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Abstract of the Dissertation

Higgs Phenomenology in the Standard
Model and Beyond

by

Bryan Jonathan Field

Doctor of Philosophy

in

Physics

Stony Brook University

2005

The way in which the electroweak symmetry is broken in nature
is currently unknown. The electroweak symmetry is theoretically
broken in the Standard Model by the Higgs mechanism which gen-
erates masses for the particle content and introduces a single scalar
to the particle spectrum, the Higgs boson. This particle has not yet
been observed and the value of it mass is a free parameter in the
Standard Model. The observation of one (or more) Higgs bosons
would confirm our understanding of the Standard Model.

In this thesis, we study the phenomenology of the Standard Model
Higgs boson and compare its production observables to those of
the Pseudoscalar Higgs boson and the lightest scalar Higgs boson
of the Minimally Supersymmetric Standard Model. We study the
production at both the Fermilab Tevatron and the future CERN
Large Hadron Collider (LHC). In the first part of the thesis, we
present the results of our calculations in the framework of pertur-
bative QCD. In the second part, we present our resummed calcu-
lations.
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Preface

I have always felt it is important to put things in perspective, especially in
physics. Especially at the beginning. Reading a paper or attending a seminar
is very different from talking with someone about why a certain problem was
considered, especially if the results were unexpected. Oftentimes I would hear
in a talk about a different problem that was being studied that inspired the
current research or that much of the work for a current problem had been
accomplished under different circumstances, but I have never read about it
in the scientific literature because these sorts of observations would be out of
place in a journal. This thesis presents my research, but I would like put it in
context. I began graduate school at Stony Brook in 1999 and it has proved to
be an incredible time to be a physicist in training.

While I have been in graduate school, the Large Electron-Positron Collider
(LEP) at CERN saw an indication (5 events) for the existence of the Higgs
Boson (see Ref. [1]) which later turned out to be statistically insignificant. Af-
ter running for eleven years LEP was turned off and removed from its tunnels
underneath France and Switzerland to make room for the Large Hadron Col-
lider (LHC). The mass of the top quark, which was discovered right as I began
my bachelors degree, was measured at the Tevatron with higher and higher
precision leading to a better (albeit indirect) prediction for the Higgs mass.
This new top mass moved the prediction for the Higgs mass from formally
“ruled-out” to (informally) “just around the corner”. This excitement how-
ever has been tempered by luminosity problems at Fermilab. The U.S. Higgs
community is breathing a collective (but good-natured) sigh of frustration as
we watch these problems and our hopes slip away for an American collider
seeing a Higgs signal before the completion of the European LHC, currently
expected in 2007. In the end, it is the science that will be remembered. Which
collider sees the signal is not the most pressing problem, but everyone agrees
that the sooner a signal is seen the better. I cannot think anyone would be
disappointed if the Tevatron discovered the Higgs and the LHC found super-
symmetry. We’ll all have to wait and see, seeing something is always better
than seeing nothing.



However, I have skipped ahead. Let me move back to the first indication
of a Higgs signal at LEP in September 2000. I was taking Quantum Field
Theory (QFT) from my Stony Brook adviser Jack Smith, with whom I was
interested in working. He told us about the tantalizing hint of a Higgs signal
and what it would mean to find the Higgs boson and also what it would mean
if the signal was accurate and the collider was shut down to build the LHC
as scheduled before confirming the Higgs signal. I still remember his words,
“If they are wrong, they will write it on their tombstones.” At the time, the
Higgs seemed close enough to taste and an excellent topic to study.

While the Higgs was looming large, a new semester began and so came
another QFT course. As the semester began, the (g − 2)µ experiment at
Brookhaven National Laboratory released the first analysis of their data set
[2]. This was an extraordinary paper because in its final few paragraphs, it
predicted that the discrepancy between theory and experiment was due to the
effects of a supersymmetric particle with a mass between 120− 400 GeV. The
halls and offices at Stony Brook and Brookhaven were buzzing with interest
and excitement, but it was hard to describe this excitement to my family.
If physicists could measure something with such incredible precision (roughly
being able to measure the distance between New York and Tokyo with an error
bar less than 18 feet) it was difficult to explain why it was so exciting that
we were expecting a number different by a few fractional parts per million.
I suppose I’m not the only one with difficulties describing my work to my
family, and this is still and open question. I went to speak with Jack and told
him of my interest in (g − 2)µ. With the release of this first paper, we had
learned in his class about the different contributions to (g − 2)µ and which
were considered to be under good theoretical control and which contributions
still needed work.

Jack showed me another paper [3] that had quickly followed the (g − 2)µ

results which claimed that perhaps the disagreement between theory and ex-
periment was not as large as previously thought. Although we had initially
thought that this would make an ideal summer project for my oral exam, we
later decided that it would have been too difficult for me to tackle by myself
over the summer while Jack worked with collaborators in Europe. We decided
on a project involving the Higgs boson instead dealing with helicity ampli-
tudes to check a calculation already underway. It was later shown that there
was an error in the original (g − 2)µ theoretical analysis involving a specific
sub-process [4] that brought the difference between theory and experiment to
a more reasonable level making the Higgs project much more attractive in
hindsight. The problem in the theoretical analysis for (g − 2)µ was a funda-
mental one and will be discussed later in this thesis. In short, it is important



to understand the metric in a calculation and what it means to do a calcula-
tion on a computer and not on a chalkboard. Since the first findings of the
Brookhaven experiment there has been a constant repartee between theory
and experiment about the size of each of their respective error bars. It is a
little odd that our community cares more about the error bars than the central
value. Currently there is agreement of about 1.4 standard deviations (when
different data sets are included in the theory calculation), which is considered
moderately acceptable by the particle physics community.

While particle physics was becoming more familiar to me, I also was ex-
ploring large-scale structures in my breadth courses. I took General Relativity
(GR) with the very accomplished theorist Martin Roček opposite my first class
in QFT. At the time, the geometry of the universe was still very much an open
question. Near the end of the semester, there was the report of a measure-
ment of the power spectrum of the Cosmic Microwave Background (CMB)
from a hot-air balloon flown over Antarctica [5]. This was very interesting be-
cause with the precision the cosmological parameters had just been measured
one could use the words “precision cosmology” in the same sentence without
laughing (or being laughed at). Martin had told us a story of a cosmology
paper that, due to a computational error, had to be replaced after changing
their results by a factor of 1060. However, this correction did not change the
conclusions of the paper. The comparisons with (g−2)µ are left to the reader.
Needless to say, more precision was needed in cosmology.

After years of research using the usual astrophysical methods for measuring
the cosmological parameters, there were still enormous error bars on all the
important quantities. Many had error bars so large, the sign of the quantity
was still unknown. Worse yet, cosmologists had formed camps with their own
preferred central values of all the important parameters used in their papers.
This new paper from the Boomerang balloon experiment with its high precision
measurements allowed the community to move beyond these limitations.

Buoyed by my experience with GR, I signed up for Cosmology the next
semester, taught by an astronomer who had made many important contribu-
tions to cosmology, Amos Yahil. Although the previous analysis was not lost
on our class, it was the longer paper showing the complete analysis [6] that
turned heads in the astronomy community at Stony Brook. I had chosen to
do my final class project on the Microwave Anisotropy Probe (now known
as the Wilkinson Microwave Anisotropy Probe or WMAP), a NASA satellite
designed to improve the previous COBE measurements of the CMB [7].

The Antarctic balloon had scooped the WMAP results by two years for
much less money and much less lead time. The current WMAP results [8] are
spectacular in their own right (the satellite is still taking data and follow-up



missions are planned). The most amazing result that the probe revealed is that
the part of the universe that we can see (the baryonic matter) makes up only
roughly 3% of the energy density of the universe. The probe also told us more
about dark matter in a more quantitative way, the existence of which was not a
surprise from what is known from rotation curves of galaxies and clusters. The
big WMAP surprise was the dark energy. Dark energy, according to WMAP,
made up 70% of the energy density of our universe. I would say that this
stands as the most embarrassing measurement in all of physics. In contrast to
dark matter, physicists do not even have a good candidate for understanding
dark energy. It is simply not possible to overstate the impact these results
are having on the particle physics community. The future certainly holds that
progress in both the high-energy and cosmological communities will be tied
together to resolve this problem.

In between learning of a possible Higgs signal and writing these words,
I learned the day-to-day skills of a theorist in a very intense way from my
involvement with the High Energy Group at Brookhaven National Laboratory.
I met my Brookhaven adviser, Sally Dawson, taking a course she taught at
Stony Brook in Electroweak Symmetry Breaking. Sally and I began working
together that summer after I returned from a summer school in Colorado
and have continued working together ever since. The High Energy Group at
Brookhaven complimented the group at Stony Brook in many ways and vice-
versa. Overall, the differences in the ambiance of a National Laboratory and a
research university are the most striking, and are perhaps best left for another
time.

It would be professionally derelict of me not to at least mention the other
great theoretical revolution during my time at Stony Brook, the verification
that neutrinos are massive. Although WMAP also had something to say about
the mass of neutrinos, it was the oscillation experiments at KEK [9] that first
grabbed my attention (albeit well after they were published) after seeing a
colloquium on the subject. Between the Higgs and (g−2)µ talks at Stony Brook
and Brookhaven, neutrino masses complete the triumvirate of phenomenology
talks I have attended. What I remember most about the neutrinos is that
they were a large piece of the puzzle standing in the way of understanding the
Standard Solar Model (SSM) of the great theorist John Bahcall.

Dr. Bahcall came to Stony Brook to give a talk about neutrinos and the
SSM to a general audience which I attended with great interest. It was at his
talk that I came to an understanding of all these varied subjects and his talk
in particular seemed to bring everything together for me. I would like to close
this reflection by sharing these thoughts.

We use particle physics to understand the universe, great and small. We



thought we understood particle physics well enough to say that an incredibly
small discrepancy in the (g−2)µ measurement was the signature of an entirely
new sector of physics that changes the very nature of space-time, when all
the while 70% of the universe was “missing” from our understanding, both
theoretically and observationally. As an analogy, one could say the current
situation in physics would be equivalent to a statement by a biologist that the
terrestrial ecosystem was understood so well as to make precise predictions on
human evolution without ever knowing anything of the life in our oceans, or
even that they existed at all. The most dangerous thing is what we do not
know that we do not know. And like the drunk man looking for his car keys
under the street light because that is where he can see, so do I approach my
research. This is an exploration of what we can see where we can see it. We
do not yet understand our universe, but hopefully, this work will be a small
ray of light under which we can look for physics.

Bryan J. Field
Coram, New York
April 12, 2005
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Chapter 1

Introduction

This thesis will explore the collider phenomenology of the Standard Model
(SM) Higgs boson and the Higgs bosons of the Minimally Supersymmetric
Standard Model (MSSM). We will begin by reviewing several concepts and
notations so that our results can be cast in a uniform light. There is a balance
that has to be reached in our introduction to particle physics. This presen-
tation is in no way a replacement for textbook knowledge [10–12, 14] on the
subject, but is merely a recapitulation of some of the topics and issues that
will be of importance to Higgs research.

We will begin with a brief review of what is known about the SM, and then
move on to how to incorporate this knowledge into our theoretical understand-
ing. The current picture of Electroweak Symmetry Breaking (EWSB) will be
described as well as the electroweak and strong sectors of the SM. We will then
discuss current theoretical and experimental bounds on the SM Higgs.

Supersymmetry will be introduced next as a way of coming to the Min-
imally Supersymmetric Standard Model. We will determine how the intro-
duction of supersymmetry changes the Higgs sector and a brief discussion of
parameters in the SM and MSSM. Finally, we will introduce the Heavy Quark
Effective Theory (HQET) for Higgs phenomenology and show how it can sim-
plify Higgs calculations.

Also, it should be noted that when the phrase “Standard Model” is used,
one is refering to a very specific model with specific assumptions and a specific
method of breaking the electroweak symmetry. A more appropriate phrase
might be the “Minimal Standard Model”. This assumption will be implicit in
our description of the Standard Model throughout this work with any excep-
tions noted.
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A word on confusion

It has been said that what cannot be impressed upon students of particle
physics is the confusion of the time when the discoveries that led to the creation
of our current outlook on particle physics were made. It took more than a
generation of great work by thousands of physicists to construct the Standard
Model and there are countless ways to communicate their results. The SM
will be presented in a way that (hopefully) makes it the easiest to understand
without appearing to come to the right answer in the first pass and will be
approached a few times from different prospectives. This mix of experimental
observation and mathematical insight should give us the proper framework to
understand the results presented.

Finally, when approached with a high level of mathematical rigor one can
begin with unitarity or with renormalizability as the basis of a gauge field
theory. A complete theory cannot be formulated with just one or the other, at
some point the two methods will converge and both unitarity and renormaliz-
ability will be needed to find a usable theory. Each will be used when it best
suits the situation.

1.1 Standard Model

Any viable theory of electroweak interactions must explain several qualitative
experimental facts. We need to understand why the W± bosons only couple
to left-handed fermions (and right-handed anti-fermions), why the Z0 boson
couples differently to left-handed fermions and right-handed fermions but the
photon couples with the same charge to both right- and left-handed fermions.
There are also very stringent experimental tests limiting the relative strengths
of fermion–anti-fermion–vector couplings as well as the ratio of the W± and
Z0 boson masses. The electroweak sector of the SM incorporates all of these
features and tests into a spontaneously broken gauge theory [15–17].

The Standard Model contains our best formulation to date in understand-
ing particle physics phenomenology. The SM does have a few short-comings,
but should be considered overall as an excellent description of nature. It is rep-
resented as an Abelian and non-Abelian spontaneously broken gauge theory
that is unitary and renormalizable at its fundamental level based on a compact
Lie algebra group structure. Its interactions are described by a complicated
Lagrangian with several components.

Lsm = Lqcd + Lew + Lgauge-fixing + Lghost. (1.1)
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Table 1.1: The elementary particles of the Standard Model.

We choose to break the SM Lagrangian into four basic parts. We have the
strong interactions, the electroweak interactions, the gauge-fixing terms, and
the ghost interactions. This is the proper setup for perturbative calculations.
This Lagrangian taken with the observation that only colorless particles are
seen in nature leads us to construct the SM.

Our understanding of the SM is predicated on our ability to measure its
physical parameters in experiments. In this the age of precise measurements
and monumental experiments, we need an equally precise theoretical under-
standing of the SM to understand the features and drawbacks of our current
description of the universe. This is why the calculation of radiatively corrected
observables is so important to our understanding of particle physics.

If the SM were a play, its known cast of characters is often depicted as in
Table (1.1). Here we see that there are six known quarks (fractionally charged
fermions) that appear in three different colors (corresponding to the index a).
Three (colorless) charged leptons, each with a corresponding neutrino (also a
lepton) and four force carriers for the three forces of the SM. By definition,
the SM is a theory without graviational interactions, because of this we will
freely speak of three forces instead of four and leave gravity to the theory of
General Relativity and its very successful phenomenological record. The strong
force is carried by the gluon (of which there are 8 colored combinations), the
electromagnetic force is carried by the familiar photon (γ) and the weak force
is carried by the Z0 and W± bosons. Although this table is familiar, it hides
some of the important details of the SM.

First, the SM contains right- and left-handed particles that appear in gauge
singlets, doublets, and triplets. A better representation of the SM particles
can be written

ψi =

(
νi

l−i

)

L

i = e, µ, τ ; qa
L =

(
ui

d′i

)a

L

i = u(d), c(s), t(b)
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SU(3)c SU(2)L U(1)Y

ψi 1 2 −1
2

l−R 1 1 −1
qa
L 3 2 +1

6

ua
R 3̄ 1 +2

3

(d′)a
R 3̄ 1 −1

3

Table 1.2: The gauge structure of the Standard Model.

[νR], l−R, u
a
R, (d

′)a
R,W

±, Z0, γ, g, [H]. (1.2)

In the top row are the SU(2)L left-handed doublets. The ψi field is a
doublet of the left handed neutrinos and (negatively) charged leptons arranged
by family. The ψi fields are SU(3)c singlets. The left-handed (colored) quark
fields appear in SU(2)L doublets and are SU(3)c triplets. On the bottom
we have SU(2)L singlets for the right-handed leptons and quarks. The vector
bosons interact with the quarks and leptons and also have self-interactions. We
can already see that there is a need for a method to systematically describe
the particle interactions and their relative strengths.

Since we are going to construct the SM based on its group properties, we
need to know how each of the fields transform under the group transformations
as shown in Table (1.2). This will also help us when we try to expand the
structure of the SM. We must make sure not to ruin what has already been
built.

The right-handed neutrino is in square brackets because whereas there is
compelling evidence that they exist in nature (neutrino oscillations [9] and
neutrinoless double-beta decay [18, 19] point to non-zero neutrino masses), a
right-handed neutrino is not needed by the SM and we will in fact define
the SM as a model where right-handed neutrinos are absent and not concern
ourselves with this complication any further. However, the Higgs boson (H) is
missing from the SM and is needed to make it complete (without a change in
our understanding). The SM Higgs is an SU(2)L doublet and a singlet under
SU(3)c.

We also note in this more complete description that the down-type quarks
have different weak and mass eigenstates. It is a convention that the down type
quarks mix. The quark mixing is defined by the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [20,21],

( d′

s′

b′

)a

=

( Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

)( d
s
b

)a

. (1.3)
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There are several ways to parametrize this quark mixing, but the values
of the array elements have to be determined experimentally. The standard
parametrization utilizes three angles and one complex phase to describe CP
violation. It should also be noted that this matrix is defined to be unitary
in the SM, and deviations from unitarity are considered an extension to the
SM in much the same way as right-handed neutrinos. The Higgs boson is in
square brackets because it has not been discovered as of yet.

1.2 SM as a Field Theory

We have several empirical facts and observations about the particle and force
content of the SM. Now we need to understand how to codify this understand-
ing into our mathematical description of the SM in a systematic way so that
we can make testable predictions. To do this, we will need a few more tools
and some more mathematical observations. The SM is built on broken and
unbroken symmetries, so this must be formalized first.

1.2.1 Symmetries

A Lagrangian (L) is said to be invariant under a discrete or continuous sym-
metry group G if

U εG, U−1LU = L. (1.4)

We are interested in continuous symmetries based on Lie algebras. This implies
that we can write the unitary matrix as

U = exp(iαQ), (1.5)

where α is a continuous group parameter (allowing the transformation to be
continuously transformed to back to the origin) and Q is a generator of the
group. Furthermore, Q is hermitian (Q = Q†).

There are different observed realizations of this kind of symmetry. An exact
symmetry (also known as a Wigner-Weyl symmetry) is a symmetry where the
vacuum state is also invariant under the symmetry. Examples of this kind
of symmetry are charge and color which are not believed to be broken or
approximate in nature.

There can be physical states of a theory that are irreducible representations
but may not be the states of the Lagrangian. Quark mixing is an example of
this kind of symmetry where a diagonalization of the physical states must be
preformed for meaningful calculations to be preformed. We will also eventually
see this kind of symmetry in the Higgs sector of the MSSM as well as in its
squark sector.
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We can also have an approximate symmetry like isospin symmetry. The
masses of the proton and neutron are not identical, but we can use them to es-
timate the violation of isospin symmetry. We find that (mn−mp)/(mn+mp) <
10−3 making isospin symmetry a good symmetry if not an exact one. Another
example would be the SU(3)fl symmetry from lattice QCD and the small
strangeness violation in the weak interactions. Both are forms of approximate
symmetries.

Finally, we could have a situation where the Lagrangian is invariant under
a group transformation, but the states of the theory do not transform as
irreducible representations of the group. This leads to spontaneous symmetry
breaking and is the basis of the Higgs mechanism which will be discussed at
the appropriate time.

1.2.2 Gauge Invariance

To understand gauge invariance we will explore a few examples to see where our
results lead us. We will begin with an Abelian gauge symmetry for simplicity,
we have electromagnetism in mind to guide our calculation. Let us begin with
a very general (complex scalar) Lagrangian,

L = |∂ϕ|2 −m2|ϕ|2 − λ|ϕ|4, |ϕ|2 = ϕ†ϕ, |∂ϕ|2 = (∂µϕ†)(∂µϕ). (1.6)

and we want this Lagrangian to be invariant under

ϕ→ ϕ′ = Uϕ, U εU(1) : U = exp(−iθQ). (1.7)

If θ is independent of x (the space-time coordinate) then this is a global symme-
try. We will promote this symmetry to a local symmetry by allowing U = U(x)
and θ = θ(x).

When we check the terms in the potential, we find that they are gauge
invariant by direct calculation

ϕ†ϕ→ ϕ′†ϕ′ = ϕ†U †Uϕ = ϕ†ϕ, (1.8)

but we do not find the same for the kinetic term,

∂µϕ′†∂µϕ
′ = (∂µeiQθϕ†)∂µ(e−iQθϕ)

= [iQ∂µθeiQθϕ† + eiQθ∂µϕ†][−iQ∂µθe
iQθϕ† + e−iQθ∂µϕ

†]

6= |∂ϕ|2. (1.9)

Here we need to introduce a covariant derivative to “correct” the kinetic term
and make the Lagrangian gauge invariant. If we define a covariant derivative
in terms of a new gauge field (Aµ) with its own transformation properties,

Dµ = ∂µ − ieQAµ, Aµ → A′µ = Aµ − 1

e
∂µθ, (1.10)
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we have a solution to our problem,

D′µϕ
′ = (∂µ − ieQA′µ)(e−iQθϕ)

= −iQ∂µθe
−iQθϕ+ e−iQθ∂µϕ− ieQ(Aµ − 1

e
∂µθ)e

−iQθϕ

= e−iQθ(∂µ − ieQAµ)ϕ = UDµϕ. (1.11)

We can also see that this would work without the factor of e, but we
would lose the physics in our problem. It is the gauge coupling that makes
this a physics problem and not a geometric one. We can also see that it was
important that the scalar field be complex. In fact, the complex nature of
the scalar field tells us that it is charged and therefore interacts with this new
gauge field, the photon. We need to add a kinetic term for the gauge field to
our Lagrangian. If we define the field strength tensor as

Fµν = ∂µAν − ∂νAµ, (1.12)

then we can not only verify that the field strength is gauge invariant but we
can add a new (normalized) term to our Lagrangian describing the new gauge
particle,

L = |Dϕ|2 −m2|ϕ|2 − λ|ϕ|4 − 1

4
FµνF

µν . (1.13)

We can also ask if we should add a mass term for the gauge field. The answer
is no, because it would irreparably break the gauge invariance we just imposed,

m2

2
AµA

µ → m2

2

(
Aµ − 1

e
∂µθ

)(
Aµ − 1

e
∂µθ

)
, (1.14)

thus local gauge invariance forbids a mass term for the gauge field. This would
appear to be a good thing, because we want a massless photon in our theory,
but this requirement is too strong for our own good. We can not seem to have
any non-scalar mass terms in our gauge theory. This problem will be solved by
the Higgs mechanism, but we should first explore a non-Abelian gauge theory.

Non-Abelian gauge theories, also known as Yang-Mills theories [22], are
based on groups with non-commutative generators. In the interest of future
developments, we will consider the gauge group G = SU(N), later to be
understood to be SU(2)L and SU(3)c.

We will need some of the properties of the Lie algebra to understand the
analysis better. We will let ϕi be our particle fields in the fundamental rep-
resentation of the gauge group, and ai will be our group parameters. We will
define our Lie algebra with real structure constants and the order (the number
of generators of the group) and rank (the number of generators that can be
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simultaneously diagonalized and therefore commute1) of our gauge group are
written as

[Ti, Tj] = iCijkTk, O(SU(N)) = N2 − 1, r(SU(N)) = N − 1. (1.15)

We will define our gauge transformation as

ϕi → U i
jϕ

j, i = 1, . . . , N. (1.16)

Our transformation matrix then takes the more complicated form

U = exp

{
−i
O(G)∑
j=1

Tj a
j

}
. (1.17)

For the group SU(2)L we would have Tj = 1
2
σj, where σj are the Pauli matrices

and are normalized as Tr (TiTj) = 1
2
δij. For the group SU(3) we have the usual

λj Gell-Mann matrices (see Appendix C).
The kinetic and mass terms in our (complex scalar) Lagrangian will have

a little more structure to them, but are in principle the same. For instance,

(∂µϕ)†(∂µϕ) = (∂µϕ
†
1, . . . , ∂µϕ

†
N2−1)

( ∂µϕ1
...

∂µϕN2−1

)
. (1.18)

Now we can construct a Lagrangian and reuse our procedure to find the
covariant derivative. We find (quite generically),

Dµ = (∂µ1− ig ~T · ~Aµ), DµϕR = [∂µ1dim(R)×dim(R)− igDR(~T ) · ~Aµ]ϕR (1.19)

where the DR implies a generic representation (darstellung) for the group
generators. Proceeding, we can find the variation of the gauge field and the
form of the field strength tensor for a non-Abelian gauge group,

Aj
µ → A′jµ = Aj

µ −
1

g
∂µθ

j + Cj
klθ

kAl
µ, (1.20)

F j
µν = ∂µA

j
ν − ∂νA

j
µ + gCj

klA
k
µA

l
ν , (1.21)

which regain their usual Abelian structure when the structure constants vanish
(the generators commute) and we have taken g to be the coupling constant of
the new gauge group.

1These generators are also known as the Cartan sub-algebra after Élie-Joseph Cartan.
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Finally, we must ask what happens when we have the direct product (⊗)
of several groups like we do in the standard model. For the group structure
G = SU(3)c⊗ SU(2)L⊗U(1)Y , our Lagrangian and covariant derivative have
the form

L ⊃ −1

4

8∑
i

Gi
µνG

i,µν − 1

4

3∑
j

F j
µνF

j,µν − 1

4

∑
none

FµνF
µν (1.22)

Dµ =

[
∂µ(1color ⊗ 1SU(2) ⊗ 1Y )

− ig3

8∑
i

T i
SU(3)C

i
µ − ig2

3∑
j

T j
SU(2)A

j
µ − ig1

(
Y

2

)
Bµ

]
(1.23)

There are some generic comments to be made. Making the Lagrangian
gauge invariant added a gauge field to the Lagrangian, and that gauge field
had a universal gauge coupling to the other fields. This is an important phe-
nomenological result as it increases the predictive capacity of the theory. Each
gauge group adds a coupling constant.

1.2.3 Goldstone bosons

Before moving on to how the electroweak symmetry is broken in the SM,
we need to introduce one final piece of information, the Nambu-Goldstone
theorem [23, 24]. Simply stated, the theorem tells us what should happen
when a continuous symmetry is broken in a Lagrangian.

The theorem says: if you have a (manifestly Lorentz invariant) Lagrangian
under a continuous symmetry group G, but the generators of the group (the
group elements) do not leave the vacuum invariant (there is spontaneous sym-
metry breaking) then there exists massless, spin-0 particles in the spectrum,
and there is a 1:1 correspondence between these broken generators and these
bosons.

Without revealing too much of what is to come, this theorem tells us why
we might expect a Higgs boson, but not why it might be massive or how
any of the other particles acquire their mass. As a side note, one might ask if
Goldstone fermions can exist in nature. Some theories introduce these objects,
but they are absent in the SM and the MSSM.

1.3 Electroweak Symmetry Breaking

How do we build the SM Lagrangian from scratch? We start with a massless
gauge invariant Lagrangian, break the electroweak symmetry so the particle

9



spectrum aquires mass, and we can then proceed with the interactions.
Thus far, we have described observations of the SM, but it is difficult to

proceed without introducing the formalism behind the current incarnation of
EWSB. To do this we need to take a step backwards and show how, so now is
the time to discuss the Higgs mechanism in all its glory.

One may also ask when the electroweak symmetry was broken. If we view
the SM as our fundamental theory (and not as a low-energy effective theory
of a larger theory) then we can back the evolution of the universe up to where
the electroweak phase transision was expect to have occured and we find that
the universe was cool enough to undergo a phase transision at around 10−10 s
after the big-bang, well after inflation would have ended and well before nu-
clear matter would have become confined at around 10−6 s. So we should be
concerned only with the spontaneously broken version of the SM.

1.3.1 Higgs mechanism

The Higgs mechanism [25–31], as it is known in the literature, is the means
by which the electroweak symmetry is broken in the SM. In the SM, we will
introduce a single complex scalar SU(2)L doublet Φ,

Φ =

(
φ+

φ0

)
. (1.24)

The scalar sector of the Lagrangian then will be (some authors normalize this
Lagrangian differently)

L = |DµΦ|2 − µ2|Φ|2 − λ|Φ|4. (1.25)

If there is a phase-transition that makes µ2 < 0, then Φ =

(
0
0

)
is no longer

a local minimum, it is a local maximum of the potential. This can be seen in
the change in the scalar potential in Figure (1.1). There now exist degenerate
minima with

Φ†Φ = v2/2, v =
√
−µ2/2λ, µ2 < 0, (1.26)

and we can see that the vacuum expectation value (vev) of the field Φ can be
chosen to be real and the neutral component of the Higgs field. The vev has
the dimensions of mass,

〈0|Φ|0〉 =

(
0

v/
√

2

)
. (1.27)

10



V(Φ) V(Φ)

√( -µ2/2λ)

-µ4/4λ

Figure 1.1: Spontaneous symmetry breaking.

Because we are breaking the symmetry down to SU(2)L⊗U(1)Y → U(1)em,
we put the vev in the neutral component of the Higgs field so it will not
couple to the photon. If the Higgs field were complex it could be made real
by a suitable SU(2)L transformation without a loss in generality. Since the
Higgs field has two complex, or four real degrees of freedom, we will write Φ
as a phase times two real valued fields,

Φ = exp

{
iGa(x)σa

2v

}(
0

v+H(x)√
2

)
, (1.28)

where Ga(x) (a = 1, 2, 3) and H(x) are each real scalar fields. The Ga are the
would-be Nambu-Goldstone bosons corresponding to the broken SU(2)L ⊗
U(1)Y → U(1)em generators. The Nambu-Goldstone bosons can be removed
by choosing the unitary gauge. This is equivalent to removing the exponential
from our definition of Φ. We will not make this simplification, as most of our
results use the Feynman gauge. The label “would-be” will be defined in a
moment.

