are resp. the outer and inner radii of the coaxial line. This
wavelength is of the order of a fraction of a meter or less for practical lines,
i.e., the cut-off frequency is of the order of 1000 Mc/s or more.
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with the following boundary conditions:! &a normal to the cavity walls W,
curl ea normal to the T plane (E;. tangential toT ). Let the various ea be
normalized in the space "coaxial line+ cavity'” (see Appendix 1 for the dimen-
.sions of the quantities appearing in this report). The real vectors Z: ( /L) s
all of which are solenocidal, form an orthonormal set, suitable to expand the
solencidal part of a vector field.

->
The second set of eigenvectors is(: Mg , Where Cfg is an eigen-
¢

function of VZ wz
—A ¢ =0 ' (1.2)
ﬁ+c*% -

vanishing on the walls W  and the terminal plane 7T . The normalizedé form
an orthonormal set of irrotational vectors, suitable to expand the irrotational
part of a vector field. In accordance herewith, electrical field and current

densities will be expanded as

2rp)=Z %lk).§(¢)+ ?ﬁ(t)-gé(a) 0.3)
T .2 j).e ) (1.4)
“”L§&94u+§ww%m 1.4

The time-dependent coefficients can be given the name of "coupling coeffi-
cients" to the various "a" and "b" modes. The second part of the current
expansion is irrotational, and is associated with charge effects in the gap.

Of interest for the gequel is the quantity'lf;, computed at the terminal

plane], and representing in effect the average value of the ''difference of

1. The theory could also be developed with eigenvectors Eg. normal to W and
T, but in a less convenient form.
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potential" created by the "a"R mode between inner

and outer conductor. The formula for 'lfa is:

™ R
| A0 g T
“=37 L £€o.- f) 4R {1.5)

The actual value of 1}; depends, among other factors,

on the coupling between coaxial line and cavity.

(b} equivalent circuits

The problem to be solved can be expressed as follows: given ja and :!8' ,
find e, and e& . The differential equation for ee_ is very simple:

i+ U —p (1.6)

This equation, a consequence of the equation of continuity, will allow computa-
tion of that part of the electric field due to space-charge effects, namely
-
3 f 7y
= ﬁ () $ytn)

The coefficlent e, is found to depend only on j a and on the coaxial-line currenti.,
Wy, ol .
2/’ py* 2l "i'%:'-'/"'—d&-k v dA .7
Pyl ar e

This equation can be golved by operational methods for example. To take a
simple situation, if all initial values are zero, i.e., if the system starts from
rest, then Ea(p) can be found from the simple equivalent circuit of Fig. 3,

where capital letters indicate Laplace transforms
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—_—— A
- — with L, =——2— .8
o ~ T w2

. £

and the indicial impedance of the

resonance circuit is 3

Z(p)= he'\{—‘ (.10}

}og-n-wj

Fig. 3
The equivalent circuit will give the amplitude of excitation of the "a'th mode (a
radiative mode), provided the line current i is known. The latter, however,
depends on the coupling to the external system ,S . To find the line current,
- P
then, one considers the total electric field in plane T , i.e,zg(t). (eu, ’R) )
expresses its integral between inner and outer conductor as being V’(t), and

obtains! the following equivalent circuit as seen from the input plane 7 (see

¢

A “’7 Fig. 4). This circuit shows the
' T(f’)z cavity to behave as a current gink in
l < Y
qul z = Z ) 1lel h
a 2 parallel with an internal impedance
| e(ey) Z 300
l

composed of an infinite number of

resonant circuits in series.

Fig. 4

1. Under the restriction that the Fourier spectrum of the current density does -
not extend to higher frequencies than the cut-off of the second coaxial line
mode. Generalizations to multi-mode propagation in the coaxial line are
trivial, and will not be considered.
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(c) Powe_r delivered toc the beamr

The instantaneous power is

W(E)= [t Spb)di= Z eth) WO+ ZH) 118 an

The second term can be written as — 2 ?0 ‘.i..- - -- —- 2 ifg(f) (1.12)

-
Clearly, it is the result of the interaction of the irrotational part of j with the

field created by that part. It averages to zero over a time interval after which
j (r, t) reverts to its original value. This condition prevails, for example,

> :
when j (r, t) is a periodic current.