We will replace the field Φ in our Lagrangian and expand out all the inter-
actions to see what happens. We write our Lagrangian and covariant derivative
as

L = |DµΦ|2 − µ2|Φ|2 − λ|Φ|4 − 1

4
F j

µνF
j,µν − 1

4
FµνF

µν , (1.29)

Dµ =

[
∂µ − ig2

σj

2
Aj

µ − ig1

(
Y

2

)
Bµ

]
, (1.30)

where σj are the Pauli matrices for the SU(2)L sub-group. Here we need to
work out the dot product (sum over j) between the Pauli matrices and the
SU(2)L gauge bosons to multiply the column vector for our new representa-
tion of Φ when we expand the covariant derivative in the potential. It will
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be convenient to introduce a spherical representation of the gauge bosons to
simplify our notation

A±µ ≡
A1

µ ∓ iA2
µ√

2
. (1.31)

Now we can work out an explicit representation for the matrices in the covari-
ant derivative. We find

g2

2

(
A3

√
2A+√

2A− −A3

)
+
g1

2

(
B 0
0 B

)

=
1

2

(
g2A

3 + g1B
√

2g2A
+√

2g2A
− −g2A

3 + g1B

)
. (1.32)

If we let Z = (g2A
3 − g1B)/

√
g2
2 + g2

1, then

(Dµϕ)†(Dµϕ) → v2

8

[
2g2

2A
−A+ + 2(g2

2 + g2
1)Z

]
(1.33)

=
v2

4

[
g2
2(|A−|2 + |A+|2) + (g2

2 + g2
1)Z

]
, (1.34)

and we have generated mass terms for the three bosons (recall that the vev
has units of mass) when we identify the A± gauge bosons with the W± gauge
bosons and the Z with the Z0,

M2
W+ = M2

W− =
g2
2v

2

4
, M2

Z =
(g2

2 + g2
1)v

2

4
. (1.35)

We can now define the weak mixing angle, θw, to make our transformation
more convenient as,

g1

g2

= tan θw,
M2

W

M2
Z

=
g2
2

g2
2 + g2

1

= cos2θw. (1.36)

Therefore, we can see that after SSB, the Z0 boson and the photon are
mixtures of the former SU(2)L and U(1)Y gauge bosons rotated by the weak
mixing angle,

Z = A3 cos θw −B sin θw (1.37)

γ = B cos θw + A3 sin θw, no mass term. (1.38)

The photon received no mass term in the new Lagrangian and remains exactly
massless. Experimentally, the value of the weak mixing angle (as defined by
the on-shell masses of the vector bosons) is found to be

sin2θw ≡ 1− M2
W

M2
Z

= 0.2223(11). (1.39)
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Let’s count the degrees of freedom before and after spontaneous symmetry
breaking (SSB). Before we had three massless SU(2)L gauge bosons (each with
two degrees of freedom) and one U(1)Y massless gauge boson and the four
components of the complex doublet. That makes 3× 2+1× 2+4 = 12. After
SSB, we have three massive vector bosons (with three degrees of freedom), a
massless photon and a Higgs boson with one degree of freedom. That makes
3 × 3 + 1 × 2 + 1 = 12. It is said that the gauge bosons have “eaten” the
would-be Goldstone bosons to gain their masses. This is where the phrase
would-be comes from, they would be present if they were not eaten by the
gauge bosons.

In the SM, the Higgs mechanism has only one free parameter, the mass
of the Higgs boson itself. All the other couplings are determined. The value
for the vev is determined from muon decays and it is related to the Fermi
constant,

GF√
2

=
g2
2

8M2
W

=
1

2v2
, (1.40)

and has a value of v2 = (
√

2GF )−1 = (246 GeV)2.
At this point, we should discuss what happened in the strong sector. It

is very nice that the gauge bosons became massive and the photon remained
massless, but we also know there are fermion masses that need to be accounted
for. The mass of the fermions come from their coupling to the Higgs boson.
Generically, this mass term comes from the Yukawa term in the strong sector
Lagrangian,

LYukawa =
fermions∑

i

− yi√
2
(v +H)ψ̄iψi = −yiv√

2
ψ̄iψi − yi√

2
Hψ̄iψi. (1.41)

We can see that if we let yi =
√

2mi/v, then the Higgs couples to fermions
like mi/v. We can clearly see that the Yukawa couplings have to be tuned to
the known masses of the fermions, and that the Higgs mechanism does not
predict the values for the fermion masses. Now the common statement “the
Higgs couples to mass” is clear. The coupling of the Higgs is proportional
to the mass of the particle over the vev. So the Higgs couples stronger to
more massive particles. This will be very important to our phenomenological
studies of the Higgs boson. For instance, we can now see that the top quark
is the most important interaction in the strong sector of the SM.

1.3.2 Bounds on Higgs mass

Now that we have seen EWSB and have determined that the Higgs mechanism
is testable, is there anything we can say about the free parameter left in our
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theory, the mass of the Higgs? The (normalized) scalar potential before SSB
could be written

V (Φ) =
m2

2
Φ2 +

λ

4
Φ4, (1.42)

and after EWSB we find,

V (H) =
M2

H

2
H2 +

M2
H

2v
H3 +

M2
H

8v2
H4. (1.43)

The Higgs mass can be written

MH =
√

2λv, (1.44)

which does not tell us the value of the Higgs mass, nor the strength of its self
interactions. It is this parameter λ that is not predicted in the SM but we will
continue to be interested in the mass of the Higgs boson as it is the physical
parameter. We can also see in the potential that the self-couplings of the Higgs
are also proportional to the Higgs mass. The Higgs has generated its own mass,
a property that may be missing from other spurious (as-yet unknown) scalar
particles that may be discovered. Verifying this for the potential is important
to verifying the Higgs is the SM Higgs. This will be discussed later.

The question we must ask next is can we derive limits on the Higgs mass
from internal consistency of the SM and what do we already know from past
and continuing particle physics experiments? Theoretically, we can calculate
the corrections to the λ parameter and see what it can tell us, as well as any
other processes that may tell us something about a limit on the Higgs mass.
Experimentally, we will review the current state of affairs.

Theoretical limits

The internal consistency of the SM can be tested generically in two ways. We
need to find when the SM violates unitarity and when the theory becomes
trivial. One of these limits is stronger than the other and we will see that
when it is derived.

To begin, can the Higgs be infinitely heavy? The answer is no and that
may seem to violate the decoupling theorem [33], but upon careful inspection
we see that the decoupling theorem does not apply to particles that couple
proportional to their mass, like the SM Higgs. Just how heavy the Higgs can
be and still be perturbative is a good place to start accessing this question.

Although we will talk about diagrams and Feynman rules more in detail
later (the confused reader can find some more details in Appendix A), let us
jump ahead and find the perturbative limit. Consider HH → HH elastic
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Figure 1.2: Sample Higgs-Higgs scattering diagrams.

scattering as shown in Figure (1.2). Since this is a 2 → 2 process we can write
out most of our results without too much difficultly. The tree level amplitude
is very simple,

iMtree = −6iλ. (1.45)

When we add the one loop corrections in n = 4−2ε dimensions, we can see
that the coupling constant λ takes on corrections that can be interpreted (at
this order) as a geometric series that depends on the interaction energy Q2,

iM = −6iλ+
27λ2

8π2

∫ 1

0

dx

[
Γ(ε)

(
M2

H + x2Q2 − xQ2

)ε]
(1.46)

= −6iλ

(
1 +

9λ

16π2
log

(
Q2

M2
H

))
+ · · · (1.47)

=
6iλ

1− 9λ
8π2 log Q

MH

≡ 6iλ(Q). (1.48)

The problem here is that the amplitude becomes infinite before Q → ∞.
We also see that the denominator can become zero for a certain value of the
energy. This is known as the Landau pole. We can turn this limit around to
bound the Higgs mass from above. Without the λφ4 interaction the theory is
trivial (has no interactions) so we must require the coupling to be finite and
positive up to some cut-off scale Λ where the theory could in principle be saved
by the introduction of new physics,

1

λ(Λ)
> 0, =⇒ M2

H = 2λv2 <
16π2v2

9 log(Λ/v)
. (1.49)

So if no new physics emerges before the Planck scale (1016 GeV) then the
Higgs mass must be lighter than 180 GeV in what we have considered so far
in the SM. A better upper bound is found when more particles and interac-
tions are included (the most important is the super-heavy top quark because
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Figure 1.3: Theoretical Higgs mass limits.

the Higgs couples to mass). These interactions change our geometric series
into coupled differential equations familiar to the study of the renormalization
group. The detailed results will be presented in a moment.

We can also ask if there is a minimum Higgs mass permissible in the SM.
The answer is also yes because the coupling constant λ has to be positive or
else the electroweak vacuum would not be broken or would become unstable
and our SSB potential would not be bound from below. In simple terms, we
must have

V (v) < V (0), (1.50)

for the vacuum to be broken and stable. In much the same way we can find
the relation

M2
H >

3v2

2π2

(
mt

v

)4

log

(
Λ2

v2

)
. (1.51)

If we also run the scale out to the Planck scale, then we see that the Higgs
has to be heavier than 140 GeV for the SM to be a complete theory out to the
Planck scale.

We can represent these limits graphically as in Figure (1.3). The upper [34]
and lower limits [35] use all available information and show the uncertainty in
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the calculation. Figure (1.3) was taken from Ref. [36]. This is not to say that
the Higgs has to be found within this range of masses. In fact, it may be more
interesting if it is not. This would imply that there is more physics at a high
scale.

Finally, there is one other limit we can mention theoretically and it is
weaker than the other criteria we have found so far. For 2 → 2 elastic scatter-
ing,

dσ

dΩ
=

1

64π2s
|M|2. (1.52)

It is also possible to decompose any scattering amplitude into partial waves and
make sure they all obey the optical theorem. The amplitude can be written

M = 16π
∞∑

l=0

(2l + 1)Pl(cos θ)al, (1.53)

where the Pl are the Legendre polynomials and al are the spin-l partial waves.
In this manner, the total cross-section can be written as the sum over the
partial waves

σ =
8π

s

∞∑

l=0

∞∑

l′=0

(2l+1)(2l′+1) ala
?
l′

∫ 1

−1

d(cos θ)Pl(cos θ)Pl′(cos θ) (1.54)

=
16π

s

∞∑

l=0

(2l + 1)|al|2. (1.55)

The optical theorem [37,38] (See Ref. [39] for historical review) states that
the total cross-section must be equal to the (normalized) imaginary part of
the far-forward scattering amplitude

σ =
1

s
Im[M(θ = 0)], (1.56)

so we can see that |Re(al)| < 1
2
, or this series will diverge. We are interested

in the limit far from the Higgs mass pole, so we will only need the first partial
wave to satisfy unitarity, |a0

0| < 1. We can now examine different scattering
amplitudes to see what this limit can tell us about the Higgs mass. The
best limit on this Higgs mass comes from WW scattering [40]. This may
seem like an academic exercise, but this process takes place in nature inside
e+e− → νν̄H and qq̄ → qq̄H diagrams. The WW scattering process can be
simplified by using the “Electroweak Equivalence Theorem” which is proved
in the preceding reference. We can see the diagrams in Figure (1.4).
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Z0/γ

Z0/γ

Figure 1.4: WW scattering (sample diagrams).

If we consider the longitudinally polarized W± scattering, we find the am-
plitude can be written

iM(W+
L W

−
L → W+

L W
−
L ) = −iM

2
H

v2

(
s

s−M2
H

+
t

t−M2
H

)
(1.57)

→ −2i
M2

H

v2
s, tÀM2

H . (1.58)

We can convert our (high-energy) amplitude into the J = 0 partial wave
with the following transformation

a0
0(W

+
L W

−
L → W+

L W
−
L ) ≡ 1

16πs

∫ 0

−s

|M|dt (1.59)

=
M2

H

8πv2
<

1

2
(1.60)

⇒MH <
√

4πv = 870 GeV. (1.61)

It is important to emphasize that this is not a constraint on the theory, but
to the application of the theory. It is best to say that if the Higgs were heavier
than this mass limit then the Higgs sector of the SM would not be perturbative
and we would need different formalisms to calculate physical observables.

Experimental limits

Twice a year, the LEP Electroweak Working Group (EWWG) releases the
results of precision fits to the current electroweak observables. Included in
this analysis is a plot known in the Higgs community as the “blue-band”
plot [32]. This plot shows what value of the Higgs mass best fits the data
set if the SM was chosen by nature. The plot released for the Winter 2005
conferences (meaning February 2005) is shown in Figure (1.5).

According to this plot, the best fit Higgs mass is MH = 126+73
−48 GeV.

The precision with which the Higgs mass can be fit is dictated by the fact
that the Higgs mass comes in logarithmically to the radiative corrections to
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Figure 1.5: Electroweak fit for the SM Higgs mass (February 2005).

the electroweak observables. What can also be said is that the Higgs mass
MH < 280 GeV at 95% confidence level.

This (relatively light) bound on the Higgs mass combined with the the-
oretical limitations increases the possibility of the Higgs boson (if it exists
in nature) being discovered in the near future at the Large Hadron Collider
(LHC) which has a reach to discover a Higgs boson(s) up to a mass of roughly
1 TeV.

1.4 SM Lagrangian

Now, that we see how the SM Lagrangian can be constructed, we are ready
to see what we have. For our purposes, it is not necessary to write out the
entire Lagrangian as we are mostly interested in the dynamics of the strong
sector and its interactions with the Higgs field. We are interested in the strong
sector because strong corrections tend to be larger than electroweak corrections
because the coupling constant is much larger, αs À α. Although it is not a
hard and fast rule, in many known cases for Higgs production, the electroweak
corrections have the opposite sign from the strong corrections making both
important.
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The strong sector Lagrangian can be written as

Lqcd = −1

4
Ga

µνG
µν,a +

∑

f

ψ̄f,i(i /Dij −mfδij)ψf,j. (1.62)

The “Feynman slash” notation stands for a contraction of a vector and a
γ matrix, /A = γµA

µ. The gamma matrices form a special kind of algebra
called a Clifford algebra (see Appendix B) that is particularly relevant to our
discussions of the pseudoscalar Higgs. In brief, the gamma matrices are defined
by the following relation,

{γµ, γν} = γµγν + γνγµ ≡ 2ηµν , (1.63)

where ηµν is the space time metric (usually this is written as gµν , which the
author prefers to reserve for applications in curved space). The QCD part of
the covariant derivative can be written

Dµ
ij = ∂µδij − igAµ,aT a

ij, (1.64)

where Aµ,a is the gluon field with a color index a. We define the SU(3)c

generators T a
ij and the group structure constants

[T a, T b] = ifabcT
c. (1.65)

More information about group theory can be found in Appendix C. Finally,
the field strength for the gluon self-interactions

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν . (1.66)

We are being rather cavalier with raising and lowering the group indices
because we have a trivial orthonormal Killing metric in the SM. This is not
always true for more exotic groups.

1.4.1 Feynman rules

Once a Lagrangian has been formulated for a given theory, the Feynman rules
can be deduced. It is the Feynman rules that are important in perturbative
calculations. There are several ways to derive Feynman rules, in both operator
language and the path integral formalism. We will skip these derivations as
they are a bit tedious and technical for our uses and simply list the Feynman
rules for QCD.

The Feynman rules for QCD can be found in Table (1.3). These allow
us to generate the mathematical expressions for scattering cross-sections if we
remember to add the appropriate spinor and polarization vectors to the matrix
elements for the external particles.
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ji
i(/p+m)

p2−m2+iε
δij

b, νa, µ −iδab

p2+iε

[
ηµν − (1− ξ)pµpν

p2

]

a b
−iδab

p2+iε

ji

a, µ

−ig3γ
µ(T a)ij

b

a, µ

c

p

g3f
abcpµ

p3, c, ρ p2, b, ν

p1, a, µ

−g3f
abc[(p1−p2)

ρηµν

+(p2−p3)
µηνρ

+(p3−p1)
νηµρ]

a, µ b, ν

c, ρd, σ

−ig2
3[f

abef cde(ηνσηµρ−ηµσηνρ)
+facef bde(ηρσηµν−ηµσηνρ)
+fadef cbe(ηνσηµρ−ηρσηµν)]

Table 1.3: QCD Feynman rules.
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1.4.2 Polarizations, gauges, and ghosts

Since we have tried so hard to build a massive theory out of a massless one,
we are lead to wonder if there is any more information about a gauge theory
hidden in the differences between massive and massless particles. The answer
is yes. Let us briefly explore those differences to solidify our understanding.

We observe two kind of photons, thus two degrees of freedom (polariza-
tions). However, the photon is a vector field (Aµ), which has four compo-
nents. One of these degrees of freedom is removed by the Ward [41–45] identity
kµεiµ(k) = 0, making the polarizations orthonormal. This condition is good in
any Lorentz frame. However, if we start in a state where the unphysical third
polarization is zero, there exists a Lorentz frame where the physical polariza-
tions mix with the unphysical one which is unacceptable. Gauge invariance
comes to the rescue.

Even in classical electrodynamics, we know that the physics does not
change when we redefine the fields as Aµ → A′µ = Aµ+∂µΛ for any (arbitrarily
differentiable real field) Λ. When we define the field via a Fourier transform,
the Λ field cancels the unphysical polarization. So gauge invariance implies
that the physics remains the same if we add an arbitrary amount of a new
field to the photon field. In retrospect, this suggests that ghost fields will need
to be introduced in non-Abelian gauge theories when gauge invariance is lost
(and it unfortunately has to be lost to define the gluon propagator).

In the massive case, the problem is more subtle. Massive particles have
three polarizations, so Lorentz invariance is not an issue, we can mix freely
the three states. The problem is that we cannot arrive at the massless result
from the massive result simply by taking the mass to zero.

A theory with massless vector particles, such as QED or QCD, must be
gauge invariant or the theory is not Lorentz invariant. Theories with massive
vector particles need gauge invariance or else the theory in not renormalizable.
We will touch on this shortly.

We have built a gauge invariant Lagrangian from the beginning. When
we try to quantize this theory though, we find that the gluon field Aa

µ has
a freedom to be changed by a total derivative and still leave the Lagrangian
gauge invariant which helped us to understand its two polarizations. However,
we will need to eliminate this freedom to define a perturbative propagator. To
eliminate this freedom of the gauge transformation, we need to add a constraint
to the gluon field in the form of a gauge-fixing term.

We could choose a Lorentz condition (∂µAa
µ = 0), or we could choose the

Coulomb gauge (∂iA
a
i = 0), or the axial gauge (n · Aa = 0,with n2 = 1), or

even the temporal gauge (Aa
0 = 0). Beyond these there are even more exotic

choices. To make our calculations easier, we will employ the Lorentz gauge,
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so we add the gauge-fixing term

Lgauge-fixing = − 1

2ξ
(∂µA

µ,a)2. (1.67)

The parameter ξ is called the gauge parameter. The addition of this term
breaks gauge invariance but it allows for a definition of a perturbative frame-
work to preform calculations that include gluons. Any physical observable will
not depend on the value of the gauge parameter so we can choose something
convenient. Some example includes ξ = 0 (Landau gauge), ξ = 1 (Feynman
gauge), and ξ → ∞ (Unitary gauge). The reasons for these choices are clear
in the gluon propagator.

The full perturbative gluon propagator with Lorentz indices (µ, ν) and
color indices (a, b) at each end and momentum p can be written in the Lorentz
gauge as

Γµν
ab (p) =

iδab

p2 + iε

[
−ηµν + (1− ξ)

pµpν

p2 + iε

]
. (1.68)

All of our calculations are done in the Feynman gauge where the second term
in the gluon propagator is missing.

There is one further complication. Even when the gauge-fixing term is
added there is still an issue with the number of polarizations for the gluons.
The SU(3)c vector bosons (gluons) are massless and so they should have only
two degrees of freedom. One possible way to get this desired result is to add
the so called Fadeev-Popov ghost fields. Ghosts are anti-commuting scalar
fields that must be added to loop diagrams in the Lorentz gauge2 to cancel
the unphysical polarizations. We can write

Lghost = (∂µ(χa)?)(∂µδab − gfabcA
µ,c)χb. (1.69)

It is important to understand that ghosts should be thought of as a prescrip-
tion, and not an actual particle. Furthermore, χ? has nothing to do with χ.
As ghost fields did not play an important role in our research, we will leave
them now and simply summarize our strong Lagrangian

L = −1

4
Ga

µνG
µν,a +

∑

f

ψ̄f,i(i /Dij −mfδij)ψf,j

− 1

2ξ
(∂µAa

µ)2 + (∂µχ
a?)Dµ

abχ
b. (1.70)

To summarize, ghost fields must be included as internal lines, but never as
external particles. They do not correspond to physical particles, but occur in

2Ghosts do not couple to the physical fields in the axial gauge.
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diagrams to correct violations in unitarity that would otherwise arise due to the
form of the vector boson propagators. This fact was put best by M. Veltman
when he wrote, “The proof of that fact is really the central part of gauge field
theory.” This property of gauge theories is remarkable and cannot be stressed
enough, even if it plays a small role in the current research being presented.

Ward identities

Since they were mentioned in the last section, we need a formal definition of
the Ward identities. There are actually several identities that belong to the
framework of Ward identitites, sometimes called Ward-Takahashi identities.
However, we are only interested in one of them in our calculations.

When there are external particles with polarization vectors εµ, the matrix
elements can be written generically as,

M≡ εµ1(k1) · · · εµN
(kN)Mµ1···µN . (1.71)

The Ward identity tells us that if any of the momenta of the polarization vec-
tors are substituted for the polarization vector itself, then the matrix elements
are reduced to zero.

k1
µ1
· · · εµN

(kN)Mµ1···µN = · · · = εµ1(k1) · · · kN
µN
Mµ1···µN = 0. (1.72)

This relation is an incredibly powerful tool in checking the results of a partic-
ular calculation at any intermediate stage before proceding.

1.5 Quantum Chromodynamics (QCD)

We will now turn our discussion to the strong sector of the SM and leave behind
the electroweak interactions. Strong corrections to collider observables tend
to be larger than their electroweak counterparts and in some ways, they are
simpler to calculate because there are fewer interactions in the strong sector,
although one would not be out of line in saying that strong interactions are
more complicated in their form.

1.5.1 Quark Model

The current theory of strong interactions began in the early 1960’s with the
quark model [46, 47]. This model predicted that all strongly interacting par-
ticles are composed of more fundamental constituents called quarks which
were fractionally charged fermions that carried an additional quantum num-
ber dubbed ‘color’.
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Generically, particles that participate in strong interactions are called Had-
rons and they have been observed in fermionic (baryon) and bosonic (meson)
states. With the exception of exotic particles3, this implies that baryons are
bound states of three quarks (qqq) and mesons are bound states of two quarks
(qq̄). It was the discovery of the ∆++(uuu) baryon that called for the addition
of the color quantum number to save the Fermi-Dirac statistics. Historically,
the three colors introduced were labeled red, white, and blue but were changed
to a more neutral red, blue, and green. In the end, the labels are irrelevant.

From what we have learned about the field theory of the SM, we know
that the strong sector is invariant under local SU(3)c transformations. We
find that quarks transform in the fundamental representation and anti-quarks
according to the conjugate representation. Gluon transform in the adjoint
representation. Therefore, to form color singlet states, mesons are qaq̄

a and
baryons are εabcqaqbqc color combinations.

We are interested in the high-energy behavior of the strong force, where the
theory becomes asymptotically free and we are able to make a diagrammatic
approach to our problems. We will leave behind the idea of bound quarks for
now.

1.5.2 Regularization and renormalization

Regularization and renormalization are the central concern of Feynman dia-
grams with loops with are needed to calculate higher order corrections to any
physical observable.

Given the Feynman rules for any Lagrangian, we can write down all the
diagrams for a given physical observable to any desired order. The problem
lies in trying to evaluate these mathematical expressions in D = 4 dimensions
where divergencies develop in generically two ways.

Ultraviolet (UV) divergencies are due to the singular behavior of loop
graphs at large loop momenta. These are removed systematically, order by
order, by redefining the parameters in the Lagrangian by an infinite shift4.

Infrared (IR) divergencies occur when the propagators in a loop graph
pass through zero in an unregulated way. This does not happen with mas-
sive quark loops, but does occur with massless quarks or gluon loops. We
know that quarks are not truly massless, but are sometimes treated as such

3There is some theoretical interest in a so-called dibaryon, an object with six bound
quarks, but none have been experimentally detected. Also, recently there has been evidence
of a five quark bound state [48] called the Θ+(1540). There is nothing in the quark model
that prevents these configurations, but these exotic particle will be ignored in our current
discussion.

4In the SM, we employ multiplicative renormalization exclusively for this purpose.
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to simplify calculations. These types of divergencies cancel for appropriately
defined quantities and can mostly be predicted for loop graphs. This will be
elaborated on more later.

The means by which a Lagrangian is renormalized and the divergencies
removed requires a regularization prescription. We will employ dimensional
regularization, where the dimension of the graphs are taken to be non-integer,
specifically we will calculate in D = 4− 2ε dimensions.

Dimensional Regularization

When we calculate diagrams in D = 4−2ε dimensions, UV and IR divergencies
are well behaved and appear as 1/ε poles. Here we treat the amplitude as an
analytic function in D dimensions and let D → 4 when a finite answer (when
all the poles cancel) is found. This actually presents a computational challenge
to our Clifford algebra, but those subtleties will be addressed in Appendix B.

We need to work out an example to see all that this regularization proce-
dure entails. After introducing the Feynman parameters and after the tensor
reduction has been preformed (see Appendix D), we are left with integrals of
the form

I =

∫ +∞

−∞

d4l

(2π)4

1

(l2 −∆ + iε)m
, (1.73)

where m is a positive integer and the ∆ parameter is combination of invari-
ant masses and other kinematic variables. The denominator of this integral

has poles in the complex l0 plane at (∓
√
~l2 + ∆ ± ε′). First, we will Wick

rotate the integration contour to integrate this integral in Euclidean space in-
stead of Minkowski space, and change to polar coordinates. So we have the
replacements

l0 → ilE0 , d4l→ id4lE (1.74)

d4lE = dΩ4(l
E)3dl3 = 2π2(lE)3dl3. (1.75)

Our integral becomes

I
WR−→ i(−1)m

∫
dΩ4

∫ ∞

0

dlE
(lE)3

[(lE)2 + ∆]m
, (1.76)

DR−→ i(−1)m

∫
dΩD

∫ ∞

0

dlE
(lE)D−1

[(lE)2 + ∆]m
, (1.77)

=
i(−1)2

2
∆D/2−m Γ(m−D/2)Γ(D/2)

Γ(m)
. (1.78)
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The details of how this integral is solved is in Appendix E. We can generalize
this integral to an arbitrary power of the loop momentum squared,

Iαβ =

∫ ∞

−∞

dDl

(2π)D

(l2)α

(l2 −∆ + iε)β
, (1.79)

= i(−1)α+β πD/2

Γ(D/2)

Γ(α +D/2)Γ(β − α−D/2)

Γ(β)∆β−α−D/2
. (1.80)

This integral was derived assuming D/2 < m, so the integral converges. How-
ever, dimensional regularization changes more than just the loop integrals.
From the beginning to end, all the aspects of the calculation are done in D
dimensions. The loop integrals change, as does the Clifford algebra, the phase
space integral, and the action. Here is where we find the introduction of the
renormalization scale. The action is now written,

S =

∫
dDxL. (1.81)

The action is dimensionless, so the Lagrangian has to compensate for the
change in the measure. This imposes a dimension on the coupling constant.
If we let D = 4− 2ε, then

g → µε
r g, (1.82)

where µr has units of mass and is the renormalization scale.

Renormalization

Renormalization is one of the great feats of gauge field theory. The theoretical
framework behind renormalization is considerable, and will not be considered
here. In short, the coupling and mass parameters in our Lagrangian are to
be considered “bare” parameters and do not correspond to the physical (mea-
sured) values. When UV poles are found to exist, it is possible to redefine the
parameters in our theory to remove these poles by shifting them by a formally
infinite amount. This is done in a multiplicative way,

ψi
0,f → Z1/2ψi

f,R (1.83)

Aa
0,µ → Z

1/2
A Aa

µ,R (1.84)

χa
0 → Z1/2

χ χa
R (1.85)

g0 → ZggR (1.86)

m0 → ZmmR (1.87)

ξ0 → ZAξR, (1.88)
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where the subscripts denote bare and renormalized quantities. We note that
the gauge parameter is renormalized by the same factor as the gluon fields to
keep the gauge-fixing term in the Lagrangian consistent.

Any serious candidate for a model of the universe needs to be renormal-
izable to correctly predict physical observables. However, there is some am-
biguity as to what to absorb into the renormalization. Typically, radiative
corrections have some commonly occurring finite terms appearing with the
UV poles. The prescription used to subtract the divergencies and any finite
terms is known as the renormalization scheme. Different schemes are appro-
priate to different kinds of calculations. We will use the modified minimal
subtraction scheme, written ms. In this scheme, we remove the commonly
occurring factors of 4π and the Euler-Mascheroni constant (γe = 0.5772 . . .)
by defining the ms UV pole in terms of the bare pole as

1

ε̄
= (4π)ε exp(−εγe)

1

ε
. (1.89)

The dependence on the renormalization scale and scheme would lead one
the think that our results will depend on the choices made, making the results
inconsistent for the same physical observable. To ensure that this is not true,
the behavior of the renormalized quantities are restricted when changing from
one scale to another. Mathematically, the physical observables change accord-
ing to scale and scheme according to a set of coupled differential equations
known as the renormalization group equations5. These equations allow our
results to be independent from the parameter µr, but we will come back to
that assertion. Briefly, this is a goal of a calculation, not a reality.

1.5.3 Running of αs and pQCD

To best understand perturbative QCD (pQCD), the best statement that can
be made is that “everything runs”. The preceding comments about renorm-
alization and the renormalization group effect all aspects of a calculation and
make the values of all the parameters change in calculable ways.

If we consider a physical observable which depends on the energy scale,
R(Q), we would assume that there exists a limiting value for R independent of
Q. This is not the case because the perturbation series requires renormalization
to remove ultraviolet divergencies. The renormalization procedure is done at
a scale µ, so our physical observable must depend on the ratio Q2/µ2.

The µ parameter seems to be arbitrary, it was not mentioned in the QCD
Lagrangian, but the scale µmust be chosen to define the theory at the quantum

5The choice of the word group is as unfortunate as it is historic.
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(loop) level. Therefore our calculations should have results that are indepen-
dent of the scale µ. In actuality, this is a goal and not a requirement and any
residual dependence for a physical observable on the scale µ tells us about the
expected size of higher order corrections. If we use the renormalization group
equation we can define this independence precisely as,

µ2 d

dµ2
R(Q2/µ2, αs) =

[
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

]
R ≡ 0, (1.90)

here the scale µ need not be the renormalization scale, but we will identify it
as such for convenience. We will simplify this equation by using the common
notation

t = ln

(
Q2

µ2

)
, β(αs) = µ2∂αs

∂µ2
, (1.91)

and we have in the end (remember t is not a time coordinate),
[
− ∂

∂t
+ β(αs)

∂

∂αs

]
R(et, αs) = 0. (1.92)

This equation can now we solved order by order leading to the running of the
coupling constant.

The β function

The running of the coupling is controlled by the renormalization group equa-
tion,

Q2 ∂αs

∂Q2
= β(αs). (1.93)

If we expand the β function itself into a perturbative expansion,

β(αs) = −bα2
s(1 + b′αs + b′′α2

s +O(α3
s)), (1.94)

then we can find exact (for the first few orders) or numeric solutions to the
renormalization group equation and see how the coupling constant changes.
The first few terms are equal to (see Appendix C for the Casimir invariants)

b =
(11CA − 2nf )

12π
=

(33− 2nf )

12π
, (1.95)

b′ =
(12C2

A − 5CAnf − 3CFnf )

2π(11CA − 2nf )
=

(153− 19nf )

2π(33− 2nf )
, (1.96)

b′′ =
(2857C3

A + (54C2
F − 615CFCA − 1415C2

A)nf + (66CF + 79CA)n2
f )

288π2(11CA − 2nf )

=
(77139− 15099nf + 325n2

f )

288π2(33− 2nf )
, (1.97)
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where nf is the number of light flavors (nf = 5 in this thesis). If we look at
the expansion again and the form of b, we see that the β function is negative
for nf ≤ 16.

Asymptotic freedom

In electromagnetism, we have a very simple structure for the β function. For
one fermion flavor we have

βqed(α) =
1

3π
α2 + · · · , (1.98)

so the strength of the coupling becomes greater at higher energy. This solution
is very simple to understand. Higher energy interactions we able to penetrate
deeper into the charge cloud screening the electron. Experimentally, we were
able to see α become larger at different energy scales like α−1(0) = 137.035,
α−1(M2

τ ) = 133.498, and α−1(M2
Z) = 127.918. However, the β function is

negative6 in QCD, so the coupling becomes smaller at high energy. This effect
is known as “asymptotic freedom and infrared slavery”.

At high energies in QCD, our perturbation theory becomes better and
better and at small energies we have a confining behavior. This allows for the
construction of the parton model which will be discussed next.

1.6 Partons, Hadrons, and Observables

We can go no further without defining our physical observables and going
through an example to show how our machinery works. We will typically
be interested in differential cross-sections because this is the quantity that is
measured at colliders. From time to time we will also be interested in the total
(integrated) cross-sections because it is useful in determining the number of
events expected for a certain energy. Our first example happens to be a total
cross-section because it is simpler to calculate the corrections to a 2 → 1
process as an illustration.

Scattering and factorization

We will be dealing with partonic cross-sections in this thesis, but we do not
build parton colliders. We build hadron colliders. The Fermilab Tevatron

6It is interesting that what this meant was not immediately seen. Moreover, it is inter-
esting to note how many people were working on this problem and failed to find the negative
β function.
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collides protons on anti-protons and the CERN Large Hadron Collider will
collide protons on protons.

The connection between hadron-hadron scattering and parton-parton scat-
tering is encoded in the parton model and the factorization theorem [49]. We
can write our hadronic observable as follows,

dσ(P1, P2) =
∑
ij

∫
fi/1(x1, µ

2
f)⊗ dσ̂ij ⊗ fj/2(x2, µ

2
f), (1.99)

where the dσ means that this can be a differential quantity that we are pre-
dicting. The functions fa/H(x, µ2

f) are known as the parton distribution func-
tions (PDFs). These must be measured experimentally. The quantity dx fa/H

should be interpreted as the probability7 that a parton a will be found in had-
ron H carrying a momentum fraction between x and x+ dx. This probability
interpretation is the reason we have written the partonic quantity between
the functions as in ordinary quantum mechanics even though the PDFs are
real functions and this is not needed. Also we have used the ‘⊗’ symbol to
drive home the fact that this is a convolution. Pictorially, we can think of
this relation as depicted in Figure (1.6). We can understand this equation as
integrating over all the allowable momentum configurations that allow for the
partonic production process to occur. There are kinematic limits to consider
in these derivations that will be explored in Appendix A.

It is the hard scattering (differential) cross-section that can be calculated
with pQCD. However, the separation of the short and long distance physics
with the factorization theorem requires the introduction of a factorization
scale µf. As with the renormalization scale, the more terms that are included
reduce the dependence on the factorization scale. In practice, both of these
scales are often set equal, µ = µf = µr, but this depends on the specifics of
the calculation.

Observables

It is a truism that to get a Lorentz invariant answer you must ask a Lorentz
invariant question. The same is true for physical observables. We must make
sure that we are asking a question that has a physical answer. One needs
to ask an IR safe question to get an IR safe answer. Can a detector tell the
difference between a direct production process (ab→ X) and the same process
with a soft gluon in the final state? This is a loaded question and we cannot

7Parton distribution functions lose this interpretation at higher orders due to the ab-
sorption of IR poles. However, it can still be approximately thought of in these terms.
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Figure 1.6: Parton Model.

put the cart before the horse. We will work out an example and show how all
of this fits together.

We will examine the Drell-Yan production, pp̄ → W+ + X. We will refer
to Figure (1.7) for our diagrams and momentum assignments.

1.6.1 Lowest order cross-section

At the partonic level, the Drell-Yan process (with momentum assignment) is
q(p1)q̄(p2) → W+(q). If we consider only the scattering of valence quarks then
we would have more accurately ud̄ → W+ and ūd → W−, however, the W±

is not directly seen so we will ignore this complication for the time being and
return to it when we talk about fragmentation functions. The application of
the Feynman rules (the weak vector bosons couple like V − A) gives,

iM = v̄(p2)
ig2√

2
γµ

(1− γ5)

2
u(p1) ε(q). (1.100)
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Figure 1.7: Drell-Yan W± production (sample diagrams).

The color and spin averaged8 matrix elements can be written,

|M|2 =
Nc

4N2
c

(
g2√
2

)2

Tr [/p2
γµPL/p2

γνPL]

(
−ηµν +

qµqν

M2
W

)
, (1.101)

where Nc = 3 is the number of colors, PL = (1 − γ5)/2 is the left projection
operator, and the final term involving the metric is the summation of the
polarization vectors.

Right away in this calculation we are confronted with what to do with the
γ5 in D dimensions. For this very simple calculation we will simply use the
näıve γ5 prescription, but this will not always be the case. A detailed look at
the γ5 problem can be found in Appendix B.

If we use the usual Mandelstam variables and let ŝ = (p1 + p2)
2 = 2p1 · p2

(massless initial state quarks), then the trace can be written in D = 4 − 2ε
dimensions as,

Tr [/p2
γµPL/p2

γνPL] = 2ŝ(1− ε), (1.102)

so we can write out total partonic cross-section as

σ̂ =
πg2

2

4Ncŝ
(1− ε)δ(1− ŝ/M2

W ),

= σ̂(0)(1− ε) δ(1− ŝ/M2
W ). (1.103)

We see that at the tree (Born) level, the process has a clean ε→ 0 limit. The
ε terms in the Born cross-section are important to higher order corrections as
they could be contracted with a 1/ε term yielding a finite term in the product
so these terms cannot be ignored in general.

8We have averaged over 2 quark polarizations. In D dimensions, gluons have to be
averaged over (D − 2) polarizations.
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1.6.2 Higher order cross-sections

At the lowest order, we are free to simply calculate our partonic cross-section
at tree level and plug them into a computer program to convolute it with the
PDFs to find a physical cross-section. However, if we want to reproduce data,
we will need to add some more information about fragmentation functions,
jet algorithms, detector limitations, et cetera. Whereas the PDFs relate the
hard scattering matrix elements into hadronic scattering, fragmentation func-
tions (and jet algorithms to some extent) convert the outgoing partons into
hadronized information.

We also have the as-yet unresolved issue of the left over IR poles. Here we
will show that there are subtraction terms present to remove these poles order
by order. In short, these IR poles (which will manifest themselves as collinear
singularities) will be absorbed as splitting functions in the higher order par-
ton distribution functions and fragmentation functions. The IR poles cancel
based on a very general theorem [50–52] known as either the Kinoshita-Lee-
Nauenberg or Bloch-Nordsieck theorm, and they are required to completely
cancel due to the factorization theorems.

We will seek to define an IR safe observable9, which we will call ω (also
known in the literature as H, presumably to stand for hadronic information).
This function will be defined order by order in our calculations. We can start
by remembering that the lowest order cross-section is IR safe as the Born
level cross-section has no poles. If we write out all the possible places the IR
poles could be absorbed (up to ‘higher twist’ terms which will be ignored here
represented by the last term) we find,

σ(0) = f (0)

︸︷︷︸
pdf

⊗ ω(0)︸︷︷︸
observable

⊗ d(0)︸︷︷︸
fragmentation

+O(Λ2
qcd/Q

2), (1.104)

so we indeed see
σ(0) = ω(0), ⇒ f (0) = d(0) = 1. (1.105)

So at the lowest order, we recover what we already knew, that the lowest
order observable is the same as the partonic cross-section. The superscripts
here refer to the order of the calculation. PDFs and fragmentation functions
are also fit order by order in the coupling constant, and as we are about to
see, at higher orders the PDFs and fragmentation functions also absorb the
left-over IR poles of the calculation.

We can continue this order by order to find the IR safe physical observable

9Many thanks to Fred Olness for finally elucidating this to the author.
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at next-to-leading order (NLO),

σ(1) = f (1) ⊗ ω(0) ⊗ d(0) + f (0) ⊗ ω(1) ⊗ d(0) + f (0) ⊗ ω(0) ⊗ d(1)

= f (1) ⊗ ω(0) + ω(1) + ω(0) ⊗ d(1).

By adding what we already know about the lowest order (LO) observable,
we can write,

ω(1) = σ(1) − f (1) ⊗ σ(0) − σ(0) ⊗ d(1) (1.106)

So we can see that any collinear poles that are left in the partonic σ(1)

function can be removed by suitable redefinition of the higher order PDFs
and/or fragmentation functions. These redefinitions are referred to as splitting
functions and they are analogous to our renormalization group equation, they
tell us how the PDFs evolve with energy scale. The splitting functions are
perturbative functions that are described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) formalism [53–56]. The entire machinery behind
PDF evolution is well beyond the scope of our problem, but we will list the
splitting functions for later reference (the labeling of the subscript appears
backwards, but is in agreement with the convention),

P (1)
q←q(z) = CF

(
1 + z2

1− z

)

+

, (1.107)

P (1)
q←g(z) =

1

2
(z2 + (1− z)2). (1.108)

We will define the + subscript in a minute.
The σ(1) function itself is free of UV poles because it is defined as the

appropriate combination of virtual and real-emission corrections and can be
renormalized,

σ(1) =

∫ [
〈M(1)|M(0)〉+ 〈M(0)|M(1)〉

]

2

dPS2

+

∫ [
〈M(0)|M(0)〉

]

3

dPS3, (1.109)

where the subscript refers to the number of particles in the final state and
the superscript on the amplitude refers to the order of the diagrams (tree
level, one-loop, et cetera). This will be made clearer in the next section. We
can continue this process to define the next-to-next-to-leading order (NNLO)
observable along the same lines,

σ(2) =f (2)⊗ ω(0)⊗ d(0) + f (0)⊗ ω(2)⊗ d(0) + f (0)⊗ ω(0)⊗ d(2)+

f (1)⊗ ω(1)⊗ d(0) + f (1)⊗ ω(0)⊗ d(1) + f (0)⊗ ω(1)⊗ d(1),

(1.110)
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and insert what we know from the LO and NLO expressions to find

ω(2) = σ(2) − f (2) ⊗ σ(0) − σ(0) ⊗ d(2) + f (1) ⊗ f (1) ⊗ σ(0) + σ(0) ⊗ d(1) ⊗ d(1)

+ f (1) ⊗ σ(0) ⊗ d(1) − f (1) ⊗ σ(1) − σ(1) ⊗ d(1). (1.111)

Again, the σ(2) function is appropriately defined as

σ(2) =

∫ [
〈M(2)|M(0)〉+ 〈M(0)|M(2)〉+ 〈M(1)|M(1)〉

]

2

dPS2

+

∫ [
〈M(1)|M(0)〉+ 〈M(0)|M(1)〉

]

3

dPS3

+

∫ [
〈M(0)|M(0)〉

]

4

dPS4. (1.112)

We could continue this recursion indefinitely, the procedure is very straight
forward, but is of little practical value. At the next level (NNNLO) we would
need to know the PDFs at the same level. The NNLO PDFs were just recently
completed (meaning the splitting functions were recently calculated [57, 58])
and it is doubtful that the NNNLO calculation will be available any time in
the foreseeable future.

Now that we have our machinery, let us return to our Drell-Yan calculation
and see how it put it to use.

Virtual corrections

The virtual contributions at this order take in account the interference of the
loop diagrams with the LO diagram as shown in Figure (1.7).

The virtual (loop) corrections to this process can be written

σ̂
(1)
v = σ̂(0)αs

2π
δ(1− τ)

(
4πµr

M2
W

)ε
Γ(1− ε)

Γ(1− 2ε)
CF

{
− 2

ε2
− 3

ε
− 8 + 4ζ2

}
, (1.113)

where τ = M2
W/ŝ. The prefactor involving 4πµr and the Γ-functions are

common to all the higher order corrections and will be dropped from the
expression. These poles occur when the momenta in the denominator of the
loop diagrams vanish.

Real emissions

The real emissions taken are again tree-level at this order in the perturbation
series. The extra external line adds a power of the coupling constant and is
therefore the same order as the virtual corrections. There are many different
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real emissions for this process. We can have the emission of real gluons in the
quark-quark initial state as well as real (anti-)quarks in the gluon–(anti-)quark
initial state. All of these permutations contribute to the physical observable,
but we will examine just the real gluon emission for the sake of brevity and
simply state the other results. The problem will arise when one of these real
emissions become soft (kµ → 0) or collinear (kµ || pµ).

This becomes clear when we look at the kinematics. Let’s look at the real
emissions in the rest frame of the W -boson. If we assign the momentum,

W+(Q) → q(p1) q̄(p2) g(p3), (1.114)

then we can define the energy fractions xi as

xi =
2Ei√
s

=
2pi ·Q
s

, xi > 0, (1.115)

which are not to be confused with the parton energy fractions. With this
normalization we see ∑

i

xi =
2(

∑
i pi) ·Q
s

= 2. (1.116)

Because of conservation of energy, only two of the fractions are indepen-
dent. We can also define the angle between any two of the partons like

(Q− p3)
2 = (p1 + p2)

2

⇒ s− 2Q · p3 = s(1− x3) = 2E1E2(1− cos θ12). (1.117)

We can then continue this process to find expressions for all the angles in
terms of all the energy fractions,

2(1− x1) = x2x3(1− cos θ23), (1.118)

2(1− x2) = x3x1(1− cos θ31), (1.119)

2(1− x3) = x1x2(1− cos θ12). (1.120)

Since all the energy fractions xi < 1, this means that there are three
configurations where the partons become soft, xi → 0, and three configurations
where the partons become collinear,

x1 → 1 ⇐⇒ θ23 → 0, (1.121)

x2 → 1 ⇐⇒ θ31 → 0, (1.122)

x3 → 1 ⇐⇒ θ12 → 0. (1.123)
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Figure 1.8: Phase space singularities.

Graphically, we can see this occurring at the borders of phase space in Fig-
ure (1.8). We can see a soft singularity when two particles are back to back
and a collinear singularity when two particles are parallel.

When we try to integrate over all of the phase space we will pick up IR
poles where the partons are soft or collinear. We find,

σ̂r = σ̂0
αs

2π
CF

{
2

ε2
δ(1− τ)− 2

ε

1 + τ 2

(1− τ)+

+ 4(1 + τ 2)

(
ln(1− τ)

1− τ

)

+

− 2
1 + τ 2

1− τ
ln τ

}
, (1.124)

where we have introduced the “plus” distribution to regulate the singularity
at τ = 1 smoothly. We define this as,

∫ 1

0

dz

(
f(z)

1− z

)

+

=

∫ 1

0

dz
f(z)− f(1)

1− z
, (1.125)

which removes the singular point. In our case, this is a threshold effect and
should not be of too much concern for our illustration.

When we add the virtual and real corrections we see that the double pole
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cancels immediately and we are left with the following result,

σ̂v+r = σ̂0
αs

2π
CF

{
− 2

ε

(
1 + τ 2

1− τ)

)

+

− 2
1 + τ 2

1− τ
ln τ

+ 4(1 + τ 2)

(
ln(1− τ)

1− τ

)

+

+

(
4ζ2 − 8

)
δ(1− τ)

}
, (1.126)

where we have combined the left-over IR poles into one term. We can now
see the structure of the IR pole and see that it corresponds to the quark-
quark splitting function10. If we define our higher order PDF in terms of this
splitting function and rely on the universal nature of the IR poles that appear
in calculations, we have

f
(1)
q/q(z) = −1

ε

1

2
(4πeγe)εP (1)

q←q(z), (1.127)

where we can see our PDF notation corresponds to getting a quark out of a
quark (q/q), which is precisely what the splitting function describes.

Physical observable

Following our procedure of defining an IR safe observable, we have

ω
(1)
qq̄ = σ̂(1) − f (1)

q←q ⊗ σ̂
(0)
qq̄ (1.128)

= σ̂(0)αs

2π

{
P (1)

q←q(τ) ln

(
M2

W

µ2

)
+ CF

[
−2

1 + τ 2

1− τ
ln τ

+ 4(1 + τ 2)

(
ln(1− τ)

1− τ

)

+

+

(
4ζ2 − 8

)
δ(1− τ)

]}
, (1.129)

which if we take µ = MW and remove the αs factor, this simplifies as

ω
(1)
qq̄ = σ̂(0)CF

{
−1 + τ 2

1− τ
ln τ + 2(1 + τ 2)

(
ln(1− τ)

1− τ

)

+

+

(
2ζ2 − 4

)
δ(1− τ)

}
.

(1.130)
We can do this for the other initial states and combine our results for a

10This definition is scheme dependent. As mentioned, we will employ the ms scheme.

39



final prediction

σnlo
hh′ =

∑

f=q,q̄

∫
dx1 dx2 ff/h(x1, µ

2)

[
σ(0)δ(1− τ)

]
ff̄/h′(x2, µ

2)

+
∑

f=q,q̄

∫
dx1 dx2 ff/h(x1, µ

2)

[
αs(µ

2)

π
ω

(1)

ff̄
(τ)

]
ff̄/h′(x2, µ

2)

+

{ ∑

f=q,q̄

∫
dx1 dx2 ff/h(x1, µ

2)

[
αs(µ

2)

π
ω

(1)
fG(τ)

]
fG/h′(x2, µ

2) + (x1↔ x2)

}
.

(1.131)

When one carefully makes sure that all the constants, couplings, and dis-
tributions run at the appropriate level, this procedure gives predictions that
match the data quite well.

1.7 Resummation

We carefully studied the IR properties of the total cross-section, but as was
mentioned earlier, we are primarily interested in the differential cross-section.
To that end, our Born level cross-sections are 2 → 2 processes (the particles
recoil off one another to give the outgoing particles transverse momentum).
However, we have already seen one kind of problem with the introduction of
the plus distribution. There are energy configurations which pose problems
to our computational formalism. There also appear to be singular corrections
when the transverse momentum (pT ) of an outgoing particle goes to zero. We
can generically write these corrections as

threshold ∼ αn
s

ln2n−1(1− τ)

(1− τ)
, recoil ∼ αn

s

p2
t

ln2n−1 M
2
W

p2
t

. (1.132)

In the second half of this thesis we will be interested in the recoil (or
pt singular corrections) and what we can do to make reliable predictions at
small values of the transverse momentum. The formalism that allows for
predictions at small pt is known as resummation. This formalism is described
in detail when it is used and will not be introduced here. However we will
present a motivation for our future results based on our Drell-Yan calculation.
Experimentally, we note that at small values of pt, the differential cross-section
goes like exp(−p2

t ). Since our LO prediction was off by a K-factor (dσnlo =
K dσlo), if we assume that the corrections form a series,

K = 1 +
2παs

3
(· · · ) + · · · ⇒ exp(2παs/3), (1.133)
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where the arrow introduced the resummation formalism. Lets look at the exact
calculation and see where this assumption enters.

When we look at the differential cross-section for qq̄ → W±g, we find that
the correction has a singular log correction as predicted. But we can resum
that large logarithm into our assumption that repeated soft-gluon emission
will make the result finite. We can write,

∫ s

0

dσ

dτ dy dp2
t

dp2
t =

(
dσ

dτ dy

)

Born

+O(αs)

∫ p2
t

0

dσ

dτ dy dp2
t

dp2
t =

(
dσ

dτ dy

)

Born

×
{

1−
∫ s

p2
t

4αs

3π

ln s/p2
t

p2
t

dp2
t

}

=

(
dσ

dτ dy

)

Born

×
{

1− 2αs

3π
ln2 s

p2
t

}

=

(
dσ

dτ dy

)

Born

× exp

{
−2αs

3π
ln2 s

p2
t

}
, (1.134)

which is finite as pt → 0. This is the well-known Sudakov double logarithm.
When we differentiate our previous expression we find that the observable
behaves like,

dσ

dτ dy dp2
t

=

(
dσ

dτ dy

)

Born

× 4αs

3π

ln s/p2
t

p2
t

× exp

{
−2αs

3π
ln2 s

p2
t

}
. (1.135)

Although there are some details missing, we will leave our computational ma-
chinery now and examine what might lie beyond the SM.

1.8 Why supersymmetry?

So far, we have only sung the graces of the SM, but is there anything wrong
with the SM? The answer to that question depends on what one considers a
problem. Experimentally, the SM represents the known data extremely well.
However, we are only a few years away from seeing data from a new energy
regime and it would not be out of line to prepare some extended theories before
the data come rolling in.

However, there are some theoretical reasons for extensions to the SM. We
will present one motivation from the Higgs sector of the SM having to do with
radiative corrections to the Higgs mass. It would seem that every paper that
deals with supersymmetry has its own favorite reason, so we will stick with
the topic at hand, the Higgs.

The Higgs is a unique particle in the SM, a fundamental scalar that dis-
obeys the decoupling theorem. If we calculate radiative corrections to the
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Figure 1.9: Self energy mass corrections.

masses of different SM particles, as shown in Figure (1.9), we find different
classes of results. The two-point function for the photon (at zero external
momentum) with a fermion loop can be written as,

Πµν
γγ(0) = −

∫
d4k

(2π)4
Tr

[
(−ieγµ)

i(/k +mf )

k2 −m2
f + iε

(−ieγν)
i(/k +mf )

k2 −m2
f + iε

]

= −4e2
∫

d4k

(2π)4

2kµkν − ηµν(k2 −m2
f )

(k2 −m2
f + iε)2

= 0. (1.136)

This integral vanishes in dimensional regularization. Moreover, there is an
exact U(1) gauge invariance that makes the photon massless at all orders of
perturbation theory. It would be suspect if the photon developed a mass
radiatively.

What about the opposite correction, a fermion with a photon in what is
sometimes called a sunset graph. We find,

Πff (0) =

∫
d4k

(2π)4
Tr

[
(−ieγµ)

i(/k +mf )

k2 −m2
f + iε

(−ieγν)
−iηµν

k2

]

= −e2
∫

d4k

(2π)4

Tr (γµ(/k +mf )γ
µ)

k2(k2 −m2
f + iε)

= −4e2mf

∫
d4k

(2π)4

1

(k2 −m2
f + iε)

. (1.137)

Now this is a formally divergent integral. However, if we use a regulator (in
this case a cut-off) and set it at a very high scale, the Planck scale for instance,
and we can see the size of the mass correction for the electron,

δme ∼ 2α

π
log

MPl

me

∼ 0.24me. (1.138)
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This is a modest mass correction, but there is more here than meets the
eye. There is a symmetry here that is hidden. In the massless limit, the model
is chirally invariant, ψ → ψ′ = exp(iγ5ϕ)ψ. If this were an exact symmetry,
the correction would vanish. In fact, the opposite is true. This symmetry is
broken by the mass.

The problem with the SM manifests itself with the mass corrections to
the Higgs. If we let the ff̄H coupling be λf generically, then the two-point
function is

Πf
HH(0) = −Nc

∫
d4k

(2π)4
Tr

[(
i
λf√

2

)
i(/k +mf )

k2 −m2
f + iε

(
i
λf√

2

)
i(/k +mf )

k2 −m2
f + iε

]

= −2Ncλ
2
f

∫
d4k

(2π)4

[
1

k2 −m2
f + iε

+
2m2

f

(k2 −m2
f + iε)2

]
.

The first term is quadratically divergent. If we follow the same prescription
as with the electron and pick a large cut-off at the Planck scale then the
“correction” is 30 orders of magnitude larger than the Higgs mass itself (for
MH < 1 TeV). This correction is independent of the Higgs mass and the
correction does not vanish with a vanishing Higgs mass. There are no hidden
symmetries here.

This fact is often stated that there is nothing in the SM that protects the
Higgs mass. Now, the critical issue here is what we make of this divergence.
There is absolutely nothing wrong with removing this quadratic divergence
with a large counter-term. If we think of the SM as a field theory, this is a
fair move. However, one is led to ask if there is a way to correct this within
the model itself. Without belaboring the mechanics of this, a supersymmetric
model protects the mass of the Higgs boson by introducing scalar partners for
all the fermions (these particles are usually represented with a tilde). If we
make the couplings

λ̃f = −λ2
f , (1.139)

then the Higgs mass correction has more diagrams and we get a more reason-
able result. We now have the renormalized result,

Πf+f̃
HH(0) =

iλ2
fNc

16π2

[
− 2m2

f

(
1− log

m2
f

µ2

)
+ 4m2

f log
m2

f

µ2

+ 2m2
f̃

(
1− log

m2
f̃

µ2

)
− 4m2

f̃
log

m2
f̃

µ2

− |Af |2 log
m2

f̃

µ2

]
, (1.140)
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where Af is the unknown coupling for the Hf̃f̃ ? vertex. We can see that for
degenerate masses and Af → 0, the correction vanishes. This would imply
a hidden symmetry, a supersymmetry. However, we know nothing a priori
about the masses of these scalar particles and their coupling (in this model).
We also find that not only are the quadratic divergencies canceled, but as long
as the differences in the fermion and scalar masses squared remains small (on
the order of the weak scale), then the weak scale itself is protected from loop
corrections from these heavy particles, phenomenologically a great boon.

1.8.1 MSSM

If we accept supersymmetry into our theory, we have to add it to the SM
without breaking what we have built so far. It is not as simple as adding very
heavy particles that decouple, there are observables that have more delicate
dependences. Our measurements of electroweak observables are quite good,
so we must somehow add supersymmetry in a way that it is difficult to see.
Skeptics may argue that this is a reason to ignore supersymmetry, but we will
move on.

The first fact that must be accommodated, the ρ-parameter has been de-
termined experimentally to be very close to unity,

ρ =
M2

W

M2
Z cos θw

= 0.9998+0.0008
−0.0005, (1.141)

which implies that it must be exactly unity at tree level and only picks up
radiative corrections that move it away from unity. Only Higgs doublets and
singlets generate a tree-level ρ-parameter of unity11.

The second major constraint is the suppression of flavor changing neutral
currents (FCNCs). In the SM, quarks do not flavor change at a qq̄Z0/γ vertex
(at tree level). We want this to be true in our supersymmetric model as well.
One way to do this is to have all the fermions of one charge couple to only one
Higgs doublet. Since there are two differently charged fermions in nature, we
are led to two Higgs doublets, one that couples to up-type quarks and another
that couples to down-type quarks as well as to the charged fermion sector.
It should also be noted (but not elaborated) that this structure also prevents
the occurrence of anomalies in the theory. Although it should be noted that
supersymmetry is not needed for a doublet model, but supersymmetry adds
some constraints to the model and makes it more predictive in many respects.

The MSSM is a model that incorporates two Higgs doublets with two vevs
that give masses to the up and down sectors separately. We will concentrate on

11Here we have ignored exotic combinations of weak isospin.
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Superfield SU(3)c SU(2)L U(1)Y Content

Q̂ 3 2 +1
6

(uL, dL), (ũL, d̃L)

Û c 3̄ 1 −2
3

uR, ũ
?
R

D̂c 3̄ 1 +1
3

dR, d̃
?
R

L̂ 1 2 −1
2

(νL, eL), (ν̃L, ẽL)

Êc 1 1 +1 ēR, ẽ
?
R

Ĥ1 1 2 −1
2

(H1, h̃1)

Ĥ2 1 2 +1
2

(H2, h̃2)

Ĝa 8 1 0 g, g̃

Ŵ i 1 3 0 Wi, ω̃i

B̂ 1 1 0 B, b̃

Table 1.4: Group structure of chiral superfields and gauge multiplets in the
MSSM.

the physics of the Higgs sector of the MSSM, and introduce the other sectors
only as needed. There is a great deal of mathematical machinery surrounding
supersymmetry, most of which we will not need. We will simply construct the
most general interactions given our constraints.

Before we move through the mathematics, we should say what we are going
to do in words. We will more than double our particle spectrum with the
addition of supersymmetry so we need a systematic way of creating Feynman
rules. We will end up with the normal SM field and the supersymmetric fields
which are usually called by the same name with an ‘s’ prepended to the particle
name. For instance, a supersymmetric top quark is a stop squark12. Leptons
have super-partners called sleptons and so on. There are more exotic name in
the gauge sector, including winos, binos, and generically gauginos.