(d) Sinusoidal phenomena

Equivalent circuits can be obtained by replacing p by jw in the preceding
congiderations. Of particular interest is the study of the phenomena around one
of the resonant frequencies of the cavity, say ‘*—’p. Let us express the frequency
W as wp (1+A ) where 4, the relative frequency excursion, is a small number.

The cavity internal impedance takes the form:

2804 YE agp 2(0,2‘__%2;)‘*' 1.13)

and goes to infinity at resonance. If the exciting currents keep a constant ampli-

T L S L S i

tude around resonance, then the expresgsion for the current sink can be written

as.; z TQ 2 (‘ )
e =4 )
- 2enaz (3 X“*f .
Z?..Q‘w) V, V, Wa)l / (1 14)
P
Clearly, at resonance, the cavity behaves as a current smk of value_p, but this

) P
current ig not a local extremum at all.
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II. Application to an idealized accelerator beam current.

(a) model for the beam current.

—-—
N e -

N
| >
IL—vO-'E T o
P
é.

>

Fig. 5

It will be assumed that the bucket of particles
moves as a rigid distribution of charges, of
cylindrical shape, and of constant density
throughout a cross-section of the cylinder.
The assumption implies that oscillations
within the bucket average out as far as
charge density is concerned, and that the
bucket shape does not vary appreciably
over the smail range of kinetic energies
which will be considered here. The current
density then becomes a function of the
éngular position of the bucket, namely:

t
j(xs,b),—. T_EW__{(L@M_ %) '1: (2.1)
The origin of time coincides with a passage
of the maximum current at the gap (s = o).
The current density is a quasi-periodic
quantity, the period —5— being considered

as a very slowly varying function of time.

Expanded in angle harmonies, the current distribution can be written as

" * [ -
} (26)= E’-;;—‘f- lp [n.“"‘(ge“r‘%*”)*ﬁ;‘”(z,(e‘w"%*@z)*---- (2.2)
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The argument of each of the cogine functions is not precisely a periodic func-
tion of time so that, to be rigorous, the evaluation of the response of the cavity
t
t t lik odk_Z2 +¢ i ’ i
0 a current like Ced -] + ¥, should involve transient analysis
[+ —
of the Laplace transform type. In practice, however, © is a very slowly

varying function of time, and we shall make the approximation that the

response ;c:o . . .
i ( jédt+<ﬁ)=o., [ot + goﬂadt—tﬂe(t)#ﬁ] (2.3)

where éo ig the angular velocity at time t= 0, and A'é(f:): éﬂ') "‘éo ,

is the static response to a sinusoidal function of pulsation é and phase angle
¢({7):: (P, +§:Aé¢u— -Aé-t . The error involved could eventually be
calculated, and has been in similar situations of circuit theory..1 The adia-
batic hypothesis implies also that quantities like f Coo [.?,B.t +2 Cﬂ(l:)] dt
average practically to zero if taken over sufficiently long periods. Such integrals
will be found in beam power computations, and will systematically be discarded
whenever averages are computed.

As a further simplification, involving only lighter algebraic notation
without introducing any error in principle, it will be assumed that;; is
congtant over the cross-sectional area of the bucket. Generalizations are
trivial, and will involve replacing;: by a cross-sectional weighted average.

Asg a final remark, it will be noticed the Imax is proportional to the vel ocity

of the bunch, and is, consequently, a function of the beam energy.

1. See e.g. G.Hok,J. Appl. Phys., 18,242, 1948 for the response of a _
resonant circuit to a voltage with linearly varying frequency, and the difference
of this response from the static, adiabatic one.
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articular form of the equivalent circuit

The couplings of the nt® harmonic to the "a"th and "b"th modes are

respectively
i, j'(fn“:) d‘j’“’a s | "
J. =% A.¢ ,Le —FQM(A)JA:I% v, (2.4)
I, SACICRE™ .
R K T 9
° t {taw- 341.