Supersymmetric theories are constructed from supermultiplets. Using the
superfields in Table (1.8.1), we can build a superpotential, W , and use it to
create all the supersymmetric interactions. From a superpotential, we can
write the Lagrangian potential like,

LW = −
∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

− 1

2

∑
ij

[
∂2W

∂φi∂φj

ψiψj + c.c.

]
, (1.142)

where the φ fields are the scalars and the ψ fields are the fermions in the
model. The superpotential is holomorphic as it only depends on the fields and

12I would like to point out that this leaves us in a strange situation for the strange quark.
The options sstrange or super-strange both seem a little too strange. Typographically,
s̃trange would work, but is difficult to enunciate.
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not their charge conjugates. The most general superpotential we can write in
SU(3)c ⊗ SU(2)L ⊗ U(1)Y is

W =− εijµĤ
i
1Ĥ

j
2 + εij

[
λLĤ

i
1(L̂

c)jÊc + λDĤ
i
1Q̂

jD̂c + λUĤ
j
2Q̂

iÛ c

]

+ εij

[
λ1L̂

iL̂jÊc + λ2L̂
iQ̂jD̂c

]
+ λ3Û

cD̂cD̂c. (1.143)

Here the (i, j) indices are SU(2)L indices. There is much to be said about all
the different interactions in this model. To fully explore this model we would
have to introduce several topics we have skipped in field theory, in particular,
auxiliary fields and this does not seem appropriate, so we will simply present
the Higgs sector.

We will take our two Higgs doublets to have components

H1 =

(
(φ0

1)
?

−φ−1

)
, H2 =

(
φ+

2

φ0
2

)
, (1.144)

and we break the electroweak symmetry like,

〈H1〉 =

(
v1

0

)
, 〈H2〉 =

(
0
v2

)
. (1.145)

We define the ratio of these two vevs as tan β = v2/v1. This procedure results
in five physical Higgs bosons, two charged (H±), one light and one heavy scalar
(h0, H0), and one pseudoscalar (A0). Like the SM Higgs, not all of the MSSM
Higgs’ can decouple from the theory. Given the parameter space, the lightest
scalar, h0, can only be so heavy. The h0 Higgs at its heaviest is light compared
to the SM weight limit, only becoming as massive as around 130 GeV in one
extreme corner of parameter space.

Phenomenologically speaking, the Higgs sector of the MSSM is very inter-
esting because the different Higgs bosons couple to the SM particles in distinct
ways. Beyond the obvious presence of the charged Higgs, the differences be-
tween the lightest scalar in the MSSM and the SM Higgs make the case for
a careful study of the collider signatures of the two bosons. Remember that
the lightest scalar does not decouple and could therefore be confused with
a SM Higgs. Moreover, the pseudoscalar Higgs couples in an even more ex-
otic and intriguing way. It couples proportionally to the free parameter tan β
and therefore its production could be greatly enhanced. For these reasons we
have choosed to study the lightest scalar and pseudoscalar of the MSSM and
compare the collider signatures to the SM Higgs boson.
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Counting parameters

Why might one be skeptical of supersymmetry? We must make clear that so
far there is no smoking gun for supersymmetry. Theoretically, it has many
intriguing properties, but has so far avoided experimental detection, a critical
requirement for a falsifiable theory of nature. What we do know is that if
supersymmetry exists in nature, it is badly broken. We do not see scalar
partners to all the known SM particles, so the supersymmetric masses must
be quite heavy and therefore split from their SM partners. Any attempts to
identify two known particles as superpartners has failed.

In the SM, we have 20 free parameters (as defined with massless neutrinos).
We have the strength of the three gauge couplings as measured at some scale,
the masses of the three lepton generations, two vector boson masses, six quark
masses, three CKM angles and one CP violating phase, and the mass of the
Higgs. The final parameter to make the 20 has not been mentioned, it is the
QCD θqcd parameter. If we were to add massive neutrinos, we would pick up
another ten, the three neutrino masses, three mixing angles and another phase
bringing the grand total to 30 parameters.

The MSSM introduces a minimum of an additional 114 free parameters
without describing how supersymmetry is broken (a problem in itself, usually
soft supersymmetry breaking terms are added to the Lagrangian by hand
although more exotic mechanisms exist). These consist of seven three by three
hermitian mass matrices for the super-partners (with massive neutrinos), three
additional mixing matrices, three gaugino masses, and three of five additional
parameters to constrain the masses of the five Higgs bosons.

One is forced to ask if we have gained anything in this bargain. In the
end, this is impossible to answer on a chalkboard. We do not get to pick how
nature chose her particle content. However, we should take statements that
the MSSM fits experimental data better than the SM with a grain of salt. It
rightfully should, it has more than one hundred additional parameters to float.

1.9 HQET

Now that we have introduced the SM and the MSSM in all their glory and
shown how to calculate physical quantities we argue that the full theory is too
complicated to calculate higher order corrections to most processes involving
the Higgs boson. This is because at a Hadron collider, the Higgs is produced
at lowest order in a loop diagram. So the virtual corrections start at two loops
with several mass scales. One might say that it is a nightmare to calculate
observables in the full SM Higgs. Moreover, NLO corrections have typically
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Figure 1.10: Effective gluon-gluon-Higgs vertex.

been found to be large, so even more corrections need to be calculated to
understand the theoretical uncertainty of the calculations. NNLO corrections
in the full theory are almost a Herculean task.

However, it is possible to obtain reliable results by integrating the top quark
out of our theory (remember the Higgs couples to mass so the top quark is the
most important in the SM) and be left with an effective theory where the Higgs
couples directly to gluons and thereby lower the complexity of the calculation
at each level. One is still left with calculating the order by order correction to
the effective coupling, but better one difficult calculation than several. To see
this, look at the partonic process gg → H through a top quark loop as shown
in Figure (1.10). The total partonic cross-section can be written,

σ̂0(gg → H) =
α2

s

1024πv2ŝ

∣∣∣∣
∑

q

F1/2(τq)

∣∣∣∣
2

δ(1− ŝ/M2
H), (1.146)

where
τq ≡ 4M2

q /M
2
H , F1/2 = −2τq[1 + (1− τq)f(τq)], (1.147)

and

f(τq) =





[
sin−1(1/

√
τq)

]2

τq ≥ 1

−1
4

[
log

(
1+
√

1−τq

1−
√

1−τq

)
− iπ

]2

τq < 1.

(1.148)

It is interesting that when τq →∞, the F1/2 function approaches its limit
very quickly, as seen in Figure (1.11). Mathematically, the limit is simple to
find,

lim
τq→∞

F1/2 = −4

3
. (1.149)

We see that the function is very well represented by the limit when the
square of the mass of the Higgs is two and a half times lighter than the heaviest
quark. Now, the top quark has a mass of around 178 GeV, meaning that for
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Figure 1.11: Function |F1/2|2 approaches the HQET limit.

a Higgs as heavy as 112 GeV this is an excellent approximation that should
deteriorate as the Higgs mass becomes heavier. However, this approximation
works well beyond this limit in practice as has been shown by direct calculation.
It represents the full calculation to within a few percent for Higgs masses up
to several hundred GeV.

1.10 SM predictions

Finally, we would like to show what is currently known about Higgs production
at both the Tevatron during Run II and the future LHC. Because of the
different energies involved, the SM Higgs is primarily produced via different
mechanisms at the two colliders. There is a large catalog of completed, public
calculations that are available as shown in Figure (1.12) (from Ref. [59]). The
Tevatron collides protons on anti-protons at

√
S = 1.96 TeV, whereas the

LHC will be a proton-proton collider at
√
S = 14 TeV. Shown is a collection

of all the radiatively corrected observables for the different colliders. These
graphs represent our current best understanding of Higgs production and are
the combined work of several groups over a number of years.
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Figure 1.12: Tevatron Run II and LHC total cross-sections.
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1.11 Roadmap ahead

The main body of this thesis is comprised of five of my research papers on
Higgs production in pQCD and within the framework of resummation. These
papers were done in collaboration with several colleagues, who are listed both
as authors and in the acknowledgments.
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Part I

Higgs Phenomenology in pQCD
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Chapter 2

Distinguishing scalar from
pseudoscalar Higgs production
at the LHC

In this letter we examine the production channels for the scalar or pseudoscalar
Higgs plus two jets at the CERN Large Hadron Collider (LHC). We identify
possible signals for distinguishing between a scalar and a pseudoscalar Higgs
boson.

2.1 Introduction

The Higgs mechanism is responsible for electroweak symmetry breaking in the
Standard Model (SM). The experimental lower limit on the Higgs mass is ap-
proximately 114 GeV [60–63]. There are many models that contain more than
one Higgs boson in various numbers of doublets. In the Minimal Supersym-
metric Standard Model (MSSM) there are two Higgs doublets that give five
physical Higgs bosons: two neutral (H0

1 , H
0
2 ), two charged H±, and one neu-

tral pseudoscalar A (for review see [64]). In the MSSM the mass limits change
slightly with the lightest of the two neutral scalars H0

1 (afterwards reffered to
as simply H) having a mass greater than about 91 GeV and the pseudoscalar
being more massive than roughly 92 GeV [65].

Finding one or more Higgs bosons is the top priority of high energy physics
programs around the world. A subset of Higgs bosons in some doublet models
may be experimentally difficult to distinguish. The characteristics of the scalar
H and pseudoscalar A Higgs boson within the MSSM are of particular interest.

We study the production of both a scalar and pseudoscalar Higgs in asso-
ciation with two jets in hadron collisions. At the LHC the primary processes
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that produce a Higgs plus two jets are gg → ggH and qg → qgH, accounting
for approximately 60%(40%) of the total cross-section respectively. The same
is true for the production of the pseudoscalar. Other channels that contribute
to the total cross-section include qq → ggH and qq → qqH, although these
channels have been shown to add very little to the total cross-section. In the
following calculations, only the two dominant channels were considered as the
other channels are negligible.

Total cross-sections of the scalar and pseudoscalar plus two jets exist [66–
68] at the lowest order. Total cross-sections for the inclusive production have
been calculated at NLO for the scalar [69,70] and for the pseudoscalar [71] and
at NNLO for the scalar [72–76] and for the pseudoscalar [77, 78]. If we define
the K-factor to be the ratio of the higher order cross-section to the lowest order,
the rate increase at the LHC at NNLO for the scalar inclusive processes [74]
was reported to be KNNLO(pp → H + X) = 2 − 2.2 and for pseudoscalar
the K-factor [75] can be determined to be KNNLO(pp → A + X) = 2 − 2.3
in the mass range MH,A = 100 − 200 GeV. The total cross-section and the
differential cross-section for a scalar Higgs plus one jet has been calculated
by [68,72,73,79,80] and the total rate was also shown to increase substantially.
The NLO corrections to pseudoscalar plus one jet have not yet been computed.
In all of the processes cited above the rates increased by comparable amounts.
We expect our estimates of the Higgs plus two jets rates to be conservative,
however, since our proposed observable is normalized to the cross-section, we
do not expect major changes to occur in our analysis at higher orders.

In this letter, we propose a technique for distinguishing between a scalar
and a pseudoscalar Higgs when produced in association with two jets by means
of a splitting that occurs in a specific integrated operator moment. This dis-
tinction is important both experimentally and theoretically in order to sepa-
rate the two kinds of events and understand the properties of these particles
which would otherwise be very difficult due to the similarity in their physical
observables.

2.2 Effective Lagrangian

We work in the limit that the top quark is much heavier than the Higgs
boson [69–71, 81–83], integrating out the top quark and neglecting all the
other quarks that would normally appear in the loop diagrams. This has been
shown to be an excellent approximation and remains very good even when
the Higgs mass is heavier that the mass of the top quark. In general this
approximation is considered to be a good one when MH,A < 2mt. We consider
Higgs bosons lighter than 200 GeV. The effective Lagrangian used in the scalar
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case is defined as

LH
eff = −1

4
gHHG

a
µνG

a,µν (2.1)

where gH = αs/3πv. Ga
µν is the field-strength tensor for the gluons. The

vacuum expectation value (vev) of the Higgs field is determined in the usual
way as v2 = (

√
2GF )−1 and is numerically equal to approximately 246 GeV.

For the pseudoscalar case we let the Higgs couple to the quarks with a γ5 and
the effective Lagrangian1 can be written as

LA
eff =

1

4
gAAG

a
µνG̃

a,µν (2.2)

where gA = αs/2πv. Here G̃a
µν = 1/2εµνρσGa

ρσ is the dual of the gluon field-
strength tensor.

This effective Lagrangian generates a scalar Higgs coupling to two, three,
and four gluons or a pseudoscalar coupling to two or three gluons. The four
gluon coupling to a pseudoscalar vertex vanishes via the Jacobi identity as it
is proportional to a completely antisymmetric combination of structure con-
stants. The Feynman rules for these effective theories can be found in [66] (for
the scalar) and [67] (for the pseudoscalar).

2.3 Observables and Moments

We present our results for the LHC with
√
S = 14 TeV. We have used the

CTEQ6L parton distribution functions [84] with ΛLO
5 = 226 MeV with a one-

loop running of αs for consistency with a value of αs(MZ) = 0.137. The
transverse momentum (pt) was constrained to be more than 25 GeV for the
Higgs and each of the two jets. Also the rapidity was constrained to be |y| < 2.5
for all the outgoing particles. The separation of the jets was restricted to be
∆R ≡

√
∆φ2 + ∆η2 ≥ 0.7.

The total cross-section of these two channels are shown in Fig. (2.1). These
cross-sections agree exactly with those in the literature [66,67] once the prob-
lems with the effective coupling constants are remedied. When plotted in this
linear fashion it is interesting to note the differences in the dependence of the

1There is some confusion over the coupling constant for the pseudoscalar case in the
literature. The correct coupling is found in Ref. [71]. There is an extra factor of 1/4 in
Ref. [67] leading to a cross-section 16 times too small for the pseudoscalar case. It seems
that the 1/4 from the effective Lagrangian was incorporated into the coupling constant
by mistake. The Feynman rules in both papers are correct if the coupling constant from
Ref. [71] paper is used.
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Figure 2.1: Total cross-sections for scalar and pseudoscalar Higgs plus two
jets. These curves are for the LHC with the cuts described in the text.

cross-sections on the mass of the Higgs boson. Both total cross-sections loose
more than two-thirds of their value from 100 − 200 GeV and appear in the
approximate ratio of (gH/gA)2 = 4/9 due to the similarity in their matrix
elements.

Fig. (2.2) shows the normalized transverse momentum spectrum of both
the production channels. The pseudoscalar Higgs pt spectrum was displaced
down by 10% to allow the two curves to be distinguished. If this had not
been done, the curves would lie virtually on top of one another. Fig. (2.3)
shows the center-of-momentum angle between the Higgs and the highest pt jet
for the two reactions. This shows what would be expected näıvely, that the
Higgs prefers to come out back-to-back with the highest pt jet. Once again,
the pseudoscalar curve has been scaled down by 20% to allow both curves to
be seen clearly. No significant differences between these curves were found.

The authors of [85] presented a technique for determining the CP nature of
the Higgs boson in tt̄H production based on certain weighted moments of the
cross-section. The cross-section integral was weighted by operators OCP . The
six operators presented in [85] are scalar and cross products of the momentum
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Figure 2.2: Normalized transverse momentum spectrum of the scalar or
pseudoscalar Higgs production channels plus two jets. The Higgs mass for
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has been displaced down by 10% to allow the two curved to be distinguished.
These curves are for the LHC with the cuts described in the text.
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of the outgoing particles (in this case the massive top quarks). We propose
using the same test for the massless quarks and gluons that make up the
jets. All of these weighted moments were examined as well as some novel ones
and the only operator from these sets that produced a significant difference
between the scalar and the pseudoscalar signals was the operator [85]

a1 =
(~p1 × ẑ) · (~p2 × ẑ)

|(~p1 × ẑ) · (~p2 × ẑ)| (2.3)

when it was integrated and normalized as prescribed below

α[OCP ] ≡ 1

σ

∫
OCP dσ dPS (2.4)

where p1 and p2 are the momentum of the two jets and ẑ is the axis of the
beam. The a1 operator is sensitive to the cosine of the angle between the
transverse momentum vectors of the two jets. Distinguishing between the
two jets is not important as this moment is invariant under 1 ↔ 2. Another
combination of momentum in the above equations that was considered was
to use the moment operators presented in [85] with p1 = pHiggs and p2 the
momentum of the highest pt jet. However, this yielded no differences in the
integrated moments making this definition of little use for these channels.

Fig. (2.4) shows the results of this integration as a function of the Higgs
mass. If we consider a conservative estimate of 100 fb−1 of integrated luminos-
ity at the LHC and take a branching ratio of approximately 10−3 as an order
of magnitude for the decay of the Higgs to a pair of photons, then the α[a1]
observable will have a statistical uncertainty of about 5%, making these two
signals distinguishable at all mass scales. With this conservative estimate on
the integrated luminosity we would expect to see about 600 scalar events and
1000 pseudoscalar events for a Higgs mass of 120 GeV in this channel for this
Higgs decay. These numbers are supported by a more detailed analysis using
the actual branching ratios calculated using hdecay [86] in the tan β = 1
limit for the pseudoscalar.

This integrated moment showed a modest (30%) splitting at all Higgs mass
scales from 100−200 GeV. The pseudoscalar does not show much mass depen-
dence. However, the scalar integrated moment rises slightly with increasing
Higgs mass. This effect might also be useful as another method for constrain-
ing the mass of the scalar Higgs boson. The splitting in Fig. (2.4) helps to
remove the problems created by the degeneracy in the physical observable of
the scalar and the pseudoscalar. If the two signals could not be separated,
the doublet structure of the model would not be easily measured. In the case
of the MSSM this would mean that part of the supersymmetric signal might
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be lost or the mass of the scalar Higgs may be determined incorrectly if the
pseudoscalar events were wrongly identified as scalar events.

Separating the two signals is theoretically intriguing because it appears to
be one of the only ways to predict a difference between the scalar and pseudo-
scalar events of this nature at the LHC by means other than the magnitude
of their cross-section. This is also interesting experimentally as it leads to the
possibility of separating the two kinds of Higgs events with the added bonus
that the z momentum is not needed in this analysis.

2.4 Conclusions

The production channels of the scalar or pseudoscalar Higgs plus two jets
were found to have many similarities in their physical observables and one
important difference is the integrated moment α[a1]. This may help to reduce
the difficulty in distinguishing between the two types of events at the LHC.
The most important aspect of separating the two signals is to make sure that
the doublet structure (the supersymmetric signal in the case of the MSSM) is
not lost because of its small cross-section and its similarity to the scalar Higgs
with respect to its physical observables or wrongly determining the mass of
the scalar Higgs by misidentifying pseudoscalar events as scalar events. The
proposed technique presented in this letter may enable these two signals to be
separated after a full detector simulation is preformed.

Appendix A: Differences in the Amplitudes

It turns out that the differences in the scalar (or pseudoscalar) plus two jets
amplitudes squared were very small. The differences will be presented using
the helicity basis presented in [66, 67] to make for the most compact matrix
elements squared. These matrix elements have been found to be in exact
analytic agreement with the four dimensional matrix elements presented in
[79]. We identify the momentum as follows (where X should be considered the
Higgs for the process in question, playing the part of either the scalar or the
pseudoscalar). All the momenta are outgoing.

q(p1) + q̄(p2) → g(−p3) + g(−p4) +X(−p5) (2.5)

g(p1) + g(p2) → g(−p3) + g(−p4) +X(−p5) (2.6)

q(p1) + q̄(p2) → q(−p3) + q̄(−p4) +X(−p5). (2.7)

In the following we define Sab = (pa + pb)
2 = 2pa · pb. Color factors have

been included in the expression for the qqggH(A) and qqqqH(A) channels as
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they affect the terms differently but not in the expression for the ggggH(A)
channel as there is one overall color factor for all the matrix elements squared.
HereN is the number of colors. Color and spin averages have not been included
nor have any coupling constants.

For the qqggH(A) channel the difference in the scalar minus the pseudo-
scalar amplitude squared was 15 terms out of 626. Setting the color factors
to match those presented in [79], CO = (N2 − 1)/N and CK = (N2 − 1)N the
difference was found to be

|M|2qq→ggH − |M|2qq→ggA = 2CK − 6CO

+

({
4CO

S2
12S

2
34

[
S13S14S23S24 − S2

13S
2
24

]
+4CO

S13S24

S12S34

1

S13S24

[
CO(S12S34 − S14S23) + CK(S14S23 − S12S34)

]}

+ {3 ↔ 4}
)
. (2.8)

For the ggggH(A) channel the difference in the scalar minus the pseudo-
scalar was 16 terms out of 2761. The overall color factor is N2(N2 − 1). The
difference was

|M|2gg→ggH − |M|2gg→ggA = 48 +

(
8

{
1

2

1

S2
12S

2
34

[
S13S24 − S14S23

]2

−1

2

1

S12S34

[
S13S24 + S14S23

]2

+
1

S2
13S

2
24

[
S12S34 − S14S23

]2

− 1

S13S24

[
S12S34 + S14S23

]}
+ {3 ↔ 4}

)
.

(2.9)

Finally, there are two cases for the qqqqH(A) amplitude squared. If there
are identical quarks allowed in the scattering process (qq̄qq̄H(A)) then there
are two diagrams that contribute. The color factors here are CA = N and
CF = (N2 − 1)/2N . The difference in the amplitudes squared is 19 out of 39
terms and is equal to

|M|2qq→qqH − |M|2qq→qqA = 4CACF

(
2− 4

CA

+
(S13S24 − S14S23)

2

S2
12S

2
34

+
(S14S23 − S12S34)

2

S2
13S

2
24

− 2
S13S24

S12S34

− 2
S12S34

S13S24

+
2

CA

(
S12S32 − S14S23

S13S24

)
+{3 ↔ 4}

)
. (2.10)
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If a different quark pair is created (qq̄q′q̄′H(A)), then the difference is
smaller as only one diagram is needed for the amplitude. Here 6 out of 10
terms survive and are equal to

|M|2qq→qqH − |M|2qq→qqA = 4CF

(
1 +

{
(S13S24 − S13S24)

2

S2
12S

2
34

− S13S24 + S14S23

S12S34

}
+ {3 ↔ 4}

)
. (2.11)

It should also be noted that all these differences are invariant under 1 ↔ 2.
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Chapter 3

NLO corrections to differential
cross sections for pseudoscalar
Higgs boson production

We have computed the full next-to-leading (NLO) QCD corrections to the
differential distributions d2σ/(dpT dy) for pseudoscalar Higgs (A0) produc-
tion at large hadron colliders. This calculation has been carried out using
the effective Lagrangian approach which is valid as long as the mass of the
pseudoscalar Higgs boson MA0 and its transverse momentum pT do not ex-
ceed the top-quark mass Mt. The shape of the distributions hardly differ
from those obtained for scalar Higgs (H) production because, apart from the
overall coupling constant and mass, there are only small differences between
the partonic differential distributions for scalar and pseudoscalar production.
Therefore there are only differences in the magnitudes of the hadronic differ-
ential distributions which can be mainly attributed to the unknown mixing
angle β describing the pseudoscalar Higgs coupling to the top quarks.

3.1 Introduction

The scalar Higgs boson H, which is the corner stone of the Standard Model,
is the only particle which has not yet been observed. Its discovery or its ab-
sence will shed light on the mechanism how particles acquire mass as well as
answer questions about super-symmetric extensions of the Standard Model or
about the compositeness of the existing particles and the Higgs boson. Among
these two alternatives supersymmetry is the most appealing one, in particu-
lar the minimal supersymmetric extension of the standard model. The latter
version contains two complex Higgs doublets instead of one and it is therefore
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called the Two-Higgs-Doublet Model (2HDM). Here the scalar particle spec-
trum contains both the Higgs boson H and another neutral scalar boson h0.
Furthermore it contains two charged scalar bosons H± and a neutral pseudo-
scalar Higgs boson A0. The tree-level masses are expressed in two independent
parameters, namely the mass MA0 and the ratio of the vacuum expectation
values of the two Higgs doublets defined by tan β = v2/v1 (see e.g. [64]). Ac-
cording to the experiments at LEP their parameter ranges are restricted so
that MA0 < 91.9 GeV/c2 and 0.5 < tan β < 2.4 [87–89] are excluded.

In this paper we study A0 production which in lowest order proceeds via
gluon-gluon fusion where the gluons are coupled to the A0 via a heavy falvor
triangular loop. This is similar to H-production except that now the coupling
constant describing the interaction of the A0 with the quarks depends on
both the masses of the quarks and on the angle β. This follows from the
2HDM where the coupling constants of the up and down quarks behave like
gup ∼ Mu cot β and gdown ∼ Md tan β respectively [64]. Since the effective
Lagrangian approach below is only valid in the case the mass of the quark
appearing in the triangular loop satisfies the condition Mq ÀMA0 , the bottom
quark is excluded. However then we have to require that in the 2HDM the
coupling of the A0 to the top-quark is stronger than to the bottom-quark which
implies the condition

Mt

Mb

À tan2 β. (3.1)

If we choose Mb = 4.5 GeV/c2 and Mt = 173.4 GeV/c2 one obtains the
inequality tan β ¿ 6.21. In view of the experimental boundaries above one
can conclude that the results of the calculation below can be only applied for
the regions tan β < 0.5 and 2.4 < tan β < 6.21.

3.2 Effective Lagrangian

In the effective Lagrangian approach scalar H-production is described by the
Lagrangian density [69,70,90]

LH
eff = GH ΦH(x)O(x) , with O(x) = −1

4
Ga

µν(x)G
a,µν(x) , (3.2)

whereas pseudoscalar A0 production is obtained from [67,71,91–93]

LA
eff = ΦA(x)

[
GAO1(x) + G̃AO2(x)

]
, (3.3)
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with,

O1(x) = −1

8
εµνλσ G

µν
a (x)Gλσ

a (x), (3.4)

O2(x) = −1

2
∂µ

nf∑
i=1

q̄i(x)γµγ5qi(x), (3.5)

where ΦH(x) and ΦA(x) are the scalar and pseudoscalar fields respectively and
nf denotes the number of light falvors. Up to NLO the operator O2(x) only
contributes when it interferes with the operator O1(x) provided the quarks
are massless. The effective couplings GB (B = H,A0) are determined by the
top-quark triangular graph describing the decay process B → g+g in the limit
mt →∞

G2
B = 4

√
2

(
αs(µ

2
r)

4π

)2

GF τ
2
B F

2
B(τB)C2

B

(
αs(µ

2
r),

µ2
r

M2
t

)
, τB =

4M2
t

M2
B

, (3.6)

where B = H,A0 and the functions FB are defined by

FH(τ) = 1 + (1− τ)f(τ), FA(τ) = f(τ) cot β, (3.7)

f(τ) = arcsin2 1√
τ
, for τ ≥ 1,

= −1

4

(
ln

1−√1− τ

1 +
√

1− τ
+ iπ

)2

, for τ < 1. (3.8)

In the large Mt-limit F (τ) behaves as

lim
τ→∞

FH(τ) =
2

3τ
, lim

τ→∞
FA(τ) =

1

τ
cot β. (3.9)

Here MB and Mt denote the masses of the (pseudo)scalar Higgs boson and
the top quark respectively. The running coupling constant is given by αs(µ

2
r)

where µr denotes the renormalization scale and GF is the Fermi constant.
The coefficient functions CB originate from the corrections to the top-quark
triangular graph provided one takes the limit mt → ∞. We have presented
the couplings GB in Eq. (3.6) for general Mt on the Born level only in order to
keep some part of the top-quark mass dependence. This is an approximation
because the gluons which couple to the (pseudo)scalar Higgs boson via the top-
quark loop in the partonic subprocesses are very often virtual. The virtual-
gluon momentum dependence is neither described by FB(τ) nor by CB. For
on-mass-shell gluons the latter quantity has been computed in the large Mt
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limit up to order αs in [69,70,91,92,71,67] and up to order α2
s in [90,93]. For

our NLO calculations we only need these coefficient functions corrected up to
order αs and they read

CH

(
αs(µ

2
r),

µ2
r

M2
t

)
= 1 +

α
(5)
s (µ2

r)

4π

(
11

)
+ · · · , (3.10)

CA

(
αs(µ

2
r),

µ2
r

M2
t

)
= 1, (3.11)

where α
(5)
s is presented in a five-falvor number scheme. Notice that Eq. (3.11)

holds in all orders because of the Adler-Bardeen theorem [94]. The effective
Lagrangian approach has been successfully applied to compute the total cross
section of scalar Higgs production in hadron-hadron collisions in NLO [69,70]
and NNLO [72, 74–76, 95]. In the case of pseudoscalar Higgs production this
cross section was computed in NLO in [67,71,91,92] and in NNLO in [77,78].

3.3 Kinematics

In this paper we study the semi-inclusive reaction with one pseudoscalar Higgs
boson A0 in the final state which is given by

H1(p1) + H2(p2) → A0(−p5) + ‘X ′, (3.12)

where H1 and H2 denote the incoming hadrons and X represents an inclusive
hadronic final state. Further we define the following kinematical invariants

S = (p1 + p2)
2, T = (p1 + p5)

2, U = (p2 + p5)
2. (3.13)

The latter two invariants can be expressed in terms of the transverse momen-
tum pT and rapidity y variables as

T = M2 −
√
S
√
p2

T +m2 cosh y +
√
S
√
p2

T +m2 sinh y,

U = M2 −
√
S
√
p2

T +m2 cosh y −
√
S
√
p2

T +m2 sinh y, (3.14)

where M is the mass of the pseudoscalar Higgs boson. The hadronic cross
section is given by

S2d
2σH1H2

dT dU
(S, T, U ;M2) =

∑

a,b=q,g

∫ 1

x1,min

dx1

x1

∫ 1

x2,min

dx2

x2

fH1
a (x1, µ

2) fH2
b (x2, µ

2)

× s2d
2σab

dt du
(s, t, u;M2, µ2), (3.15)
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with,

x1,min =
−U

S + T −M2
, x2,min =

−x1(T −M2)−M2

x1S + U −M2
, (3.16)

where s, t and u are the partonic analogues of S, T and U in Eq. (3.13) where
p1 and p2 now represent the incoming parton momenta. Further fHi

a denotes
the parton density corresponding to hadron Hi and µ stands for the factor-
ization scale which for convenience is set equal to the renormalization scale
µr appearing in Eq. (3.6). The NLO corrections to the partonic cross section
d2σ/(dt du) in the case of H-production based on the effective Lagrangian in
Eq. (3.6) are presented in [79,80]. Here we will give the corresponding results
for the A0 described by the Lagrangian in Eq. (3.3). The calculation proceeds
in the same way as presented in [79].

3.4 Corrections

We use n-dimensional regularization in order to compute the loop and phase
space integrals which contain ultraviolet, infrared and collinear singularities.
However there is one extra complication in the pseudoscalar case. This con-
cerns the Levi-Civita tensor in Eq. (3.3) which is essentially a four dimensional
object. Here we follow the same prescription as in Eq. (4) in [77, 78] where
the product of two Levi-Civita tensors is contracted in n-dimensions if one
sums over dummy Lorentz indices. This prescription leads to an interference
between diagrams carrying the vertex coming from the operator O1(x) and
those carrying the vertex corresponding to the operator O2(x) in Eq. (3.3)
(see [77]). The LO subprocesses contributing to the partonic cross section are
given by

g + g → g + A0, q + q̄ → g + A0, q(q̄) + g → q(q̄) + A0. (3.17)

The matrix elements squared do not differ from those derived for the scalar
H provided n = 4, see [67, 71, 91, 92], which implies that the LO double dif-
ferential partonic cross sections are the same for both bosons except for an
overall constant given by FB(τ) in Eq. (3.7). In NLO one has to compute the
one-loop virtual corrections to the processes in Eq. (3.17) above and to add
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the contributions from the following two-to-three-body reactions

g + g → g + g + A0, (3.18)

g + g → qi + q̄i + A, (3.19)

q + q̄ → g + g + A0, (3.20)

q1 + q̄2 → q1 + q̄2 + A0 q1 6= q2, (3.21)

q + q̄ → qi + q̄i + A0 qi 6= q, (3.22)

q + q̄ → q + q̄ + A0, (3.23)

q1 + q2 → q1 + q2 + A0 q1 6= q2, (3.24)

q + q → q + q + A0, (3.25)

q(q̄) + g → q(q̄) + g + A0. (3.26)

After renormalization of the strong coupling constant αs and mass factor-
ization which are carried out in the ms-scheme we obtain the NLO corrected
coefficient functions according to the procedure in [79]. The coefficient func-
tions are as long as in the case of H-production so that they cannot be ex-
plicitly presented. However the differences between the results for the H and
the A0 are so small that we can show them below. If we put for simplicity
GH = GA = G and MH = MA0 = M the differences between the soft-plus-
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virtual differential cross sections are given by

s2
d2σS+V

gg→gA0

dt du
− s2

d2σS+V
gg→gH

dt du
=

πδ(s+ t+ u−M2)G2

(
αs(µ

2)

4π

)2
N

(N2 − 1)2

[
2|M (1)

gg→gB|2
]
, (3.27)

s2
d2σS+V

qq̄→gA0

dt du
− s2

d2σS+V
qq̄→gH

dt du
=

πδ(s+ t+ u−M2)G2

(
αs(µ

2)

4π

)2
1

N2

[
2CA|M (1)

qq̄→gB|2

+ (CF − CA)|MB
(1)
qq̄→gB|2

]
, (3.28)

s2
d2σS+V

qg→qA0

dt du
− s2

d2σS+V
qg→qH

dt du
=

πδ(s+ t+ u−M2)G2

(
αs(µ

2)

4π

)2
1

N(N2 − 1)

[
2CA|M (1)

qg→qB|2

+ (CF − CA)|MB
(1)
qg→qB|2

]
. (3.29)

where we have added to the righthand side of Eqs. (3.28) and (3.29) the contri-
butions coming from the interference of the graphs in Figs. 1b, 1d with those
in Figs. 2b, 2d which are shown in [77]. The color factors of the group SU(N)
are given by CA = N and CF = (N2− 1)/(2N) and the Born matrix elements
squared belonging to the processes in Eq. (3.17) are equal to

|M (1)
gg→gB|2 = N(N2 − 1)

1

stu

[
s4 + t4 + u4 +M8

]
, (3.30)

|M (1)
qq̄→gB|2 = CACF

1

s

[
t2 + u2

]
, (3.31)

|M (1)
qg→qB|2 = CACF

1

u

[
− s2 − t2

]
. (3.32)

The differences above can be wholly attributed to the virtual corrections
and not to the soft gluon contributions which are the same for both H and A0
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production. These virtual corrections also entail some extra terms denoted by

|MB
(1)
gg→gB|2 =

2

3
N(N2 − 1)

M2

stu

[
stu+M2

(
st+ su+ tu

)]
, (3.33)

|MB
(1)
qq̄→gB|2 = CACF

(
− t− u

)
, (3.34)

|MB
(1)
qg→qB|2 = CACF

(
s+ t

)
. (3.35)

Denoting the two-to-three-body reactions by

a(p1) + b(p2) → c(−p3) + d(−p4) + A0(−p5), s4 = (p3 + p4)
2, (3.36)

then the differences between the partonic cross sections due to the subprocesses
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in Eqs. (3.18)−(3.26) are equal to

s2
d2σHARD

gg→ggA0

dt du
− s2

d2σHARD
gg→ggH

dt du
=

πG2

(
αs(µ

2)

4π

)2
N2

N2 − 1

[
− 4 ln

tu−M2s4

(s4 − t)(s4 − u)
− 17

3

]
, (3.37)

s2
d2σHARD

gg→qq̄A0

dt du
− s2

d2σHARD
gg→qq̄H

dt du
=

πG2

(
αs(µ

2)

4π

)2
nf

N2 − 1

[
CA

{
2

3

}

+ CF

{
2 ln

tu−M2s4

(s4 − t)(s4 − u)
+ 2

}]
,

(3.38)

s2
d2σHARD

qq̄→ggA0

dt du
− s2

d2σHARD
qq̄→ggH

dt du
=

πG2

(
αs(µ

2)

4π

)2
CA CF

N2

[
CA

{
2

3

}

+ CF

{
2 ln

tu−M2s4

(s4 − t)(s4 − u)
+ 2

}]
,

(3.39)

s2
d2σHARD

q1q̄2→q1q̄2A0

dt du
− s2

d2σHARD
q1q̄2→q1q̄2H

dt du
=

πG2

(
αs(µ

2)

4π

)2
CA CF

N2

[
− 2 ln

tu−M2s4

(s4 − t)(s4 − u)
− 1

]
, (3.40)

s2
d2σHARD

q1q̄1→qiq̄iA0

dt du
− s2

d2σHARD
q1q̄1→qiq̄iH

dt du
=

πG2

(
αs(µ

2)

4π

)2
(nf − 1)CACF

N2

[
− 2

3

]
, (3.41)
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and,

s2
d2σHARD

qq̄→qq̄A0

dt du
− s2

d2σHARD
qq̄→qq̄H

dt du
=

πG2

(
αs(µ

2)

4π

)2
CF

N2

[
CA

{
− 2 ln

tu−M2s4

(s4 − t)(s4 − u)
− 5

3

}

+
ss4((s−M2)2 + s2

4 − 2tu)

8(s4 − t)2(s4 − u)2
+

(s−M2)2 + s2
4 − 2tu

4(s4 − t)(s4 − u)

+
(s−M2)2 + s2

4 − 2tu+ 6ss4

4ss4

ln
tu−M2s4

(s4 − t)(s4 − u)
+

9

4

]
, (3.42)

s2
d2σHARD

q1q2→q1q2A0

dt du
− s2

d2σHARD
q1q2→q1q2H

dt du
=

πG2

(
αs(µ

2)

4π

)2
CACF

N2

[
− 2 ln

tu−M2s4

(s4 − t)(s4 − u)
− 1

]
, (3.43)

s2
d2σHARD

qq→qqA0

dt du
− s2

d2σHARD
qq→qqH

dt du
=

πG2

(
αs(µ

2)

4π

)2
CF

N2

[
CA

{
− 2 ln

tu−M2s4

(s4 − t)(s4 − u)
− 1

}

+
s2 + s2

4

4(s4 − t)(s4 − u)
ln

ss4

tu−M2s4

− 3

2
ln

tu−M2s4

(s4 − t)(s4 − u)

]
,

(3.44)

s2
d2σHARD

qg→qgA0

dt du
− s2

d2σHARD
qg→qgH

dt du
=

πG2

(
αs(µ

2)

4π

)2
1

N

[
CA

{
− 2 ln

tu−M2s4

(s4 − t)(s4 − u)
− 1

}

+ CF

{
ln

tu−M2s4

(s4 − t)(s4 − u)
− 1

2

}]
, (3.45)

where the meaning of the superscript HARD is explained in [79]. From these
expressions we infer that the partonic cross sections (coefficient functions) for
H and A0 are equal in LO and almost equal in NLO. This means that apart
from the overall normalisation due to the constant GB there will not be any
difference in the shapes of the double differential cross sections. We show this
in Fig. (3.1) where we plot the ratio

R =
dσA0

dσH

, (3.46)
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for dσB = dσB/dpT and proton-proton collisions at the LHC with
√
S =

14 TeV. For these and the next plots we have adopted the parton den-
sity set MRST98 (LO, lo05a.dat) [96] for the LO calculations with ΛNLO

5 =
130.5 MeV as input for the leading log running coupling constant. For the
NLO cross sections we have chosen the set MTST99 (NLO, cor01.dat) [97]
with ΛNLO

5 = 220 MeV as input for the next-to-leading log running cou-
pling constant. Furthermore the factorization/renormalization scale is cho-
sen to be µ2 = µ2

r = p2
T + M2

B. For the masses of the Higgs bosons we
take MH = MA0 = 120 GeV/c2 and the top quark mass is set equal to
Mt = 173.4 GeV/c2. Further we have put tan β = 1. In the case of an infinite
top quark mass, (here we choose Mt = 173.4×103 GeV/c2), we get RLO = 9/4
irrespective of the values of mH and mA0 . This follows from Eq. (3.9) and the
fact that the LO partonic cross sections are the same for H-production and
A0-production. A finite Mt as given above introduces a small effect and one
gets RLO = 2.31 which amounts to a shift upwards of 0.06 (see Fig. (3.1)).

3.5 Conclusions

In NLO the partonic cross sections differ a little bit and C2
H = [1+22αs/(4π)] C2

A

(see Eqs. 3.10−3.11). Therefore we expect a deviation from the RLO result
when mt is taken infinite in both the LO and NLO reactions. However it
turns out that both differences compensate each other. The NLO corrected
partonic cross section for A0 is larger than the one for H and one obtains
an upward shift ∆RNLO = 0.26. The shift due to the coefficient function in
Eq. (3.10) is negative and amounts to ∆RNLO = −0.24. Hence the actual value
becomes RNLO = 2.27 (see Fig. (3.1)) which is very close to RNLO = 9/4. If
Mt is finite one gets again an upward shift of 0.06 like in LO and RNLO = 2.33
(see Fig. (3.1)). One can make similar plots for the rapidity y distributions
which yield the same ratios as shown in Fig. (3.1) for the pT distributions.

The most important feature is that the ratios are independent of pT and y
showing the shape independence of the distributions on the parity of the Higgs
boson (scalar versus pseudoscalar). This behaviour was discovered for both the
(pseudo)scalar pT distributions and for the opening angle distribution between
the (pseudo)scalar bosons and the highest pT -jet in the reaction p + p →
(H or A) + jet + jet + ‘X ′ in Ref. [98].

From Fig. (3.1) and the observations made above it is clear that the ratios
between the NLO and LO corrected cross sections (K-factors) are the same
for H production and A0 production. This also holds for the variation of
the NLO cross sections with respect to the mass factorization/renormalization
scales. They are given for H-production in [79,80] and we do not have to show
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Figure 3.1: The ratio R in Eq. (3.46) plotted as a function of pT for
√
S =

14 TeV and µ2 = p2
T + m2

B with mH = mA0 = 120 GeV/c2; RLO(Mt = ∞)
(dotted line), RLO(Mt = 173.4) (solid line) RNLO(mt = ∞) (dot-dashed line)
RNLO(Mt = 173.4) (dashed line).

them again for A0 production. In Fig. (3.2) we present the pT distributions
in NLO for A0-production in proton-antiproton collisions at

√
S = 2 TeV

(Fermilab Tevatron, Run II) and in proton-proton collisions at
√
S = 14 TeV

(LHC). Further we have chosen mA = 91.9 GeV/c2 and tan β = 0.5. The
parton density set and the factorization scale are given above. From Fig. (3.2)
we infer that the pT -distributions decrease rather slowly as pT increases and
that the differential cross section for the Tevatron is two orders of magnitude
smaller than the one predicted for the LHC. The latter observation also holds
for the corresponding rapidity distributions shown in Fig. (3.3). They are
obtained by integrating d2σA/(dpT dy) over the range pT,min < pT < 8 pT,min

with pT,min = 30 GeV/c. The cross section for pT > 8 pT,min is negligible.
Notice that the range of the rapidity for A0-production at the Tevatron is
rather small.

Finally we want to comment on the relative importance of the partonic sub-
processes contributing to the hadronic differential cross section in Eq. (3.15).
For the LHC (

√
S = 14 TeV) the gg-channel dominates and the qg-subprocess

contributes about one third of the cross section. This is because at these high
energies the x-values of the gluon density fP

g (x) is so small that it becomes
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Figure 3.2: The transverse momentum distribution dσA/dpT with µ2 = p2
T +

M2
A0 , MA0 = 91.9 GeV/c2, tan β = 0.5;

√
S = 14 TeV (solid line),

√
S = 2 TeV

(dashed line).

much larger than the quark densities. At lower energies like
√
S = 2 TeV

(Tevatron) the x-values are larger so that the valence quark densities also play
a role. This explains why the contribution of the qg-subprocess is of the same
magnitude as the one from the gg-channel for A0-production at the Tevatron.
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Chapter 4

Scalar and Pseudoscalar Higgs
Boson Plus One Jet Production
at the LHC and Tevatron

The production of the Standard Model (SM) Higgs boson (H) plus one jet is
compared with that of the lightest scalar Higgs boson (h0) plus one jet and
that of the pseudoscalar Higgs boson (A0) plus one jet. The latter particles
belong to the Minimal Supersymmetric Model (MSSM). We include both top
and bottom quark loops to lowest order in QCD and investigate the limits of
small quark mass and infinite quark mass. We give results for both the CERN
Large Hadron Collider (LHC) and the Fermilab Tevatron.

4.1 Introduction

The Higgs boson is the cornerstone of electroweak symmetry breaking in the
Standard Model (SM). Particle physicists around the world have made the
search for the Higgs boson the top priority in high energy experiments. How-
ever, there are several different candidate models in the Higgs sector. The
Minimal Supersymmetric Standard Model (MSSM), which is a special case of
the Two Higgs Doublet Model (2HDM), is of particular theoretical interest.

The Standard Model Higgs boson has been experimentally excluded by
LEP searches for e+e− → ZH if its mass is lighter than 114 GeV/c2 [99].
In the MSSM, the particle spectrum includes five physical Higgs bosons; a
light and a heavy neutral scalar (h0, H0), two charged scalars (H±), and a
CP-odd pseudoscalar (A0). The mass of the lightest scalar in the MSSM is
excluded from being lighter than 91 GeV/c2 [65], while the mass of the pseudo-
scalar MA0 is experimentally excluded from being lighter than approximately
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92 GeV/c2. The ratio between the vacuum expectation values (VEVs) of the
two neutral Higgs bosons of the MSSM is defined as tan β = v2/v1. For
mtop = 174.3 GeV/c2, 0.5 < tan β < 2.4 has been excluded by the LEP Higgs
searches. A different value of the top quark mass will lead to different exclusion
bounds on tan β.

The total cross-section for scalar Higgs production including massive quark
loops has been calculated at next-to-leading order (NLO) in perturbative
QCD [70, 91, 100]. The corresponding calculation for Higgs production in
the MSSM can be found in Ref. [92]. In the Heavy Quark Effective The-
ory (HQET) [82, 81, 101], the top quark mass is assumed to be much heavier
than the Higgs boson mass and all relevant energy scales. Assuming the HQET
total inclusive cross-sections have been calculated at NLO for scalar [69] and
pseudoscalar production [71,83] and also at NNLO for scalar [74–76,102] and
for pseudoscalar [77, 78, 102] production, see also [72, 73]. The use of the
HQET significantly simplifies the computation of higher order QCD effects
and has been shown to accurately reproduce the exact NLO rate at the LHC
for pp → H [70, 91] for a Higgs mass less than 1 TeV/c2 if the LO massive
results are multiplied by the NLO K-factor obtained in the HQET.

In this paper we concentrate on the Higgs plus one jet (gg → gΦ, qg →
qΦ, and qq̄ → gΦ) production processes since they are important for the
experimental detection of the Higgs. Here Φ represents either the SM Higgs,
H, or the MSSM scalars, h0 and H0, or the MSSM pseudoscalar A0. The
production of the SM Higgs plus one jet process has been calculated exactly
at LO in [103,104] with the inclusion of heavy quark loops. The production rate
in the MSSM for the lightest scalar plus one jet was recently calculated in LO
including SUSY loop effects, which can be significant for light SUSY squarks
and gluinos [105]. The NLO QCD corrections to the Higgs plus one jet process
have only been computed in the HQET, since the full virtual corrections would
require the evaluation of massive two-loop integrals for a 2 → 2 reaction. The
differential cross-section for the production of a scalar Higgs boson plus one jet
in the HQET at NLO has been calculated previously by [68,72,73,79,80,106]
and the integrated rate was shown to increase substantially from the lowest
order rate. The pseudoscalar case has been presented in [107] and in [108].

We present the calculation of the Higgs plus one jet process where we
include both top and bottom quark loops with the full quark mass dependence.
This is done for the SM Higgs and for the lightest scalar and pseudoscalar Higgs
bosons of the MSSM. The contributions of loops with bottom quarks can be
important for large values of tan β in the MSSM. We also address the region
of validity of the HQET predictions for these reactions.

In Section (4.2), the limit of the partonic matrix elements in the HQET
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|M|2 = |cΦt Mt + cΦb Mb|2
Φ

H
cHt = 1
cHb = 1

|M|2 = |Mt|2 + |Mb|2 + 2Re(MtM?
b)

h0 ch
0

t = cosα/ sin β

ch
0

b = − sinα/ cos β

|M|2 =
cos2α

sin2β
|Mt|2 +

sin2α

cos2β
|Mb|2

−2
sinα cosα

sin β cos β
Re(MtM?

b)

H0 cH
0

t = sinα/ sin β

cH
0

b = cosα/ cos β

|M|2 =
sin2α

sin2β
|Mt|2 +

cos2α

cos2β
|Mb|2

+2
sinα cosα

sin β cos β
Re(MtM?

b)

A0 cA
0

t = cot β

cA
0

b = tan β

|M|2 =
1

tan2β
|Mt|2 + tan2β|Mb|2

+2Re(MtM?
b)

Table 4.1: Higgs-fermion couplings in the MSSM and the dependence of the
matrix element-squared on the couplings. Mt and Mb represent contributions
from top- and bottom- quark loops, respectively. The α parameter is the angle
that diagonalizes the CP-even Higgs squared-mass matrix.

and in the small quark mass limit are explored. In Section (4.3), the Higgs
plus jet matrix elements are given and our computational techniques are de-
scribed. Section (4.4) summarizes our notation for the hadronic differential
cross-sections. Section (4.5) contains numerical results for differential cross-
sections at the Tevatron and LHC, as well as integrated results with cuts in
transverse momemtum, pt, and rapidity, y. Analytic results for the matrix
elements are given in two Appendices.

4.2 Partonic Processes - Heavy Quark Effec-

tive Theory

In the limit where the top quark mass is much heavier than all the energy scales
in the problem, only the top quark coupling to gluons is numerically signifi-
cant and this limit provides a good approximation to Standard Model Higgs
production matrix elements. The HQET limit for scalar Higgs production has
been extensively studied in the literature. This limit is especially useful for
deriving higher order QCD corrections since the massive top quark loops that
couple the Higgs boson to gluons reduce to effective vertices. The Feynman
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(a) (b)

(c) (d)

Figure 4.1: Sample Higgs plus one jet diagrams. Figures 4.1a,b are the gg
diagrams, 4.1c is the qg channel, and 4.1d is the qq̄ channel. All quarks
contribute to the loops. The crossed and charge conjugate diagrams are not
shown. There are a total of 12 gg diagrams and 2 for each of the qg and qq̄
sub-processes.
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rules can be derived from an effective Lagrangian density [69,70,74,81,82,91],

LH
eff = −gH

H

4v
CH(αs)OH , OH = Ga

µνG
a,µν , (4.1)

where gH = 1 in the Standard Model and v = 246 GeV. OH generates vertices
which couple the Higgs boson to two, three, and four gluons. In the large mtop

limit, the coefficient CH can be evaluated as a power series in αs [70,81,82,90,
91,109,110]

CH(α(5)
s (µ2

r)) = −α
(5)
s (µ2

r)

3π

[
1 +

11α
(5)
s (µ2

r)

4π
+ · · ·

]
, (4.2)

where α
(5)
s (µ2

r) is evaluated at the scale µr in a 5 flavor scheme.
For comparison, we consider a pseudoscalar Higgs boson with a coupling

to fermions given by,

LA0

eff = −igA
A0

v
miψiγ5ψi. (4.3)

In the large mtop limit, the interactions of the pseudoscalar with gluons can
be found from the effective Lagrangian1 [67, 75,93]

LA0

eff = −gA
A0

v

(
CA1(αs)O1 + CA2(αs)O2

)
, (4.4)

O1 = εµνλσG
µν
a Gλσ

a , O2 = ∂µ

nf∑
i=0

q̄iγµγ5qi, (4.5)

where Gµν
a is the gluon field strength tensor. The process independent coeffi-

cient functions are

CA1 = −αs(µ
2
r)

16π
, CA2 = O(α2

s). (4.6)

We consider gA = 1 and the examine the differences between differential cross-
sections for the production of a SM scalar Higgs boson and a pseudoscalar
Higgs boson with the couplings of Eq. (4.3), when the bosons are produced in
association with a jet.

1There is some confusion over the coupling constant for the pseudoscalar case in the
literature. The correct coupling is found in Ref. [71]. There is an extra factor of 1/4 in
Ref. [67] leading to a cross-section 16 times too small for the pseudoscalar case. It seems
that the 1/4 from the effective Lagrangian was incorporated into the coupling constant by
mistake. The Feynman rules in both papers are correct if the coupling constant from the
Ref. [71] paper is used.
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It is also of interest to compare the production rates for a Higgs boson plus
a jet in the MSSM. The effective Lagrangians in this case are found by making
the replacements in Eqs. (4.1) and (4.5),

gH →ch
0

t

gA →cA
0

t , (4.7)

where ch
0

t and cA
0

t are given in Table (4.1). (We neglect contributions from
SUSY particles such as the bottom squarks and gluinos, and therefore assume
that the SUSY particle masses are much larger than mtop and mΦ. These
genuine SUSY contributions can be important for light squark and gluino
masses [105].) When the bottom quark becomes important, the HQET breaks
down as a reliable calculational tool. This occurs in the MSSM when tan β
becomes large and the bottom quark couplings are enhanced.

4.3 Partonic Processes - Full Theory

There are three channels associated with Higgs plus one jet production: gluon
fusion, quark-gluon scattering, and quark-antiquark annihilation. Represen-
tative Feynman diagrams are shown in Fig. (4.1). At the LHC where

√
S =

14 TeV the gluon fusion and quark-gluon channels are the most important,
with the quark-antiquark channel adding a negligible amount to the pro-
cess. However all three channels are important at the Tevatron where

√
S =

1.96 TeV.
The calculation of the matrix elements was carried out in both n = 4− 2ε

dimensions and 4-dimensions. The γ5 in the pseudoscalar calculation was
treated using the Akyeampong-Delbourgo prescription [111–113] for the γ5-
matrix. In this scheme the γ5 is exchanged for a Levi-Civita tensor contracted
with four γ-matrices. After the trace, the tensor loop integrals were reduced to
scalar integrals using the usual Passarino-Veltman [114] reduction techniques.

4.3.1 Gluon fusion (gg → gΦ)

The gluon fusion channel is the most important channel at the LHC. The mo-
mentum distribution in this process is assigned with all momentum incoming,

g(pµ1,a1

1 ) + g(pµ2,a2

2 ) → g(−pµ3,a3

3 ) + Φ(−p5), (4.8)

where µi are Lorentz indices and ai are color indices. The Mandelstam vari-
ables used in the partonic system are

ŝ = (p1 + p2)
2, t̂ = (p1 + p5)

2, û = (p2 + p5)
2, Q2 = m2

Φ. (4.9)
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Figure 4.2: The squared matrix elements, |M|2, evaluated at ŝ = 4m2
Φ and

û = t̂ for the three different channels, (gg, qg, qq̄), normalized to the squared
matrix elements in the HQET for scalar and pseudoscalar (with gA = 1) Higgs
plus jet production. We include only the top quark loops. The solid line is
the scalar, whereas the dashed line is the pseudoscalar.
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The matrix elements, including the gluon polarization vectors, can be written

Mgg = εµ1(p1)ε
µ2(p2)ε

µ3(p3)Mgg
µ1µ2µ3

. (4.10)

The Ward-Takahashi identities let us check the gauge invariance of the sub-
process. In the gluon fusion case, these can be written as

pµ1

1 ε
µ2(p2)ε

µ3(p3)Mgg
µ1µ2µ3

= εµ1(p1)p
µ2

2 ε
µ3(p3)Mgg

µ1µ2µ3

= εµ1(p1)ε
µ2(p2)p

µ3

3 Mgg
µ1µ2µ3

= 0, (4.11)

giving us a strong check on the algebraic results. Analytic results for the matrix
element squared for gg → gA0 are given in Appendix A, see also Appendix C
in [91], while those for gg → gH can be found in Refs. [103,104].

4.3.2 Quark-antiquark annihilation (qq̄ → gΦ)

For this sub-process, the momentum, color, and Lorentz structure was assigned
as follows

q(p1) + q̄(p2) → g(−pµ3,a3

3 ) + Φ(−p5). (4.12)

The matrix elements satisfy

Mqq̄ = εµ3(p3)Mqq̄
µ3
, pµ3

3 Mqq̄
µ3

= 0. (4.13)

Analytic results for qq → gA0 are given in Appendix B, see also Appendix C
in [91], while those for qq → gH can be found in Refs. [103, 104]. The results
for quark-gluon scattering can be found by crossing.

4.3.3 HQET Matrix Elements

The 4-dimensional color-spin averaged matrix elements for Higgs boson plus
one jet production in the mtop →∞ limit are presented here for completeness.
These matrix elements obey the same crossing relations as the full matrix
elements,

|M(ŝ, t̂, û)|2qg→qΦ = −|M(û, t̂, ŝ)|2qq̄→gΦ. (4.14)

The matrix elements in the large mtop HQET limit can be written [91, 103,
104,108],

∑
|M|2gg→gΦ = AΦ

Nc

4(N2
c − 1)

ŝ4 + t̂4 + û4 +Q8

ŝt̂û
(4.15)

∑
|M|2qg→qΦ = −AΦ

1

8Nc

ŝ2 + t̂2

û
(4.16)

∑
|M|2qq̄→gΦ = AΦ

(N2
c − 1)

8N2
c

û2 + t̂2

ŝ
, (4.17)
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where,

AH =

(
αs

3πv

)2

(4παs)g
2
H

AA =

(
αs

2πv

)2

(4παs)g
2
A (4.18)

and gH = 1 for the SM and gΦ is given in Eq. (4.7) for the MSSM. The bar
implies a sum and average over colors and spins. The exact matrix elements
squared as compared with the HQET matrix elements are shown in Fig. (4.2)
for both the SM scalar, which are in excellent agreement with the plots in [104],
and for a pseudoscalar with gA = 1. In this plot, the mass of the Higgs was set
to mΦ = 100 GeV/c2 and the mass of the top quark was varied. In these plots,
two thresholds can be observed. Each threshold occurs when an imaginary
part of the matrix elements turns on or off. If we examine Eq. (4.58) for
qq̄ → gA0 we clearly see that the imaginary part contains the difference of two
step functions

θ(ŝ− 4m2
top)− θ(M2

A0 − 4m2
top), (4.19)

so the first threshold occurs at 2mtop = MA0 and the second at 2mtop =
√
ŝ.

Since we choose ŝ = 4M2
A0 for the plot this implies that these thresholds occur

at mtop/mΦ = 0.5 and 1 respectively. The imaginary part is finite between
these cusps. Similar phenomena occur in the other reactions. However when
the squared matrix elements contain several terms the onset of the imaginary
parts is not always visible. The reactions qg → qΦ do not have ŝ channels so
they only have cusps at mtop/mΦ = 0.5. Finally the gg → gΦ channels show
both cusps. Note that the reason the cusps do not appear exactly at 0.5 and
1 is due to our choice of points in mtop/mΦ.

These ratios show that when the heavy quark becomes heavier than mtop ∼
1
2
mΦ the HQET is a reasonable approximation to the matrix elements with a

top loop only. In the MSSM, however, the usefulness of the HQET is limited
to small values of tan β where the bottom quark contribution can be neglected.

4.3.4 Small Quark Mass Limit

When the quark mass in the loop is much smaller than the Higgs mass and
the energy scale, the small quark mass limit mf → 0 is relevant. This is the
case for the bottom quark contribution in the large tan β limit of the MSSM.
The matrix elements in this limit behave as

|M|2 ∼ m4
f log4(m2

f/µ
2), (4.20)
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where µ >> mf . Exact expressions in the small quark mass limit are given in
Appendix B.

4.4 Observables

Generically, we can write a 2 → 2 differential observable as

ŝ2 d2σ̂

dt̂ dû
=

1

16π

∑
|M|2, (4.21)

where the bar implies a sum and average over colors and spins. To relate the
hadronic differential distributions to the partonic differential distributions we
need to perform a convolution with the parton distribution functions.