It is useful, at this point, to introduce the notion of complex Q of a mode

relative to the nth harmoniec

V, 4 dﬁ
- , ("JMA _'S A W A
@a.-u" -—ngt: \_J;( S; -—R— Ean(a)d.& J A —--R e (a)daﬁ (2.6)

The interpretation of@lan will become clearer later on, but it appears from
(2.6) that® an Measures, roughly speaking, the ratio of voltage across the
gap to input voltage for the ath mode. This ratio, which depends on many
factors, such as coaxial line coupling, should be high for efficient beam accel-
eration. The equivalent circuit, as seen from the coaxial input, can be repre-

sented with the help of current transformers as:

T—> .
E::JL D LE | [
L T, ™
| 2,(8) _T(S) 280 Za(8) /8
‘ : %: ] i ___“‘."‘_._ :Tle
. : 2 ZZ(v8) ™ )
Fig. 6
The complex character of the turn ratios T T2w e Tn. . .1g due to the finite

trangit angle of the gap, which can make phase-shifts along the gap non

negligible. The current transformation is seen to involve an amplitude
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multiplication and a phase shift. The transformation ratio is, in addition,
frequency dependent through Za. At the resonant frequency of the

npnth mode it is simply Q‘!"\—

(c) Gap voltag_

It is ’(Q (ak).4n f[ztl(')ta(m.Zf(E)j(a)]dA Zc(e)vw zé{t}v}‘f 2.7)

This expressmn is simp11f1ed if one introduces the real q of the at th

mode, namely a P
'U'M !
CI« Vi = Va go wn ) _ (2.8)

It will be noted that qa, a real quantity, can be positive or negative.

. . R \ \}-4 o
There are, indeed, sign conventions for "U; and gap, namely:
positive from inner to outer conductor in the coaxial line, and from
entrance to exit grid in the gap. Equation (2.7) leads to an equivalent

circuit for the calculation of the gap voltage.

2 tan —
A o
[, 29a2 T
"EE_’; Fig. 7
The turn ratio —z%.?__— is frequency dependent, and should be cpmputed
a

for each of the frequencies contained in the input voltage V' . The
voltage drop in the impedance indicated as 2“ J represents the voltage

induced by the passing beam.

Zaw: g 2& ?&Q

g?ﬂaaggazﬂ.*_!_zvé \/6"‘ (2.9}
z 2 we € Tt Gep

and has to be computed, for each harmonic contained in the beam current,
by using the corresponding values of frequency and complex & . Around

a resonant frequency Wf. of the cavity, the first two terms reduce to

qP@J,ZZa-i-Z%Q\%@- FZ%? ?/OZ& Za,

atp atp
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{d} Effective gap voltage.

The instantaneous power delivered to the beam is not, because of the
finite gap width, the product of gap voltage and beam current. Let us
try to define an instantaneous effective gap voltage which, multiplied
by the beam current, will give the instantanecus power. We start with

the expression for the current absorbed by the cavity:

transformed cavity current due to V_
current
)
A(t)e ZQU (9) 24(29) Vi \& v’
I, 1' A U A

72.6) % 32 2 (26) " Zz @ 22.05) T 20

.14 T xT N e
™ beam frequencies other

frequencies.

” @ : From this knowledge of i{t}, the terms ¢ ([:) and
I

' Ja( E’) , necessary for the evaluation of the

s ZQM_;E* instantaneous power, can be computed as
2 te
Fig. 8 Je (8)= Ve TR 3;(-!- Q Z, - (2.11)

C(t 2@ I.'_ T ZQQ E!GJ E'a\fﬁ) Zdw
ki [“' ViTig 520 T 212

The power is Z% L) ga( (—) , neglecting the "b" modes,which
average fast to zero energy. It is a simple matter to see that part

A will interact with jaft) to give zero average power. The effective
interaction results from the effect of part B, the various terms of which
depend on the external system connected to the cavity. A term like

will interact only with 'Ua’L &e&l I’ , and not with the

harmonics. Iis average power will be:

oo badm 2o
R,_Z[?ge))\l & *] ‘&[VT* *}'&[UT,, ij;...,“.{w (2.13)

Terms of the formV’———“’-,— will interact with the various beam current

22(w)
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components to give power contiributions

2t (0)). ()= 3| R T o6 ate P Veo(wby | Zale'? i 145
. puretot) +f/)Zz;(f--z)

the phase angle (}M being the argument of &, /

The produat of the two cosine terms will be transformed into the sum of
two cosines, one of them averaging rapidly to zero, the second cne suscep-
tible of giving birth to a slow variation of power, i.e. to a useful effect on

the beam. This second term can be rewritten as:

; T %(Jédkﬂp,)\l'%(w'h. l{j’(la.) I‘; ]23:;9 (2. 15)

i.e. the interaction of the beam current with V‘ [—rl)* For purposes of

"effective" gap voltage then, one can use the following circuit for each of
the frequenc1es contained in the mput voltage

'ZQA?a

\' .né:} L

Fig, 8

provided the turn ratio is computed carefully. One must notice, in par-
- ticular, that %; must be evaluated at the frequency of the voltage com-
ponent being studied, and that @Lrefers to the harmonic component of

the beam current with which interaction is being considered.

{(e) Narrow gap.

This is d gap for which phase effects are negligible, even for the highest
non-vanishing harmonics of the beam current. Let "be the order of the

highest term which should be retained. The criterion for "narrowness"
1. This is not really the instantaneous power any more, but its short time
average, its quasi-instantaneous value.
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is then A m
R <%

A narrow gap introduces considerable simplification. Real and complex Q

become equal, and so do gap voltage and effective gap voltage. One overall

% .
equivalent circuit can be used. 21;‘24_‘(?‘%“) - i 5 ,‘2211,
ey 2a wt
Condutte| = T TR a0 — — e Mamagnd
> == —_—
]

ek ‘Y‘-d

Fig. 10

III. A few examples of beam acceleration.

(a) Deceleration by a passive dissipative load.

The power dissipated in the load is

)" X, )} (3.1)
i L""(XL*)%&,;)

Fig. 11

The various terms are, in general, functions of the instantaneous angular
. ‘.

velocity 6. Assuming the relation between beam energy and © to have

been computed from a knowledge of the action of focussing devices, and

repregenting this relation by a local linear law OB = &. AE » valid

except around the transition energy, then, assuming no losses except in -

the cavity: i@?— _ . W 9‘

(3.2)
is the law of deceleration. In the vicinity of a resonant frequency ’
and referring to (1. 14} and (2. 4)

AN (3.3)

- {“%F )l )@y 2 o] o]
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(b) Narrow gap cavity with constant voltage source.

The equivalent circuit of Fig. 10 can be
applied, with the simplifying feature that

)
v contains only the frequencyw, Let us

agssume that w’ is close to the beam
]

angular velocity 6 » Then the law

Fig. 12 of acceleration is:
» ) f; ' :
il :.3'1‘5. 2 XACH) I,m[[edhfﬁ-wt-ty] (3.4)
Ak ' o
< (/¥ w—v—_"
\&J

Yot vethap

where \I/ is the instantaneous "phase angle" of voltage and first harmonic

}
of beam current. When the generator keeps constant frequency W , the

differential equation for ‘f’ is

Ly
%F_:wam\]/ (3.5)

As a result, the bunch of particles will be subjected to pendulum oscillations.
These have been investigated thoroughly in the literature, 1 in particular
with respect to the stability of the oscillations. When the generator fre-
quency increases slowly, in an adiabatic manner, (3.4} will still describe

the phenomena, but now:

T / I

LY h gZhnld o o 4 it) e
d/tﬂ. 2 sz(w:) i

In particular, if w’ varies linearly asg t»l’:: w’o + S'b

T T v 127
Equatjon of a biased pendulum with time-dependent torque.

Let us assume that the particle bunch has been '"captured' by a generator of

! /
fixed frequency W ., Then © will oscillate around «w . For one particular

1. See e.g. Kaiger: Proc. Phys. Soc., LXIII, p. 52, 1950



MURA-210
(15)

phase relation, however, nogscillations will cccur, namely if, when the
particle reaches a velocity w ', beam current and gap voltage are 900 out

) *
of phase _( @ - ¢= gob, bo sk %ao }. This is the equilibrium position.
The bunch will follow a voltage of linearly increasing frequency

!
W' w,+ without oscillations if

s (3.8)

Con\Y'= % El 54 %) T
provided the gap voltage is main?a}ﬁ'ed constant, which, in view of reso-

/
nance properties will require programming of £ or servo-control

/
of the gap voltage.

{c) Narrow gap cavity with source having internal impedance.