The hadronic process can be written as

H1(P1) +H2(P2) → j(−p3) + Φ(−p5) (4.22)

where the j represents the gluon or the quark jet in the sub-process of interest.
In the hadronic system, we can write

S = (P1 + P2)
2, T = (P1 + p5)

2, U = (P2 + p5)
2. (4.23)

This translates into the partonic system (with momentum fractions x1 and x2)
as

p1 = x1P1, p2 = x2P2, (4.24)

ŝ = x1x2S, t̂ = x1(T −Q2) +Q2, û = x2(U −Q2) +Q2 (4.25)

x1,min =
−U

S + T −Q2
, x2,min =

−x1(T −Q2)−Q2

x1S + U −Q2
, (4.26)

where Q2 = m2
Φ. The hadronic variables can be written in terms of the trans-

verse momentum and rapidity

T = Q2 −
√
S
√
p2

t +Q2 cosh y +
√
S
√
p2

t +Q2 sinh y (4.27)

U = Q2 −
√
S
√
p2

t +Q2 cosh y −
√
S
√
p2

t +Q2 sinh y. (4.28)

The hadronic differential cross-section is,

S2d
2σH1H2

dT dU
=

∑

ab

∫ 1

x1,min

dx1

x1

∫ 1

x2,min

dx2

x2

fH1
a (x1, µ

2
f )f

H2
b (x2, µ

2
f ) ŝ

2 d
2σ̂ab

dt̂ dû
.

(4.29)
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Upon further integration we obtain the single differential pt and rapidity dis-
tributions with the kinematic limits,

pt,max =
1

2

S −Q2

√
S

, ymax =
1

2
ln

(
1 + SQ

1− SQ

)
, (4.30)

where SQ =

√
1− 4S(p2

t +Q2)

(S +Q2)2
. (4.31)

4.5 Numerical Results

We present our calculations for the CERN LHC with
√
S = 14 TeV and the

Fermilab Tevatron with
√
S = 1.96 TeV. We use the CTEQ6.1L parton distri-

bution functions [84] with ΛLO
5 = 165.2 MeV and a one loop running coupling

constant with αs(MZ) = 0.1298. For the differential distributions, the full
kinematic rapidity and pt are used and the factorization and renormalization
scales are set equal to,

µr = µf =
√
Q2 + p2

t . (4.32)

We use pole masses with mtop = 174.3 GeV/c2 and mbot = 4.5 GeV/c2. For
the integrated cross-section we require the pt of the Higgs and the jet to satisfy
pt,min > 30 GeV/c in the rapidity region |y| < 2.5 and replace pt by pt,min in
Eq. (4.32) for the renormalization and factorization scales.

4.5.1 Standard Model

The transverse momentum distributions of the SM Higgs boson for all the
separate channels are shown in Fig. (4.3) for the LHC. For a SM Higgs boson
with MH = 120 GeV/c2, the cross-section for Higgs plus one jet is approx-
imately 12.3 pb when both the top and bottom quarks are included in the
calculation. Although the bottom quark contribution alone is only 0.05 pb,
the top-bottom interference lowers the cross-section by approximately 8.25%
from 13.4 pb when only the top quark is included, see [115]. This lowering of
the cross-section may be visible at the LHC. As shown in Fig. (4.4), the full
theory and the HQET agree very well at small to moderate pt for both the
scalar [103,106] and the pseudoscalar differential distributions.

4.5.2 Minimal Supersymmetric Standard Model

The MSSM is a special case of the 2HDM. In the MSSM, the up- and down-
type quarks become massive from different Higgs doublets and the ratio of the
two VEVs is parameterized by tan β = v2/v1. As shown in Table (4.1), up- and
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Figure 4.3: Transverse momentum distributions for the SM Higgs boson plus
one jet production at the LHC with MH = 120 GeV/c2 for the different chan-
nels. The curves labeled ‘Top’ (‘Bot’) include only the top (bottom) quark
loops.
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top-quark loops included and in the HQET at the LHC for MΦ = 120 GeV/c2.
We assume gA = 1.
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Figure 4.5: The transverse momentum distributions for the MSSM pseudo-
scalar Higgs boson for tan β = 30, 40, 50 and MA0 = 120 GeV/c2 at the Teva-
tron including the top and bottom quark loops. The top, middle, and bottom
lines in the top graph are the curves for tan β = 50, 40, 30 respectively. Below
is the fraction of the process that comes from each of the different channels.
The curves at pt = 250 GeV/c from top to bottom are the qg, gg, and qq̄
channels respectively.
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down-type quarks couple differently to the Higgs bosons of the MSSM. The α
parameter is the angle that is introduced to diagonalize the mass eigenstates
of the CP-even Higgs squared-mass matrix to obtain the physical states. The
program HDECAY [86] was used to determine the mass of the lightest scalar
and the α mixing parameter once the values of MA0 and tan β were chosen.
The SUSY Higgs mixing parameter was set to µ = 300 GeV/c2, the gluino
mass to µ2 = 200 GeV/c2, all the SUSY breaking masses to 1 TeV/c2, and the
soft breaking term to 1.5 TeV/c2.

At the Tevatron, there is a very small signal for the SM Higgs boson. The
cross-section for a SM Higgs boson plus one jet with MH = 120 GeV/c2 at
lowest order in QCD is approximately 0.1 pb. For tan β ∼ 30 the cross-section
for a 120 GeV/c2 pseudoscalar Higgs in the MSSM is about twice as large as for
a 120 GeV/c2 SM Higgs at the Tevatron and continues to grow with tan β. The
differential cross-section for pseudoscalar plus jet production at the Tevatron
is shown in Fig. (4.5). At the Tevatron, the large tan β region is completely
dominated by bottom quark loops where the HQET is of little use.

For the LHC, the entire tan β region is experimentally accessible. In the
small tan β region, the cross-section is well approximated by the HQET limit
and the bottom quark contribution can be neglected. However, there are
regions where both the top and bottom quark loops are important. The results
are summarized in Figs. (4.6) and (4.7). These plots use the full theory matrix
elements. For pseudoscalar plus jet production, including only the top quark
loop underestimates the total cross-section by 9.5% at tan β = 4 and the
discrepancy becomes larger as tan β grows. Including only the bottom quark
underestimates the total cross-section by 5.6% at tan β = 8 and becomes a
better approximation as tan β increases. The total cross-section for the MSSM
lightest scalar plus jet production receives an important contribution from the
interference between the top- and bottom-quark loops over a large range of
tan β.

4.6 Conclusions

We calculated the differential distributions and cross-sections for the SM Higgs,
H, the MSSM scalar Higgs boson, h0, and pseudoscalar boson, A0, plus one jet
production at the Tevatron and LHC. We included both the top and bottom
quark loops and investigated the validity of the Heavy Quark Effective Theory
(HQET) limit and the light quark mass limit. For large tan β, the HQET fails
and the complete result with all mass dependences is needed.

The NLO QCD corrections for Higgs plus jet [79,80,106] and pseudoscalar
plus jet [107] production have been previously found in the large mtop limit.
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Figure 4.6: Cross-section for the production of the MSSM pseudoscalar Higgs
boson plus one jet for different values of tan β at the LHC for MA0 =
120 GeV/c2 integrated for pt > 30 GeV/c using the full theory matrix ele-
ments. The top and bottom labels show what the contribution of the top and
bottom quark would be alone. In the region 4 < tan β < 8 the total cross-
section is not represented well by either the top or bottom matrix elements
alone. In the experimentally accessible region, the total cross-section at the
Tevatron is dominated by the bottom loop so only the bottom contribution is
shown for tan β > 30.
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Our results make it clear that these can only be applied to the MSSM in
certain regions. At large tan β, using the bottom-quark only is a very good
approximation in the MSSM. At small tan β the MSSM pseudoscalar is top-
quark loop dominated, whereas the lightest scalar in the MSSM still receives
important contributions from both the top- and bottom-quarks over a much
broader range of tan β. This can be seen as the effective suppression of the
ch

0

t coupling and enhancement of the ch
0

b coupling at small tan β where the
interference between the two terms is still playing an important role.
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Appendix A: Pseudoscalar Matrix Elements

For the qq̄ → gA0 sub-process, the (spin and color averaged) matrix elements
squared are particularly simple because the presence of a γ5 makes the traces
much smaller than in the scalar case. They can be written in terms of the
integrals presented in [104],

∑
|M|2qq→gA0 =

16m4
f

ŝ

(
(4παs(µ

2
r))

3

4N2
c v

2

)
|C1(ŝ)|2 [ŝ2 − 2t̂1û1 +Q4], (4.33)

where the new variables are defined

ŝ1 = ŝ−Q2, t̂1 = t̂−Q2, û1 = û−Q2. (4.34)

It is easy to see that ŝ1 = −(t̂+ û) and so on.
In these expressions we use the notation of [104]. The C1 loop integral that

appears in the calculation is the usual triangle integral with two massive legs.
For p2

1 = 0, p2
2 = Q2 = m2

Φ, p12 = p1 + p2 and p2
12 = ŝ, the triangle integral is

defined as

C1(ŝ) = C1(p1, p2) (4.35)

=
1

iπ2

∫
d4q

[q2 −m2
f ][(q + p1)2 −m2

f ][(q + p12)2 −m2
f ]
. (4.36)
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The box integrals with p2
1 = p2

2 = p3
3 = 0, and p2

123 = (p1 + p2 + p3)
2 = Q2 are

defined as

D(ŝ, t̂) = D(p1, p2, p3)

=
1

iπ2

∫
d4q

[q2 −m2
f ][(q+p1)2−m2

f ][(q+p12)2−m2
f ][(q+p123)2−m2

f ]
.

(4.37)

It is easy to see that the box integrals satisfy the relation D(x̂, ŷ) = D(ŷ, x̂).
The computer package FF [116] was used to evaluate the scalar integrals.

For the gg → gA0 sub-process, the (spin and color averaged) matrix ele-
ment squared can be written in the symmetric form,

∑
|M|2gg→gA0 =

∑

f

m4
f (4παs(µ

2
r))

3

v2(N2
c − 1)2

{
F (ŝ, t̂, û) + F (ŝ, û, t̂)+

F (û, ŝ, t̂) + F (û, t̂, ŝ)+

F (t̂, û, ŝ) + F (t̂, ŝ, û)

}
(4.38)

where

F (ŝ, t̂, û) =− 2 Re

(
C1(û)D

?(û, ŝ)

)[
ŝ1

(
ŝQ2

t̂
+ û

)
− ŝt̂− ŝ3

t̂

]

− 1

2
Re

(
D(ŝ, t̂)D?(û, ŝ)

)[
t̂1(ŝ

2 + ŝt̂)

]

+ 2 Re

(
C1(t̂)C

?
1(û)

)[
t̂2− t̂1Q2

ŝ
+Q2

(
Q4+2ŝŝ1

ût̂

)
+ t̂−3Q2+4ŝ

]

− |C1(û)|2
[
Q6û1

ŝt̂û
+
ŝ2 +Q4

t̂
+
t̂2 +Q4

ŝ
− 4ŝt̂− 3Q4

û
− 3Q2

]

+ Re

(
C1(û)D

?(ŝ, t̂)

)[
ŝt̂− ŝ1t̂1 +Q2

(
ŝ2
1 + ŝ2

û

)]

− 1

4
|D(ŝ, t̂)|2

(
2(ŝ3 + t̂3)− ŝ2t̂2

û
+
ŝt̂

û2

[
(ŝ+ t̂)3 − 2ŝt̂û

])
. (4.39)

Appendix B: Analytic Limits of Matrix Ele-

ments

The partonic cross-section for qq → gΦ is

dσ̂

dt̂
=

1

16πŝ2

1

36
|M|2qq→gΦ, (4.40)
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where the spin and color average is explicitly given,

|M|2qq→gΦ ≡
1

36
|M|2qq→gΦ. (4.41)

For a scalar Higgs,

|M|2qq→gH =
16α3

s

πv2

t̂2 + û2

ŝ
|AH

qq|2, (4.42)

and

AH
qq =

∑
j

{
m2

j

ŝ−M2
H

[
2− 2ŝ

ŝ−M2
H

(
I1(ŝ/m

2
j)− I1(M

2
H/m

2
j)

)

+

(
1 +

4m2
j

ŝ−M2
H

)(
I2(ŝ/m

2
j)− I2(M

2
H/m

2
j)

)]}
, (4.43)

where mj is the fermion mass in the loop. The integrals are defined by:

I1(a) =

∫ 1

0

dx log

(
1− ax(1− x)

)
, (4.44)

I2(a) =

∫ 1

0

dx

x
log

(
1− ax(1− x)

)
. (4.45)

In the large fermion mass limit, mj →∞, [104,103]

AH
qq → −1

3

(
1 +

1

120

11ŝ+ 7M2
H

m2
j

+ . . .

)
. (4.46)

In the small fermion mass limit, mj → 0, [104]

AH
qq → AHr

qq + iAHi
qq , (4.47)

AHr
qq → 2m2

j

ŝ−M2
H

{
1 + Λs

(
− ŝ

ŝ−M2
H

+
1

4

(
1 +

4m2
j

ŝ−M2
H

)[
Λs − 2 log

(
m2

j

M2
H

)])}
, (4.48)

AHi
qq → − m2

jπ

ŝ−M2
H

(
1 +

4m2
j

ŝ−M2
H

)
Λs, (4.49)

where Λs = log(ŝ/M2
H).

The result for qg → qΦ can be found from crossing,

dσ̂

dt̂
=

1

16πŝ2

(
1

96

)
|M |2qg→qΦ, (4.50)
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and
|M(ŝ, t̂, û)|2qg→qΦ = −|M(û, t̂, ŝ)|2qq→gΦ. (4.51)

In the large fermion mass limit, mj →∞ [104,103],

AH
qg → −1

3

(
1 +

1

120

11û+ 7M2
H

m2
j

+ . . .

)
(4.52)

In the small fermion mass limit, mj → 0,

AH
qg → AHr

qg + iAHi
qg (4.53)

AHr
qg → 2m2

j

û−M2
H

{
1 + Λu

(
− û

û−M2
H

+
1

4

(
1 +

4m2
j

û−M2
H

)[
Λu − 2 log

(
m2

j

M2
H

)])}
, (4.54)

AHi
qg → − 2m2

j ûπ

(û−M2
H)2

, (4.55)

where Λu = log(|û|/M2
H).

The results for pseudoscalar production are found assuming the ψ̄ψA0 cou-
pling given in Eq. (4.3). The form factor for

g(pµ1,a1

1 ) + g(pµ2,a2

2 ) → A0(p5), (4.56)

with all moment outgoing and p2
1 = 0, p2

5 = M2
A0 , (p1 + p5)

2 = ŝ, is given by

iΓµ1,µ2(p1, p2, p5) = −αs

2π

gAm
2
j

v
δa1a2ε

αβµ1µ2pα
5p

β
2

× 1

ŝ−M2
A0

{
I2(ŝ/m

2
j)− I2(M

2
A0/m2

j)

}
. (4.57)

The differential cross-section for qq → gA0 is given by Eq. (4.40), with

|M|2qq→gA0 =
α3

s

π
g2

A

∑
j

4m4
j

ŝv2

(
1 +

2t̂û

(ŝ−M2
A0)2

)∣∣∣∣I2(ŝ/m2
j)− I2(M

2
A0/m2

j)

∣∣∣∣
2

.

(4.58)
In the large fermion mass limit, mj →∞ [108],

|M|2qq→gA0 → α3
s

π
g2

A

1

ŝv2

(
2t̂û+ (ŝ−M2

A0)2

)[
1 +

ŝ+M2
A0

6m2
j

+ . . .

]
. (4.59)
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In the small fermion mass limit, mj → 0,

|M|2qq→gA0 →α3
s

π
g2

A

1

ŝv2

(
1 +

2t̂û

(ŝ−M2
A0)2

)
m4

j

×Λ2
s

{[
Λs − 2 log

(
m2

j

M2
A0

)]2

+ 4π2

}
, (4.60)

where Λs = log(ŝ/M2
A0).
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Chapter 5

Next-to-leading Log
Resummation of Scalar and
Pseudoscalar Higgs Boson
Differential Cross-Sections at
the LHC and Tevatron

The region of small transverse momentum in qq̄− and gg−initiated processes
must be studied in the framework of resummation to account for the large,
logarithmically-enhanced contributions to physical observables. In this paper,
we will calculate the fixed order next-to-leading order (NLO) perturbative total
and differential cross-sections for both a Standard Model (SM) scalar Higgs bo-
son and the Minimal Supersymmetric Standard Model’s (MSSM) pseudoscalar
Higgs boson in the Heavy Quark Effective Theory (HQET) where the mass

of the top quark is taken to be infinite. Resummation coefficients B
(2)
g , C

(2)
gg

for the total cross-section resummation for the pseudoscalar case are given, as
well as C̄

(1)
gg for the differential cross-section.

5.1 Introduction

The discovery of one or more Higgs bosons is the central research interest for
high energy physics programs at hadron colliders around the world. Beyond
the phenomenology of the Standard Model (SM) Higgs boson, the Minimal
Supersymmetric Standard Model (MSSM) which is a special case of the Two
Higgs Doublet Model (2HDM) is of particular interest to theorists. For a
review see Ref. [64,117].
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Very recently, a new central value for the top quark mass was reported
[118]. This changed the exclusion limits on the SM Higgs boson, putting its
central mass value from precision electroweak fits at 117 GeV/c2. This is
exciting because this value is above the exclusion limits from the LEP direct
searches which exclude the mass of a SM-like Higgs boson below approximately
114 GeV/c2 [99]. In the MSSM there are five physical Higgs bosons; a light and
a heavy scalar (h0,H0), two charged scalars (H±), and a CP-odd pseudoscalar
(A0). The mass of the pseudoscalar is excluded [119] from being lighter than
92 GeV/c2. The ratio between the vacuum expectation values (vevs) of the
two neutral Higgs bosons of the MSSM is defined as tan β = v2/v1. For
mtop = 174.3 GeV/c2, 0.5 < tan β < 2.4 has been excluded by the LEP
Higgs searches. The bounds on tan β will change as the central value of the
top mass changes. A full analysis of the tan β exclusion bounds for the new
top mass of mtop = 178.0 GeV/c2 is not yet available. In this paper, we
will leave tan β = 1 so that the pseudoscalar results can easily be scaled by an
appropriate number of interest to the reader, and the mass of the Higgs bosons
will be set to MΦ = 120 GeV/c2, where Φ is the Higgs boson of interest.

In the context of resummation, the literature has focused on the scalar
Higgs boson [106, 110, 120–132]. This paper will provide resummation coeffi-
cients for the pseudoscalar Higgs boson for the total cross-section and differ-
ential distributions. Our calculations are done in the Heavy Quark Effective
Theory (HQET) where the mass of the top quark is taken to be infinite. The
role of the bottom quark in pseudoscalar production becomes dominant at
large tan β. In order to correctly take the bottom quark into account at this
order, massive resummation coefficients will have to be determined. This will
be reserved for another discussion.

In Section (5.2), we will introduce the Heavy Quark Effective Theory
(HQET) in which our calculations were performed. In Section (5.3), we will in-
troduce our resummation conventions and present our new results for pseudo-
scalar resummation. Finally, in Section (5.4) we will present our numeric
results for the differential distributions for the SM scalar and MSSM pseudo-
scalar Higgs boson at the Large Hadron Collider (LHC) and Tevatron in the
HQET.

5.2 Heavy Quark Effective Theory

Higgs phenomenology in QCD lends itself well to the use of Heavy Quark
Effective Theory (HQET). When only the top quark is considered in calcu-
lations, it is possible to replace the top quark loops by an effective vertex
when the other quarks are ignored. The role of the bottom quark in Higgs
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physics has recently been examined in great detail [133, 134], but will not be
included in this paper. The Lagrangian that describes this effective vertex can
be derived from the gg → Φ (where Φ is a Higgs boson of interest) triangle
diagram [135–138] and letting the mass of the quark become infinitely heavy
at the end of the calculation [139–141]. The Higgs of interest could be the
SM scalar Higgs, or the pseudoscalar Higgs of the MSSM. In principle, the
light and heavy scalar Higgs of the MSSM can be included in this formalism
in place of the SM Higgs by multiplying by the appropriate coupling factor.
However, supersymmetric corrections within the MSSM will not be included
in this paper, only SM QCD corrections will be included.

The HQET method allows for the inclusion of the O(ε) terms which are
important for deriving resummation coefficients. This program leads to the
effective Lagrangian in d = 4− 2ε dimensions for a scalar Higgs boson

LH
eff = −1

4
gHHG

a
µνG

a,µν

(
4πµ2

r

m2
top

)ε

Γ(1 + ε) (5.1)

where gH = αs/3πv is the coupling of the effective vertex at LO, Ga,µν is the
field-strength tensor for the gluons, µr is the renormalization scale, and the
vacuum expectation value (vev) of the Higgs is defined as v2 = (

√
2GF )−1 '

246 GeV. The effective coupling receives order by order corrections that have
been calculated [90,110] previously. The appearance of the top quark mass in
this expression hints that the corrections to the effective coupling at higher or-
der may include logarithmic corrections including the top quark mass, which is
the case. Alternatively, we can define 1/v2 = 6422.91 pb, which is convenient
in cross-section calculations. This effective Lagrangian generates effective ver-
tices with two, three, and four gluons with a scalar Higgs boson. The Feynman
rules for a scalar Higgs can be found in the literature [66].

When a pseudoscalar Higgs boson is considered, the effective Lagrangian
changes due to the γ5 coupling and can be written

LA0

eff =
1

4
gA0A0Ga

µνG̃
a,µν

(
4πµ2

r

m2
top

)ε

Γ(1 + ε) (5.2)

where gA0 = αs/2πv is the coupling of the effective vertex. The G̃a,µν =
1/2 εµνρσGa

ρσ operator is the dual of the usual gluon field-strength tensor. It is
important to note that the four gluon plus pseudoscalar Higgs vertex is absent
in this effective Lagrangian as its Feynman rule is proportional to a completely
antisymmetric combination of structure functions and therefore vanishes. It
should be noted that this is the LO effective Lagrangian, and that a second
operator begins to contribute at higher orders. A complete discussion can be
found in Ref. [93]. The Feynman rules for the pseudoscalar can be found in
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the literature [71]. The Feynman rules listed in this reference should be used
with gA0 = αs/2πv to avoid a spurious extra factor of 1/4.

If we define z = M2
Φ/ŝ where ŝ is the partonic center of momentum energy

squared, the partonic total cross-section for Higgs production (either scalar or
pseudoscalar written here generically as Φ) from the fusion of two partons a
and b can be written as a series expansion in αs as

σ̂(ab→ Φ +X) = σ̂Φ
0 ∆ab→Φ

= σ̂Φ
0

(
δagδbgδ(1− z) +

αs

π
∆

(1)
ab→Φ(z)

+

(
αs

π

)2

∆
(2)
ab→Φ(z) +O(α3

s) + · · ·
)
, (5.3)

where σ̂Φ
0 is the LO partonic total cross-section, and the ∆

(n)
ab→Φ(z) coefficients

are higher order corrections.
The NNLO corrections for both the scalar and pseudoscalar Higgs bosons

have been calculated in the HQET [74,77,102]. Although the next-to-leading
order corrections have been calculated in several places [69–71, 79, 91, 107,
121, 123], there are some discrepancies in the literature that we would like to
clear up in this paper. For this reason, we will explicitly calculate the NLO
corrections for the gg initial state. The importance of this particular channel,
beyond its relevance to high-energy hadron collisions, will be addressed later.
The partonic cross-section at NLO has to be written as the sum of the real
emissions, the virtual corrections, the charge renormalization, and Altarelli-
Parisi subtractions as follows

σ̂NLO = σ̂real + σ̂virt + σ̂ren + σ̂AP. (5.4)

Although a few very thorough treatments for the scalar case exist in the
literature [69, 70], we will re-derive them here to highlight differences in the
pseudoscalar case, where an exhaustive treatment is missing. We will follow
closely the discussion in these references. We will see that only the gg channel
will play a role in the resummation formalism.

5.2.1 Scalar Higgs Matrix Elements

Suppressing O(ε) terms for now, the matrix elements for scalar Higgs produc-
tion in the HQET can be written as [69–71,79,91,107,121,123]

M(g(pµ,A
1 ) + g(pν,B

2 ) → H) = − αs

3πv
δAB

(
ηµνM

2
H

2
− pν

1p
µ
2

)
εµ(p1)εν(p2). (5.5)
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Here AB(µν) are the color (Lorentz) indices of the incoming gluons. When
the matrix elements are squared, the contraction of the delta functions yields a
factor of δABδAB = N2

c −1 = 8, the contraction of the metric yields ηµνηµν = d.
This yields the squared matrix elements (before any color-spin averaging)

|M(gg → H)|2 =
α2

sM
4
H(N2

c − 1)

16π2v2

(
4πµ2

r

m2
top

)2ε

Γ2(1 + ε)(1− ε). (5.6)

In this 2 → 1 process, it is easiest to calculate the decay width of the Higgs
and convert that to a partonic total cross-section. We need to color and spin
average the matrix elements squared noting that the gluon-gluon initial state
must be averaged over 4(1 − ε)2 transverse polarizations. We can write the
partonic cross-section in terms of the decay width and simply add δ(1 − z)
since z = M2

H/ŝ = 1 at threshold, so that [69]

σ̂H
0 (gg → H) =

π2

8M3
H

Γ(H → gg) (5.7)

=

(
αs

π

)2
π

576v2

(
4πµ2

r

m2
top

)2ε
Γ2(1 + ε)

1− ε
.

This factor (with its ε dependence) will be pulled from each of the higher order
correction factors. The LO cross-section in the HQET starts at O(α2

s).

Radiative Corrections

At the next order in perturbation theory, there are qg and qq̄ initial state
processes. However, as we will see later, we are only interested in the gg
initial state, so we will only calculate the NLO corrections to the gg initial
state process.

The real contributions at NLO to the gg initial state come from the process
gg → gH which was originally calculated in the ε→ 0 limit in the full theory
including a finite mass top quark in Ref. [103,104]. We can write the amplitude
as,

g(pA,µ
1 ) + g(pB,ν

2 ) → g(−pC,σ
3 ) +H(−p5) (5.8)

If we define the partonic (with hats) kinematic variables in terms of the
Higgs momentum so that our differential cross-section can be written in terms
of the Higgs transverse momentum as ŝ = (p1 + p2)

2, t̂ = (p1 + p5)
2, and

û = (p2 + p5)
2. The matrix elements take the symmetric form [69–71, 79, 91,
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107,121,123]

|M(gg → gH)|2 =
α3

s

v2

4Nc(N
2
c − 1)

9π

(
4πµ2

r

m2
top

)2ε

Γ2(1 + ε)

×
{[

M8
H + ŝ4 + t̂4 + û4

ŝt̂û

]
(1− 2ε)

+
ε

2

[
(M4

H + ŝ2 + t̂2 + û2)2

ŝt̂û

]}
. (5.9)

Color and spin averaging gives an additional factor of 1/256/(1 − ε)2. By
pulling out the LO cross-section from the expression, we can write the properly
averaged matrix elements (where the overbar corresponds to color and spin
averaging)

|M(gg → gH)|2 = σ̂H
0

αs

π

Nc(N
2
c − 1)

1− ε

{[
M8

H + ŝ4 + t̂4 + û4

ŝt̂û

]
(1− 2ε)

+
ε

2

[
(M4

H + ŝ2 + t̂2 + û2)2

ŝt̂û

]}
. (5.10)

First, let us find the differential cross-section. The LO differential cross-
section involves 2 → 2 kinematics and can be written with the 4 − 2ε phase
space dimensions as [123]

dσ̂H

dt̂
=

1

16πŝ2

(
4πµ2

r

M2
H

)ε
1

Γ(1− ε)

(
ŝM2

H

ût̂

)ε

|M|2. (5.11)

As we will see in Sec. (5.3), it is the small pt behavior of this expression
that we will be interested in. If we insert the expression ût̂ = ŝp2

t and drop the
terms proportional to pt, we find an expression for the differential cross-section
in the small pt limit. Once we have changed variables, we find the partonic
differential cross-section in the small pt region (where we are suppressing the
trivial rapidity dependence)

dσ̂H

dp2
t

= σ̂H
0

αs

π

(
4πµ2

r

M2
H

)ε
z

(1− ε)Γ(1− ε)

(
M2

H

p2
t

)ε[
CA

1

p2
t

ln

(
M2

H

p2
t

)
− β0

1

p2
t

]
.

(5.12)
We will see that this representation will make it particularly simple to

extract the resummation coefficients A
(1)
g and B

(1)
g for the differential distri-

bution. These coefficients will be the same for the total cross-section as well.
Turning our attention back to the expression we had for the matrix elements
squared, we would like to calculate the real corrections for the NLO total par-
tonic cross-section. The matrix elements for the real emission needs to be
integrated and can be written as [69]
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σ̂ =
1

2ŝ

∫
|M|2 dPS2. (5.13)

For a 2 → 2 process, this can be done by introducing the following param-
eterization for the angular integration. If we write the scattering angle θ as
cos θ = 2ω− 1, this maps the θ integration to an ω integration between 0 and
1. We can express the kinematic invariants as follows

t̂ = −ŝ(1− z)(1− ω), û = −ŝ(1− z)ω, (5.14)

and do the phase space integrations using the following parameterization

dPS2 =
1

8π

(
4πµ2

r

ŝ

)ε
(1− z)1−2ε

Γ(1− ε)

∫ 1

0

ω−ε(1− ω)−εdω (5.15)

which reduces the angular integration into repeated applications of Euler’s
beta function integral, where additional integer powers of ω and (1 − ω) are
introduced from the kinematic variables t̂ and û,

∫ 1

0

dω ωα(1− ω)β =
Γ(1 + α)Γ(1 + β)

Γ(2 + α + β)
. (5.16)

Turning our attention back to the real emissions, we find the color and spin
averaged partonic total cross-section, after regulating the singularity at z = 1
with a plus distribution, can be written as

σ̂H
real = σ̂H

0

(
αs

π

)(
4πµ2

r

ŝ

)ε

Γ(1 + ε)

×CA

{[
1

ε2
+

1

ε
+ 1− 2ζ2

]
δ(1− z)

− 2z

ε

[
zD0(z) +

1− z

z
+ z(1− z)

]
− 11

6
(1− z)3

+ 2

[
1 + z4 + (1− z)4

]
D1(z)

− 2

[
1− z + 2z2 + z4D0(z)

]}
+O(ε), (5.17)

where the plus prescription is defined as usual
∫ 1

0

dx f(x)[g(x)]+ =

∫ 1

0

dx g(x)[f(x)− f(1)], (5.18)

and we have introduced the common abbreviation

Dn(z) ≡
(

lnn(1− z)

1− z

)

+

. (5.19)
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Virtual Corrections

Next, we must calculate the virtual contributions. There are two diagrams
with gluon loops (a gluon triangle and a four point incoming state as can be
seen in Ref. [69]), and can be calculated directly. We can write the integrated
virtual contribution that contributes at α3

s to the total partonic cross-section
in the same fashion as the real emissions [69–71,79,91,107,121,123]

σ̂virt = σ̂0

(
αs

π

)(
4πµ2

r

M2
H

)ε

Γ(1 + ε)CA

{[
− 1

ε2
− 1

ε
+

5

6
+ 4ζ2

]
δ(1− z)

}
. (5.20)

As expected, the ε2 singularities cancel between the real emission and vir-
tual graphs. It will turn out that the differences between the fixed order
results for the scalar and the pseudoscalar come from different virtual cor-
rections. These virtual contributions will be needed to cancel some ε poles in
the expression we will derive to determine the process dependent resummation
coefficients, in particular C

(1)
gg for the differential distribution.

Total cross-section

The remaining 1/ε singularities must be removed to find the partonic total
cross-section. The poles are cancelled in the charge (coupling) renormalization
and the Altarelli-Parisi subtraction. Understanding the charge renormalization
tells us why is was so important to have the O(ε) terms of the lowest order
cross-section. We can see that the counter-term can be written [69,70]

σ̂ren = (4Zg)σ̂0, Zg = −αs

ε
(4π)ε−1Γ(1 + ε)β0, β0 =

11

6
CA −

2

3
nfTR, (5.21)

where nf = 5 since the top quark has been integrated out. These equations

hold with the MS renormalization conditions.
The Altarelli-Parisi subtraction factors out the soft and collinear singulari-

ties into the PDFs much like the factorization process separates the short and
long distance physics in hadron-hadron scattering. This cancels the rest of the
1/ε poles and gives us the final expression for the total cross-section

σ̂NLO(gg → H +X) = σ̂H
0

{
δ(1− z) +

(
αs

π

)[(
11

6
CA + 2CAζ2

)
δ(1− z)

− 11

6
CA(1− z)3 + 2CA

[
1 + z4 + (1− z)4

]
D1(z)

+ 2CA

(
z2D0(z) + (1− z) + z2(1− z)

)
ln
M2

H

zµ2

]}
+O(ε). (5.22)
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Our expressions for the resummation coefficients show the their full color
dependence. It is sufficient to notice at this stage that the term proportional
to the δ(1− z) in the correction can be evaluated as 11/2 + π2 when we use

CA = Nc, CF =
N 2

c − 1

2Nc

, TR =
1

2
. (5.23)

5.2.2 Pseudoscalar Higgs Matrix Elements

There are many reasons for our primary interest to be the pseudoscalar Higgs
boson. In the MSSM, the exact roles the top and bottom quarks play in
the differential cross-section is complicated [134]. However, in much of the
parameter space in the MSSM, the cross-section for the pseudoscalar is larger
than the lightest scalar Higgs boson in the MSSM. If supersymmetry does exist
in nature, the pseudoscalar Higgs may be the first Higgs boson discovered due
to its larger cross-section. If supersymmetry becomes important only at very
high scales, then seeing a pseudoscalar Higgs would be the first evidence of
supersymmetry in nature. This leads us to investigate in detail pseudoscalar
resummation.

We should also mention that because of the importance of the bottom quark
in calculations involving the MSSM pseudoscalar (and the lightest scalar Higgs
in the MSSM as well) when the parameter tan β is large is systematically
ignored in these calculations. To remedy this situation, one would have to
calculate the resummation coefficients in the full theory. In principle, these
coefficients can be extracted from Ref. [91]. However, these results have not
been published.

The difference in the lowest order (LO) partonic cross-section of the pseudo-
scalar Higgs boson and the scalar Higgs boson can be traced to the difference
in the effective couplings gH and gA0 and a factor of 9/4. This can be written
as [71]

σ̂A0

0 (gg → A0) =
9

4
σ̂H

0 (gg → H)

=

(
αs

π

)2
π

256v2

(
4πµ2

r

m2
top

)2ε
Γ2(1 + ε)

1− ε
δ(1− z). (5.24)

Upon the expansion of the O(ε) terms, we see they do not effect the final
answer as expected at the lowest order.

Radiative Corrections

The matrix elements for the production of the pseudoscalar in the HQET are
slightly more complicated in d = 4− 2ε dimensions due to the presence of the
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intrinsically 4-dimensional Levi-Civita tensor in the Feynman rules [71] coming
from the G̃a,µν term in the effective Lagrangian. There are several conventions
for handling this problem [111–113, 142]. We have chosen the scheme defined
in Ref. [111–113].

For the radiative corrections, we can separate all the vectors into 4- and
(d−4)-dimensional components. We label the (d−4)-dimensional components
of the vectors with a twiddle. We can take the incoming momentum to be
4-dimensional as a convenient choice of frame, which simplifies the results
considerably [71].

The (un-averaged) matrix elements can be written,

|M(gg → gA0)|2 =
α3

s

v2

Nc(N
2
c − 1)

π

(
4πµ2

r

m2
top

)2ε

Γ2(1 + ε)

×
{[

M8
A0 + ŝ4 + t̂4 + û4

ŝt̂û

]
+

2ŝ(t̂2 + û2)(p̃3 ·p̃3ŝ− t̂ûε)

t̂2û2

}
.

(5.25)

We can see that the ε → 0 corrections are identical in the scalar and
pseudoscalar case for the real emissions. We can also see that the residual
difference is not only proportional to ε, but rather proportional to ε and the (d−
4)-dimensional component of the p3 vector, which vanishes in the 4-dimensional
limit.

From this analysis, we can see that the real part of the differential cross-
section for the pseudoscalar Higgs boson will be identical to the scalar case in
Equation (5.12) with a 9/4 difference in normalization.

Virtual Corrections

The virtual corrections to the pseudoscalar have the same diagrams as the
scalar at this order, but there is a slight difference in the result. This difference
is due to the fact that the diagram with the four point gluon vertex vanishes
due to the antisymmetry of the ggA0 vertex in the effective theory. The
integrated result is

σ̂A0

virt = σ̂A0

0

(
αs

π

)(
4πµ2

r

M2
H

)ε

Γ(1 + ε)CA

{[
− 1

ε2
− 1

ε
+ 2 + 4ζ2

]
δ(1− z)

}
. (5.26)

We can see that although the pole terms are the same, the finite terms
have changed slightly because of the “missing” diagram.
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Total cross-section

When we combine our pseudoscalar results, we find that the total partonic
cross-section that is identical to the scalar case with the exception of the
small numeric difference in the δ(1 − z) term. The expression changes from
11/6CA + 2CAζ2 → 2CA + 2CAζ2 in the pseudoscalar case. Here we see the
factor 11/2 → 6, which would seem to be a small difference, but it is mostly a
coincidence of the SU3 Casimir invariants.

The partonic cross-section can be written as

σ̂A0

NLO(gg → A0 +X) = σ̂A0

0

{
δ(1− z) +

(
αs

π

)[(
2CA + 2CAζ2

)
δ(1− z)

− 11

6
CA(1− z)3 + 2CA

[
1 + z4 + (1− z)4

]
D1(z)

+ 2CA

(
z2D0(z) + (1− z) + z2(1− z)

)
ln
M2

H

zµ2

]}
+O(ε). (5.27)

Now that we have expressions for the total partonic cross-sections for both
the scalar and the pseudoscalar Higgs boson we see that the only difference
between the two lies in the correction proportional to δ(1− z) at NLO and in
the normalization. This difference in the δ(1− z) factors is numerically small
and is αs suppressed, leaving us to believe that the primary difference is going
to be factor of 9/4 in the LO partonic cross-sections.

5.3 Resummation

To introduce the machinery behind resummation [143–145], we need to define
the hadronic cross-section. This is the convolution of parton distributions
functions (PDFs) with the partonic cross-section

σ(S,M2
Φ) =

∑

a,b

∫ 1

x1,min

dx1

∫ 1

x2,min

dx2 fa/h1(x1, µf ) fb/h2(x2, µf )

×
∫ 1

0

dz z σ̂Φ
0 ∆ab→Φ(z, µr, µf ) (5.28)

where µr and µf are the renormalization and factorization scales respectively,
and fa/h1 is the parton distribution function for finding a parton a in hadron h1.
We must also remember that there is a δ(1−z) in the definition of the LO cross-
section σ̂Φ

0 . The minimum partonic energy fraction x(1,2),min is defined so that
there is enough center of momentum energy to create the desired final state
particles. A similar equation can be written for the differential distribution.
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Implicitly, the partonic cross-section contains logarithmic corrections that
are formally singular at threshold (z → 1). The differential cross-section
contains corrections that are singular as the transverse momentum of the Higgs
particle vanishes. They can be written in the form

threshold ∼ αn
s

ln2n−1(1− z)

(1− z)
, recoil ∼ αn

s

p2
t

ln2n−1 M
2
Φ

p2
t

, (5.29)

and various powers of these combinations. It can be seen then that the normal
fixed order cross-section calculation diverges (in one direction or the other) at
small pt due to large logarithms, and therefore it is not reliable in this region.
The systematic way of handling these formally divergent terms at small pt is
known as resummation. Because of this divergent behavior, one is not usually
able to integrate the differential cross-section all the way down to pt = 0
or to reliably understand the differential cross-section in the experimentally
interesting small pt region. Resummation coefficients can be determined for
both differential distributions and total-cross sections to address this problem.

5.3.1 Formalism

The resummation formalism allows the small pt cross-section to be written as
a power series in both universal and process dependent coefficients. We write
the resummed differential cross-section for a cc̄ → Φ process (where c in this
case represents a gluon or a quark)

dσresum

dp2
t dy dφ

=
∑

a,b

∫ 1

x1,min

dx1

∫ 1

x2,min

dx2

∫ ∞

0

db
b

2
J0(bpt)

× fa/h1(x1, b0/b) fb/h2(x2, b0/b)
S

Q2
Wab(x1x2S;Q, b, φ), (5.30)

with,

Wab(s;Q, b, φ) =
∑

c

∫ 1

0

dz1

∫ 1

0

dz2 C̄ca(αs(b0/b), z1) C̄c̄b(αs(b0/b), z2)

× δ(Q2 − z1z2s)
dσLO

c̄c

dφ
Sc(Q, b), (5.31)

where the Higgs mass M2
Φ = Q2, dφ is the phase space of the system under

consideration, and σ̂
(LO)
cc̄ is the lowest order cross-section with a cc̄ initial state

which is therefore defined at pt = 0. The constant b0 is written in terms of
the Euler-Mascheroni constant γE = 0.57721 . . . as b0 = 2e−γE . In the resum-
mation formalism only the gg and qq̄ initial states are needed to determine
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the hadronic differential distribution at small pt. The qg initial states are
accounted for in the cross terms in the convolution. The coefficients Cab are
process dependent and can be written as power series to be described below.
J0(bpt) is the first order Bessel function. The Sudakov form factor Sc, which
makes the integration over the Bessel function convergent, can be written as

Sc(Q, b) = exp

{
−

∫ Q2

b20/b2

dq2

q2

[
Ac(αs(q)) ln

Q2

q2
+Bc(αs(q))

]}
. (5.32)

The coefficient functions Ac, Bc, and Cab can be written as power series in αs

as

Ac(αs) =
∞∑

n=1

(
αs

π

)n

A(n)
c , Bc(αs) =

∞∑
n=1

(
αs

π

)n

B(n)
c , (5.33)

C̄ab(αs, z) = δabδ(1− z) +
∞∑

n=1

(
αs

π

)n

C̄
(n)
ab (z). (5.34)

The A
(1)
c , A

(2)
c , and B

(1)
c coefficients have been shown to be universal. There

are several conventions in the literature as to whether to expand in terms of
αs/π or αs/2π (or even αs/4π in Ref. [102]). We have chosen to expand in αs/π.
It would seem that several typos exist in the literature due to this numeric
expansion factor. We have derived the previously unknown coefficients B

(2)
g ,

C
(1)
gg and C

(2)
gg for pseudoscalar Higgs production for the total cross-section and

the C̄
(1)
gg for the differential cross-section resummation given below. Here we

must stop to address a question of notation. It is unfortunate that we have the
same notation for the resummation coefficients for both the pt resummation
and the total cross-section resummation. It would be convenient to use a
calligraphic font for the pt coefficients, but several authors have used this
font in other contexts dealing with resummation. Therefore, we will put bars
over the resummation coefficients for differential cross-sections even if they are
identical to the coefficients for the total cross-section resummation.

To determine the C̄(n) coefficients for the differential cross-section, one must
understand the meaning of the resummation formula. We can expand Equa-
tion (5.30) order by order in αs and compare to the perturbative calculation
to read off the coefficients [127]. To extract the coefficients from the pertur-
bative results, we need to integrate the differential cross-section around pt = 0
paying careful attention to the use of the Altarelli-Parisi splitting functions
near pt = 0 as follows

∆σ̂ =

∫ q2
t

0

dp2
t

dσ̂

dp2
t

. (5.35)

113



This expression will contain ε poles and virtual corrections at the next
order will be needed to be added to find a finite expression. This is demon-
strated later in this paper. One should also be careful to use this formula with
other quantities that show the same rapidity dependence. When we expand to
O(αs), we can see that the NLL coefficients emerge as follows for a cc̄ initial
state

∆σ̂cc̄ = 1 +
αs

π

[
−Ā

(1)
c

2
ln2

(
M2

Φ

q2
t

)
− B̄(1)

c ln

(
M2

Φ

q2
t

)
+ 2C̄

(1)
cc̄

]
. (5.36)

In principle, it is possible to continue this process to higher orders to obtain
the needed coefficients for the differential cross-section. The NLO corrections
to the differential cross-section are known [79, 106], however the NNLO dif-
ferential cross-section for Higgs production is currently unknown. However,
the total cross-section is known to NNLO, so the resummation coefficients
for the total cross-section can be determined to NNLL. The NLO differential
cross-section in Ref. [106] has been written in terms of the pt of the Higgs
boson for the scalar case, and could in principle be used in part to extract
the NNLO process dependent C̄

(2)
gg coefficient for the differential cross-section

for the scalar Higgs boson, advancing the resummed expressions ahead of the
fixed order calculation. This work has not yet been completed.

5.3.2 Matching

The resummation formalism is valid in the small pt region. Fixed order pertur-
bation theory is valid at moderate pt where there are no large logarithms. The
process of matching allows for a smooth transition between the two regions.
The procedure is described in great detail and clarity in Ref. [146].

One can write the differential cross-section as the sum of three terms

dσ

dp2
t dy

=
dσresum

dp2
t dy

+
dσpert

dp2
t dy

− dσasym

dp2
t dy

(5.37)

This equation is easy to understand. At low pt, we have the resummed
contribution since the latter contributions cancel. At high pt we have the per-
turbative contribution when the resummed and asymptotic cancel. At small
pt we remove the terms from the perturbative expansion that are asymptoti-
cally divergent like 1/p2

t . This allows for a smooth transition between the two
regions at all values of pt. However, extracting the divergent pieces can be
quite difficult analytically as one must express the differential cross-section in
terms of pt order by order. For a 2 → 1 process, the first order corrections have
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2 → 2 kinematics and this is relatively simple, but becomes more intractable
for the higher order corrections.

In this paper, we are interested in the new coefficient functions, and deter-
mining where the distributions peak for the different colliders, so this treat-
ment will be ignored. However, we will display the perturbative differential
cross-section to guide the eye on what the transition must look like.

5.3.3 Higgs Resummation

One of the interesting facets for Higgs production is that there is only a gg
initial state for this process in the HQET at order α3

s, so the other terms
(a qq̄ initial state) are zero explicitly. Without getting too far ahead of our
discussion, we can see that the Mellin moments of the qq̄ corrections at order
α4

s strictly vanish on threshold due to the fact that there is no qq̄ initial state
at lowest order. This makes it possible to work in z-space with little additional
effort due to the presence of the δ(1− z) terms in the C

(n)
gg coefficients, which

makes the convolution with the PDFs trivial.
An additional complication arises from evaluating the parton distribution

functions at very low scales during the convolution. This is solved by what is
known as the b? prescription [146, 147]. Here the b parameter is replaced by
b? that has an infrared cut-off bmax so that as b becomes large, b? → bmax, and
the fraction b0/b in Equation (5.30) never leaves the perturbative regime of
the parton distribution function. Over the rest of the range b? ≈ b. This can
be achieved by in the following parametrization

b? =
b√

1 + b2/b2max

. (5.38)

This construction may seem a little artificial, but it allows for the numeric
integration of our differential cross-section and allows us to use what is known
to make reasonable calculations.

In these calculations, we have set bmax = (2 GeV)−1. This is mostly deter-
mined by the limits of applicability for the PDFs implemented to obtain the
hadronic cross-section. There are other non-perturbative correction factors
that are employed [128, 129, 146], but as no data is available yet we have not
included these factors in our analysis.

It is thus possible to determine the unknown coefficients to a given order
in the resummation and preform the resummed calculation. The known co-
efficients for scalar Higgs production will be given later. To leading-log (LL)

accuracy, only the A
(1)
c term is needed. At next-to-leading log (NLL) accuracy

one needs the A
(2)
c , B

(1)
c , and C

(1)
ab coefficients. The state of the art currently
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is NNLL where the A
(3)
c , B

(2)
c , and C

(2)
ab coefficients are needed [127]. For a

scalar Higgs, these terms have been recently calculated but are missing for
a pseudoscalar Higgs. The A

(3)
g term can now be determined thanks to the

excellent recent work on the three-loop splitting functions [57,58]. Previously,
only a numeric estimate was available [148].

Let us begin by extracting the process dependent Cab coefficients for the to-
tal cross-section. To extract the formally divergent pieces of the cross-section,
consider the Mellin transform of the hadronic cross-section, σN(M2

Φ). The
N−moments in Mellin space are defined as

σN(M2
Φ) ≡

∫ 1

0

dz zN−1 σ(z,M2
Φ) (5.39)

The advantage of transforming to Mellin space is that the limit z → 1 corre-
sponds to the limit of N →∞. This allows for a systematic way of extracting
the divergent terms, which diverge as ln(N) in Mellin space.

Before continuing, we should comment on which initial state channels con-
tribute. In evaluating the the Cab coefficients in the N → ∞ limit we see
that only the gg channel has finite contributions, all the other channels have
Mellin moments are strictly zero on threshold. We could also see that in the
HQET there are no qq̄ or qg initial state that contribute at this order to the
cross-section at pt = 0. Although we have set up our formalism for the sum of
several channels, we will now consider only the gg initial state channel.

The Mellin moments of the fixed order corrections allow us to determine
the process dependent total cross-section C

(n)
gg coefficients in a simple way.

We find the Mellin moments of the fixed order corrections, ∆
(n)
ab→Φ, with the

package harmpol in form [149]. Some diverge as ln(N), most tend to zero
as N → ∞, and some finite pieces are left over. In this way, we can separate
the formally divergent pieces from the finite contributions on threshold. With
this we can identify the pt divergent terms with the ln(N) divergent terms
in the Mellin moment. We choose to absorb the extra powers of γE into our
definition of Ñ = NeγE so that we do not have spurious factors of γE in our
expressions. This seems to be appropriate as in the MS scheme the factors of
γE are also absorbed. This being noted, we will continue to write our terms
as ln(N) with no factors of γE.

Next-to-leading-log Differential Cross-section Coefficients

We are interested in determining the C
(1)
gg coefficient for the scalar and pseudo-

scalar Higgs boson. First, let us integrate the differential cross-section for the
scalar around pt = 0. We will label this contribution ‘real’ to note that this
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integral is similar to the real emission corrections to the total cross-section.
We find

∆σ̂real = σ̂H
0

(
4πµ2

r

M2
H

)ε

zΓ(1 + ε)(1 + ε)
αs

π

×
[
CA

ε2
+
β0

ε
− CA

2
ln2

(
M2

H

q2
t

)
+ β0 ln

(
M2

H

q2
t

)
+ CA − CAζ2

]
. (5.40)

We have to add the total partonic cross-section virtual correction to this
expression to cancel the ε poles. The pole proportional to the β0 gets renor-
malized into the coupling like in the total cross-section calculation. Once these
two expression are added together we find

∆σ̂ = σ̂H
0 z

[
1 +

αs

π

(
−CA

2
ln2

(
M2

H

q2
t

)

+ β0 ln

(
M2

H

q2
t

)
+ CA +

5

6
CA + 3CAζ2

)]
. (5.41)

The coefficients can now be read off and agree with the literature [123]

Ā(1),H
g = CA, B̄(1),H

g = −β0 = −
(

11

6
CA−

2

3
nfTR

)
, C̄(1),H

gg =
11

12
CA+

3

2
CAζ2.

(5.42)
As noted earlier, the pseudoscalar Higgs has different virtual corrections

from the scalar Higgs boson. This changes the C̄
(1)
gg coefficient for the pseudo-

scalar to

C̄(1),A0

gg = CA +
3

2
CAζ2. (5.43)

The pseudoscalar C̄
(1)
gg coefficient is larger that the scalar coefficient by a

factor of 1/12CA. This is a small numeric difference, and the NNLL coefficient
have not been extracted for the differential distribution, although as we will
see in the next section we might expect a larger difference to appear in the
differential C̄

(2)
gg coefficient based on the differences in the C

(2)
gg coefficients for

the total cross-section.

Next-to-leading-log Total Cross-section Coefficients

Exact expressions for the fixed order NLO corrections to scalar and pseudo-
scalar Higgs production have been in the literature for some time. Leaving
aside the Sudakov terms (A(n) and B(n)), let us examine our expressions for
the fixed order corrections to the partonic cross-section. We see that the NLO
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corrections have organized themselves in terms of constant pieces proportional
to δ(1 − z) from the soft and virtual corrections and additional logarithmic
corrections. The Mellin moment of the δ(1− z) is simply

∫ 1

0

dz zN−1 δ(1− z) = 1. (5.44)

So it is easy to see that all the constant terms proportional to δ(1 − z)

contribute to the C
(1)
gg term. Beyond these terms, the Mellin moments of the

logarithmic corrections in the limit N → ∞ can have finite pieces that also
contribute. Once the expression for the correction term has been transformed
into Mellin space, there are no terms proportional to δ(1 − z), but are only
constant terms.

In presenting the expressions for the C
(n)
gg terms, we mix the notation some-

what to allow the reader to see all the different contributions. We keep the
ln(N) pieces that are formally divergent, we separate out the terms that were
initially proportional to the δ(1−z) for convenience, and we include the terms
proportional to ln(M2

Φ/µ
2) for completeness. We have set µ = µr = µf for

simplicity. The finite pieces compose the C
(n)
gg coefficients.

In the case of the scalar and pseudoscalar

∆
(1),H
N,gg = lim

N→∞

∫ 1

0

dz zN−1∆
(1)
gg→H

= CA ln2(N)− 2CA ln
M2

H

µ2
ln(N) +

[
11

6
CA + 2CAζ2

]
+ 2CAζ2, (5.45)

∆
(1),A0

N,gg = lim
N→∞

∫ 1

0

dz zN−1∆
(1)

gg→A0

= CA ln2(N)− 2CA ln
M2

A0

µ2
ln(N) +

[
2CA + 2CAζ2

]
+ 2CAζ2, (5.46)

where the terms in the square brackets are the terms that were proportional to
the delta function in the expression for the NLO correction in Equations (5.22)
and (5.27). We have used the convention of absorbing the extra factors of γE

that appear in other expressions for the C
(n)
gg coefficients.

Next-to-next-to-leading-log Total Cross-section Coefficients

Exact expressions for the fixed order NNLO corrections to scalar and pseudo-
scalar Higgs production are known. The NNLO corrections to inclusive Higgs
production have been explicitly calculated and presented for the scalar [74,102]
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and the pseudoscalar [77,102]. Although the the color factors have been eval-
uated in [74, 77], they were found to agree perfectly with [102] once the color
factors were evaluated.

This allowed for the determination of the C
(2)
gg coefficient for both the scalar

and pseudoscalar. The scalar result was compared with the literature value
[131] and was found to be in prefect agreement once the factorization and
renormalization scales were set equal to one another and the spurious factors
of γE were absorbed. For completeness, we present the full expression, leaving
the color dependence intact and showing the ln(N) contributions.

∆
(2),H
N,gg (z) =

[
2C2

A

]
ln4(N) +

[
C2

A

(
11

9
− 4 ln

M2
H

µ2

)
− 4

9
nfCATR

]
ln3(N)

+

[
C2

A

(
157

18
+ 7ζ2 − 11

6
ln
M2

H

µ2
+ 2 ln2 M

2
H

µ2

)
− 3CACF

− nfCATR

(
10

9
− 2

3
ln
M2

H

µ2

)]
ln2(N)

+

[
C2

A

(
101

27
− 7

2
ζ3 −

(
7ζ2 +

157

18

)
ln
M2

H

µ2
+

11

12
ln2 M

2
H

µ2

)

+ 3CACF ln
M2

H

µ2
− nfCATR

(
28

27
− 10

9
ln
M2

H

µ2
+

1

3
ln2 M

2
H

µ2

)]
ln(N)

+

{
C2

A

(
3187

288
+

157

18
ζ2 − 1

20
ζ2
2 −

55

12
ζ3 +

7

8
ln

µ2

m2
top

−
[
3

2
+

11

6
ζ2 − 19

2
ζ3

]
ln
M2

H

µ2
− 2ζ2 ln2 M

2
H

µ2

)

+
9

4
C2

F −
1

6
CFTR −

5

48
CATR − CACF

(
145

24
+ 3ζ2 +

11

8
ln

µ2

m2
top

)

− nfTR

(
CA

(
1153

216
+

10

9
ζ2 − 5

9
ζ3

)
+ CF

(
3

8
− ln

µ2

m2
top

)

−
[
CA −

2

3
ζ2CA −

1

2
CF

]
ln
M2

H

µ2

)}

+C2
A

[
157

18
ζ2 +

29

5
ζ2
2 +

22

9
ζ3 −

(
11

6
ζ2 + 8ζ3

)
ln
M2

H

µ2
+ 2ζ2 ln2 M

2
H

µ2

]

−CACF

[
3ζ2

]
− nfTRCA

[
10

9
ζ2 +

8

9
ζ3 − 2

3
ζ2 ln

M2
H

µ2

]
(5.47)

The term in curly brackets all by itself was the piece proportional to δ(1−z)
in the original NNLO correction. The NNLO correction used as input for the
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Mellin moment can be found in Ref. [102]. One should carefully note that there
are terms in the coefficient that are proportional to TR, but not nfTR. These
terms come from the higher order corrections to the gH effective coupling where
only the top quark is included in the derivation of the corrections [90, 110].

One of our novel results is the C
(2)
gg factor of the pseudoscalar, which is very

similar to the scalar case. The difference between the two coefficients can be
written as

∆
(2),A0

N,gg −∆
(2),H
N,gg =

[
CA

4

(
3CF − CA

)]
ln2(N)−

[(
3CF − CA

)
ln
M2

H

µ2

]
ln(N)

+

{
CA

4

(
3CF − CA

)
ζ2 +

[
nfTR

4

(
2− CF

)

+
CA

32

(
11CF − 7CA

)]
ln

µ2

m2
top

−
[
nfTR

24

(
CA + 3CF

)
+

5

48
C2

A

]
ln
M2

H

µ2

+
nfTR

32

(
3CF −

17

3
CA − 8

)

+
CA

96

(
145CF +

5

2
TR −

223

12
CA

)
+
CF

8

(
1

3
TR −

9

2
CF

)}

+
CA

4

(
3CF − CA

)
ζ2. (5.48)

Finally, as we have the NLO corrections for each of the processes, we can
compute the B

(2)
g coefficients for each of them. The scalar case matches its

value in the literature [131] and the pseudoscalar result is new. They are

B(2),H = C2
A

(
23

24
+

11

3
ζ2 − 3

2
ζ3

)
+ nfTRCF − nfTRCA

(
1

6
+

4

3
ζ2

)
− 11

18
CFCA,

(5.49)

B(2),A0

= C2
A

(
1

2
+

11

3
ζ2 − 3

2
ζ3

)
+

1

2
nfTRCF − nfTRCA

4

3
ζ2. (5.50)

5.4 Results and Conclusions

Although we have shown the explicit differences in the scalar and pseudo-
scalar functions, they are numerically quite small. Also, as the differences in
the corrections become greater, they are suppressed more in αs, leaving the
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Figure 5.1: The transverse momentum spectrum for the scalar and pseudo-
scalar Higgs boson at the LHC for |y| ≤ 2.5. The pt distribution peaks at
approximately 15 GeV. The resummed curve is the NLL resummation, and
the perturbative curve is the NLO fixed order calculation. The NLO fixed
order calculation diverges in the negative direction at small pt. This piece of
the differential cross-section is not shown for clarity. These two curves cross
at approximately pt = 100 GeV/c and stay very close thereafter.
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Figure 5.2: The transverse momentum spectrum for the scalar and pseudo-
scalar Higgs boson at the Tevatron for |y| ≤ 2.5. The pt distribution peaks
at approximately 10 GeV. The resummed curve is the NLL resummation, and
the perturbative curve is the NLO fixed order calculation. The NLO fixed
order calculation diverges in the negative direction at small pt. This piece of
the differential cross-section is not shown for clarity. These two curves cross
at approximately pt = 80 GeV/c and stay very close thereafter.
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at higher pt with increasing Higgs mass and that the width of the resummed
distribution becomes wider with increasing Higgs mass.
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Figure 5.4: This is the scale uncertainty in the transverse momentum spectrum
for the pseudoscalar Higgs boson. The upper figure shows the variation on the
differential cross-section at its peak near 15 GeV/c over a scale variation of
an order of magnitude. The upper figure shows both the MRST and CTEQ
parton distribution function. The lower figure shows the variation over the
whole spectrum when the scale is varied by a factor of two. It is easy to see
that the largest scale uncertainty is at the peak value.
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Figure 5.5: The uncertainty due to the parton distribution functions for the
CTEQ 6.1M parton distribution functions. The resummation is done for the
gg initial state only and therefore has the largest PDF uncertainty. A qq̄ initial
state would have a smaller PDF uncertainty.
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predominant difference in the resummed cross-section is the same factor of
9/4 that appears in the LO cross-section. We are also interested in where the
resummed pt distribution peaks at the LHC and Tevatron, so we integrated
the differential cross-sections numerically for a rapidity |y| ≤ 2.5.