The preceding paragraph was a summary of well known results. The effect
of Z; will perhaps be more interesting to investigate. Voltage V now

[ 3

o *
will include terms in © ,26... etc., in addition to the applied voltage ‘//u.-

)
MW‘

In evaluating the gap voltage, the following amplitudes and arguments of

complex quantities are of interest:

HICA“'LL 2 9o Za (W) B, 63(3-’:_; 2.(8) 2 2,(3) (3.9)
2:(8)+Z2,(8)

T 2 (W) + T2L)
The gap voltage is then

: 2
AE tm(whegsd) - ﬁ:{é)fB’I’Ce‘:_(éf+¢1— ) z?;xﬂ&%x*) L tes (3.10)
| [ P [7 <X, J [é(—nﬁ,fjo")

[ 5
- similar harmonic terms.

The instantaneous power is obtained by multiplying this expression by

the beam current I; c,w(éf-f- ¢’, )+I,_¢e-:(2 é['-f- ¢L)-(- - -

o
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If we assume that W' is close to é , then the only terms which do not
rapidly average out to zero are )
A'E’ AE'T [‘ 2 15406 /
] - ---- 3.1
e = L5 enffow ot ts ] 25 | EEE e -

\.F
If 2‘: is purely reactive, then all terms in cos @ disappear, 'o<,:.." 0
and one falls back on equation (3. 4)
If Zl; has a resistive part, &’ is a shift which can be varied with the
value of 2,_‘ , and so are the various cos terms. It then appears that
\.I/ again satisfies a biased pendulum equation. The situation, however,
is complicated by the fact that the biasing term is a function of the
oscillating variable é
The equilibrium angle N )
VY

Con \};1= a_'(f.TJ: [B,(UJ) % )E;:S:: g [zm(?(w)+J(3 12)

is a function of 2, :s wellias w’ . When the source frequency

coincides with a cavity resonant frequency bv}.

oh\}'ui ? e [7* )‘2(%)' ﬂn , ](313)
W‘M‘

where X is the argument of the internal impedance 2‘: at the frequency Uud, .

(d) Frequency pulling of an oscillator by the beam.
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By assuming, as Minorski does, tha; the pentode characteristics are
of the form /L'Q =S Q% (1 — —6;31—-) , the equation for the tube be-
A V¢
havior can be written as:
. . .
’C—de‘-ﬁY(’e)%*t-Wjé:.-—(&m* -3-::
(3.14)
The second member represents the injected voltage ( containing e.g. all
the harmonics of the beam voltage)) the influence of which might eventually
"lock in" the oscillator frequency. The parameters <~ ﬁ Y Wo
depend only on tube and circuit characteristica. In the solution
of 7.1 presented in textbooks on non-linear theory, the synchronizing

voltage was simply &, (.. w,t", a fixed affair. In the present situation,

however, i is a much more complicated function

\ L]

J ‘e
4= =A+ I, T enfobed )+ --- (3.15)

cant'
v
4 , on the other hand, is the current flowing into the series of resonant

(X d}‘
circuits under the influence of Vv . But = J me + £g 5 where

dﬂ depends on tube characteristics, so that .;..;.. will contain terms in
L ]

é‘ , € .~ etc. To make matters still more complicated, & is not
constant, but
R _ Bw(t): B Uy Ay (5) (3.16)
ar & afr
where cl-:rgap depends on ~F . If Ycontainsg a discrete series of sinusoidal
terms, then qrgap is easy to calculate. If Y has a continuous

Fourier spectrum V( }w) , then the Fourier spectrum of "J-‘gap will

Y z *®~ 2‘4(. w
e V) 2:2..(3@%




MURA-210
(18}
The study of the whole structure might be facilitated by the replacement

of the transformer by an equivalent circuit

1—‘.;; f-w—.—l‘ :’CM
P¥ "”"*‘;é“%ﬁ"i G LI

T 2t
™=k VBL,

One may expect that, in the study of pulling conditions, the harmonics

of current and oscillator waveforms will play a non negligible part by

their mutual interactions.

APPENDIX: Dimensiong of certain quantities

2 i
E: L 2  EaVask C, : Fanad
-4 il !
b 1 Aw2 Fo : VXt VIt Ay
—p __3_ 3
4»‘ ! %2' WA:%-J.
-4 f
T o At o ey