We implemented the MRST2002 NLO updated parton distribution func-
tions [150, 151] and the MRST2001 LO parton distribution functions [152]
in our analysis as well as the CTEQ 6.1M NLO parton distribution func-
tions [84, 153]. We have taken the renormalization and factorization scales to
be identical and set equal to µ2 = M2

Φ +p2
t . It should be noted that this choice

of scale suppresses the width of the resummation peak as pt grows due to the
running of the coupling constant becoming smaller as the scale increases, but
the effect is not a significant one. The LO cross-section “normalization factor”
in the resummation formalism also shows pt dependence for the same reason
when this scale is used.

Our numerical results for the LHC were created with
√
S = 14 TeV and

the Tevatron with
√
S = 1.96 TeV and a Higgs mass of 120 GeV/c2. We

used an NLO one-loop αs(MZ) = 0.1197 consistent with the MRST2002 NLO
updated parton distribution functions and αs(MZ) = 0.118 for the CTEQ 6.1M
NLO parton distribution functions. The pt distributions for the scalar and
pseudoscalar Higgs bosons at the LHC are shown in Figure 5.1 and Figure (5.2)
shows the same figures for the Tevatron. It would appear that in both cases
the factor of 9/4 difference in the LO cross-sections is the dominant difference
in the small pt region. The perturbative curves are from the same computer
code that generated the differential cross-sections in Ref. [102].

The average transverse momentum and transverse momentum squared at
the LHC for a 120 GeV/c2 scalar and pseudoscalar Higgs boson with pt =
0 − 80 GeV/c are < pt >' 27.5 GeV/c and < p2

t >
1/2' 32.7 GeV/c with a

peak value at 15 GeV/c. At the Tevatron the average transverse momentum
and transverse momentum squared for the scalar and pseudoscalar Higgs boson
with pt = 0 − 60 GeV/c are < pt >' 20 GeV/c and < p2

t >
1/2' 24 GeV/c

with a peak value at 10 GeV/c. These values should be used with caution as
they depend on the PDFs used in the analysis.

We are interested in what happens when a much heavier Higgs boson is
considered. This would be the case if one were interested in a heavy SM Higgs,
the heavy scalar H0 in the MSSM, or a heavy pseudoscalar Higgs. We also ran
our code for a Higgs with a mass of 250 GeV/c2. We found a few interesting
trends. The peak in the differential distribution moved to a higher pt as
expected [128] and the width of the peak became much broader. The width
of the peak is interesting because it is telling us something about the decay
width for the Higgs. The scale of the cross-section also dropped considerably
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as one would expect for a heavier final state particle. As the mass of the
Higgs became very heavy, it became hard to distinguish a discernable peak in
the distribution as it became very wide. As we can see in Figure (5.3), this
is a pronounced effect. The resummed curve becomes so broad that it does
not cross the fixed order differential cross-section until very high transverse
momentum.

There is a great deal of interest in understanding the uncertainties associ-
ated with the differential cross-section. Although it is common to look at the
scale dependence of a total cross-section for scalar Higgs production [154], we
would like to see how our results are effected by changes in the scale factor
µ and the uncertainty in the parton distribution functions for the differential
cross-section.

In Figure (5.4), the upper graph shows the scale dependence of the peak of
the distribution when the scale factor is varied by a factor of ten. The lower
graph in the same figure shows how the entire distribution changes when the
scale is changed by a factor of two. From this lower graph is it easy to see that
the peak of the distribution has the most sensitivity to the scale parameter.
We define a prefactor to our renormalization scale to allow it to be varied with
ease. We define µ2 = χ2(M2

Φ + p2
t ). When the scale factor is changed by a

factor of ten lower (χ = 0.1) the peak increased by a factor of approximately
3.1 and when the scale factor is increased by a factor of ten higher (χ = 10) the
peak of the distribution is lowered by factor of approximately 0.46. When the
scale is only varied over a more reasonable factor of two, then the peak moves
by approximately 25%. The overall scale dependence is very close to α2

s(µ)
running as expected from the σLO

0 prefactor in the resummation formalism.
Overall, we can see that the shape of the distribution is not effected greatly by
the change in the scale parameter, only its magnitude is changed significantly.

It is well known that the CTEQ gluon distribution is higher at small x
than the MRST sets which can be seen in the upper graph in Figure (5.4), but
the effect is quite small. Otherwise, the two distributions are very similar and
can be considered interchangable in this analysis.

In Figure (5.5), the uncertaity due to the parton distribution functions is
shown. At the peak of the distribution, we see an uncertainty of approximately
10%. Considering only scale variations of a factor of two would lead us to
believe that there is still approximately a 35% uncertainty in the differential
cross-section at its peak. The uncertainty would be slightly lower at other
values of the transverse momentum due to the scale µ and larger at higher
values of the transverse momentum due to the PDF uncertainty.

In this paper, we have calculated the resummation coefficients for pseudo-
scalar Higgs boson production for both the total cross-section, presenting the
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B
(2)
g , C

(1)
gg , and C

(2)
gg coefficients, and the differential cross-section, presenting

the C̄
(1)
gg coefficient. We have also shown the effects of increasing the mass of

the Higgs boson on the resummed differential cross-section and performed an
analysis of the uncertainties associated with the renormalization scale and the
parton distribution functions.
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Appendix: Harmonic Polynomials

Finding the Mellin moments of the fixed order total cross-section corrections
has been made considerably simpler with the harmpol package in form
[149]. In order to use this powerful package, it is necessary to express the
polylogarithmic expressions in terms of harmonic polylogarithms [155,156].

Harmonic polylogarithms are defined recursively in three classes for each
weight. To make this clear, let us define three functions

f(−1;x) =
1

1 + x
, f(0;x) =

1

x
, f(1;x) =

1

1− x
, (5.51)

so we can define the weight w = 1 harmonic polylogarithms as

H(a;x) =

∫ x

0

dx′ f(a;x′). (5.52)

Thus the first three harmonic polylogarithms can be written explicitly as

H(−1;x) = ln(1 + x), H(0; x) = ln(x), H(1; x) = − ln(1− x). (5.53)

For higher weight harmonic polylogarithms, we need to generalize the notation.
The w-dimensional vector ~mw should be broken into the first index and the
rest of the vector as ~mw = (a, ~mw−1). This gives us a general expression for
the rest of the harmonic polylogarithms recursively,

H(~0w;x) =
1

w!
lnwx, H(~mw;x) =

∫ x

0

dx′ f(a;x′) H(~mw−1;x
′). (5.54)

Although it is easy to find the harmonic polylogarithmic expression for the
logarithms and dilogarithms, some further work is needed for the dilogarithms
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with quadratic arguments and the trilogarithms that appear in the NNLO
corrections. The dilogarithms can be simplified in a very straightforward way
using well known relationships. To list them briefly the most useful expressions
are

−Li2(1−x2) = 2[Li2(x) + Li2(−x) + ln(x) ln(1− x2)]− ζ2 (5.55)

−Li2(1−x) = Li2(x) + ln(x) ln(1− x)− ζ2 (5.56)

Li2(x) = H(0, 1;x) = H2(x) (5.57)

−Li2(−x) = H(0,−1; x) = H−2(x) (5.58)

Fewer relationships exist for the trilogarithms. It proved to be very chal-
lenging to remove three of the trilogarithmic expressions simultaneously from
the NNLO corrections. The following expressions were derived from the poly-
logarithm literature [157,158] and are presented here for future reference (using
the notation for the Harmonic polylogarithms of Ref. [156]). That allows one
to express the NNLO corrections completely in terms of Harmonic polyloga-
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rithms,

Li3

(
+(1− x)

1 + x

)
− Li3

(−(1− x)

1 + x

)
= 2Li3(1− x) + 2Li3

(
1

1 + x

)

− 1

2
Li3(1− x2)− 7

4
ζ3

+ ζ2 ln(1 + x)− 1

3
ln3(1 + x), (5.59)

Li3

(
x

1 + x

)
=

1

6

[
ln3

(
1 + x

x

)
+ ln3(1 + x)

]
−

(
ζ2
2

+
ln2(x)

4

)[
2 ln(1 + x)− ln(x)

]

− 1

2

[
Li3

(
−1

x

)
+ Li3(−x)

]

− Li3

(
1

1 + x

)
+ ζ3, (5.60)

Li3

(
1

1 + x

)
=

1

2
ln2(1 + x) ln(x)

− ln(1 + x)

[
Li2(−x)

+ ln(x) ln(1 + x)− ζ2

]
+ ζ2

− H−2,−1(x) + ζ2 ln(1 + x)

+
1

6

[
ln3(1 + x)− 18ζ2 ln(1 + x)

]
, (5.61)

Li3

(−(1− x)

x

)
= − Li3(1− x)− Li3(x) + ζ3 + ζ2 ln(1− x)

− 1

2
ln(x) ln2(1− x) +

1

6
ln3(1− x)

− ζ2 ln

(
1− x

x

)
− 1

6
ln3

(
1− x

x

)
, (5.62)
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and,

Li3

(−(1− x2)

x2

)
= − Li3(1− x2)− 4

[
Li3(x) + Li3(−x)

]

+ ζ3 + ζ2 ln(1− x2)− ln(x) ln2(1− x2)

+
1

6
ln3(1− x2)− ζ2 ln

(
1− x2

x2

)
− 1

6
ln3

(
1− x2

x2

)
,

(5.63)

Li3(1− x2) = ln(x) ln2(1− x2) + Li2(1− x2) ln(1− x2)

+ ζ3 − 2

[
H2,1(x)− H−2,1(x)

]
, (5.64)

Li3(1− x) =
1

2
ln(x) ln2(1− x) + ln(1− x)Li2(1− x)

+ ζ3 − H2,1(x), (5.65)

Li3

(
−1

x

)
= Li3(−x) + ζ2 ln(x) +

1

6
ln3(x), (5.66)

Li3(x) = H3(x), (5.67)

−Li3(−x) = H−3(x), (5.68)

−S1,2(1− x) = Li3(x) + ln(x)Li2(x) +
1

2
ln(1− x) ln2(x) + ζ3, (5.69)

−S1,2(−x) = H−2,−1(x). (5.70)

It was also necessary to linearize all the arguments of the natural logs and
to partial fraction the inverse powers of 1− x2. With these above expressions,
it was possible to use harmpol to find the Mellin moments of the correction
factors. Although most of these expressions were verified numerically, it should
be emphasized that these expressions were derived so that they would be valid
at x ≤ 1, which is where they would be evaluated on threshold. In some
regions these expressions would pick up imaginary pieces, but since we are
interested in corrections to a partonic cross-section our expression must stay
real.

Using these expressions, the NNLO corrections in Refs. [74,77,102] can be
reduced to Harmonic polylogarithms so their moments can be easily found.

131



Chapter 6

Higgs Boson Resummation via
Bottom-Quark Fusion

We study the resummed differential cross-sections for Higgs production via
bottom-quark fusion. The region of small transverse momentum must be stud-
ied in the framework of resummation to account for the large, logarithmically-
enhanced contributions to physical observables. Resummation offers the most
reliable theoretical prediction for the transverse momentum spectrum. Knowl-
edge of the position, magnitude, and distribution about the peak of the trans-
verse momentum can help shape the details of an experimental search. Coeffi-
cients for the resummation of the total cross-section for Higgs Boson produc-
tion in bb̄ initial state processes are given in an appendix.

6.1 Introduction

Previous calculations of the resummation of total and differential cross-sections
for the inclusive production of a Higgs boson have concentrated on the gluon-
gluon initial state [106, 120–130, 159–161]. In the Standard Model (sm), the
gluon-gluon initial state gives the largest contribution to the total and differ-
ential cross-sections, but this is not always the case in extensions of the sm.
In the Minimal Supersymmetric Standard Model (mssm) the bottom-quark
fusion mechanism can be greatly enhanced. In fact, for values of tan β > 7
(which will be define below), bottom-quark fusion is the dominant production
mechanism at both the Tevatron and the LHC [134].

The transverse momentum (pt) spectrum of a particle produced in a col-
lider collision is an experimental observable that needs to be treated with care
to assure reliable predictions across a broad range of transverse momentums.
Understanding the pt-spectrum of an observed process allows for the compari-
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son of signal to background events. It can also help in improving experimental
cuts at the LHC to improve background rejection [162]. The separation be-
tween small-pt and large-pt is usually determined by the condition pt ≥ MH .
The large-pt behavior is described well by a perturbative expansion whereas
the small-pt behavior needs to be described in the framework of resummation.
The convergence of the perturbative expansion in the small-pt region is spoiled
by the presence of large logarithms that need to be systematically resummed
to all orders in αs. It is this small-pt behavior and resummation for the process
of inclusive Higgs production from botton-quark fusion that is studied in this
article.

A resummed differential cross-section reliably predicts the distribution of
small transverse momentums for a particle in a production process. This is
of great experimental interest because whereas the Higgs is easiest to identify
when it is produced with significant pt, a typical pt distribution peaks at smaller
values of the pt than are typically observed. The location of the differential
peak will be of great importance at the LHC as it is below the projected pt

threshold for a trigger event, which implies that many of the signal events
would never be recorded. The shape, magnitude, and distribution around the
peak of the pt spectrum in the small-pt region will strongly influence the details
of the experimental trigger and search strategies [163,164]. It is also important
to use the properties of the pt spectrum to separate the background from the
signal once events have been recorded.

The mssm contains two Higgs doublets, one giving mass to up-type quarks
and the other to down-type quarks. The associated vacuum expectation val-
ues (vevs) are labeled vu and vd respectively, and define the mssm param-
eter tan β ≡ vu/vd. In the mssm, there are five physical Higgs boson mass
eigenstates. In this article, we are interested in the neutral Higgs bosons
{h0, H0, A0} which we will call Φ generically.

In contrast to the sm, the bottom-quark Yukawa couplings in the mssm can
be enhanced with respect to the top-quark Yukawa coupling. In the sm, the
ratio of the tt̄Φ and bb̄Φ couplings is given at tree-level by λsm

t /λ
sm
b = mt/mb ≈

35. In the mssm, the couplings depend on the value of tan β. At leading order,

λmssm
t

λmssm
b

= fΦ
1

tan β
· mt

mb

, (6.1)

with

fΦ =




− cotα , Φ = h0

tanα , Φ = H0

cot β , Φ = A0

(6.2)

where α is the mixing angle between the weak and the mass eigenstates of the
neutral scalars. Given the mass of the pseudoscalar MA0 and tan β, the angle
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(a) (b) (c)

Figure 6.1: Diagrams needed for the bb̄ initial state resummed differential
cross-section. Figure 6.1a is the lowest order production channel and couples
differently for different Higgs bosons. Figure 6.1b is the virtual correction to
the lowest order process. Figure 6.1c is the lowest order graph contributing to
the differential cross-section. The crossed graph is not shown.

α can be determined given reasonable assumptions for the masses of the other
supersymmetric particles in the spectrum [117]. The form of fΦ shows us that
the production of the pseudoscalar due to bottom-quark fusion is enhanced
by a factor of tan2β. This makes the bottom-quark initial state an interesting
study.

Previously [161], we calculated in detail the resummation coefficients for
a differential cross-section for the scalar and pseudoscalar Higgs boson from
the gluon-gluon initial state. In this article, we will calculate the resummation
coefficients needed for the resummation of the bb̄ initial state for the scalar and
pseudoscalar Higgs bosons in the same manner as the gluon-gluon channel in
Ref. [161]. We will leave the bottom-quark–Higgs coupling set equal to the sm
value so that the reader can scale the results to whatever coupling value is of
interest.

6.2 Setup

In our analysis, we employed the CTEQ6.1M bottom-quark parton distribu-
tion [84, 165–167] with αs(MZ) = 0.118 and set the mass of the Higgs boson
MΦ = 120 GeV.

We have employed the five-flavor-number scheme counting the bottom
quark as an initial state using the bottom-quark parton distributions as en-
coded in the CTEQ PDF set. The bottom-quark distribution contains all the
collinear terms from the splitting of gluons into b̄b pairs [84,133,168–172]. This
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scheme sets the perturbative expansion as (αs log(m2
b/M

2
Φ))n and allows us to

resum these large, logarithmically-enhanced contributions.

6.3 Resummation

The result of the resummation formalism is a series of numeric coefficients
(some of which are scale dependent) that encode the small pt behavior of

the production process. These coefficients are generically labeled Ā
(n)
b , B̄

(n)
b ,

and C̄
(n)

bb̄
and are used in the differential resummation formalism [143–145] as

described below.
The basic equation for the resummation of a differential cross-section can

be written for the bb̄ intial state as

dσresum

dp2
t dy dφ

=

∫ 1

x1,min

dx1

∫ 1

x2,min

dx2

∫ ∞

0

db
b

2
J0(bpt)

× fb/h1(x1, b0/b) fb̄/h2
(x2, b0/b)

S

Q2
Wbb̄(x1x2S;Q, b, φ), (6.3)

Wbb̄(s;Q, b, φ) =

∫ 1

0

dz1

∫ 1

0

dz2C̄bb̄(αs(b0/b), z1) C̄b̄b(αs(b0/b), z2)

× δ(Q2 − z1z2s)
dσLO

bb̄

dφ
Sb(Q, b), (6.4)

where the Higgs mass M2
Φ = Q2, dφ is the phase space of the system under

consideration, and σ̂
(LO)

bb̄
is the lowest order cross-section for the bb̄ initial

state. It is important not to confuse the bottom-quark parton and the impact
parameter b in these equations. The constant b0 is written in terms of the
Euler-Mascheroni constant γE = 0.57721 . . . as b0 = 2e−γE . The coefficients
C̄bb̄ are process dependent and can be written as power series to be described
below. J0(bpt) is the first order Bessel function. The delta function before the
partonic differential cross-section in Eqn. (6.4) is a threshold condition. The
Sudakov form factor Sb, which makes the integration over the Bessel function
convergent, can be written as

Sb(Q, b) = exp

{
−

∫ Q2

b20/b2

dq2

q2

[
Āb(αs(q)) ln

Q2

q2
+ B̄b(αs(q))

]}
. (6.5)

The coefficient functions Āb, B̄b, and C̄bb̄ can be written as power series in αs

as
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Ā/B̄b(αs) =
∞∑

n=1

(
αs

π

)n

Ā/B̄
(n)
b , (6.6)

C̄bb̄(αs, z) = δ(1− z) +
∞∑

n=1

(
αs

π

)n

C̄
(n)

bb̄
(z). (6.7)

The resummation formalism needs the lowest order total cross-section as a
normalization factor, bb̄→ Φ in this case. Following Ref. [133], we will ignore
the bottom-quark mass except in the Yukawa coupling with the Higgs boson.
Although the pseudoscalar Higgs couples to quarks with a γ5, there are no
differences in the matrix elements for the different neutral Higgs bosons at
lowest order (modulo the mssm coupling factor) when the bottom-quark mass
is neglected.

It is important to use the MS running mass for the bottom-quark in
our calculation as the difference from the pole mass at the scales involved
is considerable [174, 173]. In the sm, the bottom-quark Yukawa coupling
is λsm

b =
√

2mb/v, where v is the sm vev and is approximately equal to
246 GeV and mb is the MS running mass. We have set the bottom-quark mass
mb(mb) = 4.62 GeV in our calculations. The NLO running of the bottom-
quark mass corresponds to mb(MΦ = 120 GeV) = 3.23 GeV. Because the
quark mass comes into the cross-section squared, this is a significant effect.
The coupling in the mssm can be written

λmssm
b =





−
√

2
mb

v

sinα

cos β
, Φ = h0

√
2
mb

v

cosα

cos β
, Φ = H0

√
2
mb

v
tan β , Φ = A0.

(6.8)

The spin- and color-averaged total partonic cross-section (see Fig. 6.1a) for
the leading order subprocess, bb̄→ Φ, can be easily written

σ̂sm
0 =

6π

4N2
c

m2
b

v2

1

M2
Φ

δ(1− z), (6.9)

where z = M2
Φ/ŝ, ŝ is the partonic center-of-momentum energy, and the num-

ber of colors Nc = 3. We also need the LO differential cross-section (Fig. 6.1c)
for the next-to-leading log (NLL) resummation coefficients for the differen-
tial cross-section. If we remove the δ(1 − z) factor from our prefactor σ̂0,
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then we can write the spin- and color-averaged differential cross-section for
b(p1)b̄(p2) → g(−p3)Φ(−p5) as

dσ̂

dt̂
= σ̂0

(
αs

π

)
CF

2

(
M4

Φ + ŝ2

ŝt̂û

)

= σ̂0

(
αs

π

)
CF

2

1

p2
t

[
1 + z2

]
. (6.10)

where CF = (N2
c − 1)/2Nc, and the kinematic variables are defined as ŝ =

(p1 + p2)
2, t̂ = (p1 + p5)

2, û = (p2 + p5)
2, and M2

Φ = p2
5. In the second line

of Equation (6.10), we have written the differential cross-section in terms of
ût̂ = ŝp2

t for the 2 → 2 process.
To find the resummation coefficients for a differential cross-sections [121,

123,127,161] we integrate the differential cross-section around pt = 0

∆σ̂ =

∫ q2
t

0

dp2
t

dσ̂

dp2
t

(6.11)

and label this result ‘real’ as it is similar to the real corrections to the LO
total cross-section. The qt in this integral is an arbitrary small transverse
momentum used to extract the resummation coefficients. Working in N =
4− 2ε dimensions for the bb̄→ Φ process we find

∆σ̂real = σ̂0z
αs

π

[
CF

ε2
+

3

2

CF

ε
− CF

2
ln2

(
M2

Φ

q2
t

)
+

3

2
CF ln

(
M2

Φ

q2
t

)
+ CF − CF ζ2

]
.

(6.12)
To regularize this result, we need to add the virtual corrections that are

shown in Fig. 6.1b. These corrections are very similar to Drell-Yan corrections
[175]. The virtual corrections can be written as

∆σ̂virt = σ̂0

(
αs

π

)[
−CF

ε2
− 3

2

CF

ε
− CF + 2CF ζ2

]
. (6.13)

In the Drell-Yan case, the −CF factor would be −4CF . When the two results
are added together the resummation coefficients are easily read off from the
expression. The total expression is

∆σ̂ = σ̂0z

[
1 +

αs

π

(
−CF

2
ln2

(
M2

Φ

q2
t

)
+

3

2
CF ln

(
M2

Φ

q2
t

)
+ CF ζ2

)]
. (6.14)

and we can compare this to the expansion of our expression in Equation (6.3)
in terms of the resummation coefficients

∆σ̂bb̄ = 1 +
αs

π

[
−Ā

(1)
b

2
ln2

(
M2

Φ

q2
t

)
− B̄

(1)
b ln

(
M2

Φ

q2
t

)
+ 2C̄

(1)

bb̄

]
. (6.15)
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Keeping the notation of Ref. [161], we write the differential resummation
coefficients with an overbar. We can read off the next-to-leading log (NLL)
bottom-quark resummation coefficients in the threshold limit (z → 1) as re-
quired by Eqn. (6.4) as

Ā
(1)
b = CF , B̄

(1)
b = −3

2
CF , C̄

(1)

bb̄
=

1

2
CF ζ2. (6.16)

In contrast to Z0/W± production and Drell-Yan processes [175, 146] with
quarks in the initial state, the C̄(1) coefficient is positive.

We can also determine the NNLL Ā(2) and B̄(2) coefficients. We find

Ā
(2)
b =

1

2
CF

(
CA

(
67

18
− ζ2

)
− 10

9
nfTR

)
(6.17)

B̄
(2)
b = C2

F

(
3

2
ζ2 − 3ζ3 − 3

16

)
− CACF

(
11

18
ζ2 − 3

2
ζ3 +

13

16

)

− nfCFTR

(
1

4
+

2

9
ζ2

)
(6.18)

for Ā(2) and B̄(2).
A similar study was presented in Ref. [176] that contained the differential

resummation coefficients Ā
(1)
b , Ā

(2)
b , and B̄

(1)
b . Although our notation differs

somewhat from that in the previous reference, it proved to be very useful for
comparison. There are several novel contributions in this study, including the
presentation of the Mellin moments ∆

(1)

bb̄
and ∆

(2)

bb̄
in the appendix and the

differential resummation coefficient B̄
(2)
b .

We present the full set of differential resummation coefficients Ā
(1)
b , Ā

(2)
b ,

B̄
(1)
b , and B̄

(2)
b as well as the process dependent coefficients C̄

(1)

bb̄
, ∆

(1)

bb̄
, and ∆

(2)

bb̄

with their full scale dependence. The B̄(1), Ā(1), and Ā(2) coefficients agrees
with a previous calculation as does C̄

(1)

bb̄
.

6.4 Results and Conclusions

The differential resummation coefficients and the position of the peak of the
differential cross-section is of great interest to the experimental community
involved with Higgs research at the LHC, particularly for a low mass Higgs.
In this article, we studied a Higgs with MΦ = 120 GeV using the formalism
presented in Eqn. (6.3). Here the Higgs will decay primarily into bb̄ pairs
that can be tagged. Knowing where the peak of the differential distribution
lies, especially if it is below the pt of a typical trigger event is important for
experimental searches.
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Figure 6.2: Figure 6.2a shows the errors associated with the CTEQ6.1M PDF
set. The variation is approximately 8 − 12%. Figure 6.2b show the variation
of the renormalization and factorization scale for a factor of 1/4 and 4. These
scales were chosen because there has been great interest [169–172] in the scale
µ = MΦ/4. We find this variation to be approximately 20%.
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Figure 6.3: The movement of the peak of the differential distribution (at
15 GeV) for a variation in the scale by a factor of 10.

The results of our calculations can be found in Figure 6.2. We have done our
analysis for the LHC (a proton-proton collider at

√
S = 14 TeV). We find that

the differential distribution at the LHC peaks at a transverse momentum of
approximately 15 GeV for MΦ = 120 GeV. We find that the magnitiude of the
differential cross-section is an excellent match with previously published results
[174, 176, 173]. The results for the Tevatron are similar, but are smaller by a
factor of 60 and the peak moves to a transverse momentum of approximately
13 GeV in the differential distribution. The position of the peak is dependent
on the mass of the Higgs boson. The peak moves to higher values of pt as the
mass becomes heavier.

A study of the PDF and scale uncertainties in the calculation show that
the uncertainty due to the choice of the PDF set is approximately 8 − 12%
when the entire set of CTEQ6.1M uncertainty PDFs are considered [84]. At
the peak of the distribution, the uncertainty is approximately 10% due to the
PDFs. When the scale is varied by a factor of four, we see a variation in the
differential cross-section of approximately 20%. This would give us a combined
uncertainty of roughly 30− 35%, which is slightly better than the gluon-gluon
channel [161] uncertainty in the differential distribution. However, when the
scale is only varied by a factor of two (as was the case for the gluon-gluon
channel), the total uncertainty drops to approximately 25%.
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We have calculated the resummation coefficients needed for NLL inclusive
Higgs production via bottom-quark fusion in the sm and the mssm for the
differential cross-section and for the NNLL resummation for the total cross-
section. We find a smaller uncertainty in the bottom-quark initial state than
the gluon-gluon initial state.
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Appendix: Total Cross-Section Resummation

Coefficients

Let us turn to determining the C̄(1) and C̄(2) coefficients for the total cross-
section resummation, although total cross-sections will not be presented in
this article. The total cross-section coefficients were determined in the course
of the study and will be presented here for convenience and completeness.
Care has been taken to keep both the renormalization and factorization scales
explicit in these results.

To extract the formally divergent pieces of the total cross-section, consider
the Mellin transform of the hadronic cross-section, σN(M2

Φ). The N−moments
in Mellin space are defined as

σN(M2
Φ) ≡

∫ 1

0

dz zN−1 σ(z,M2
Φ) (6.19)

The advantage of transforming to Mellin space is that the limit z → 1 corre-
sponds to the limit of N →∞. This allows for a systematic way of extracting
the divergent terms, which diverge as ln(N) in Mellin space. This allows for
the presentation of the finite and divergent pieces of the Mellin moments in a
systematic way.

Using the results of Ref. [133], we take the Mellin moments of the correc-
tions in the limit N → ∞ (z → 1 in z-space). The NLO corrections are easy
to color decompose due to the presence of only one color factor [161]. Leaving
the terms that were originally proportional to the δ(1− z) factor inside curly
brackets, we find
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∆
(1)

bb̄
=

[
2CF

]
ln2(N)+

[
2CF ln

M2
Φ

µ2
f

]
ln(N)+

{
2CF ζ2−CF +2 ln

µ2
r

µ2
f

}
+2CF ζ2

(6.20)
where we have given both the renormalization scale µr and the factorization
scale µf dependence in the results. We define the color factors in the usual
way as CA = Nc and CF = (N 2

c − 1)/2Nc.
In contrast to NLO, the NNLO corrections contain a mix of color factors

(both CA and CF appear). Although it is easy to see that the factor propor-
tional to ln4(N) should clearly be 2C2

F , no unique color decomposition from
the results provided in Ref. [133] can be determined for all the terms in the ex-
pression. However, the numeric result (here the number of light flavors nf = 5)
can be written

∆(2)

bb̄
=

[
32
9

]
ln4(N) +
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44
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− 8

27
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9
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Appendix A

Cross-sections and widths

A.1 Cross-section

The definition of a cross-section can be written in very general terms as

dσ =
1

2EAEB|vA − vB|
(∏

f

d3pf

(2π)3

1

2Ef

)

× |M(pA, pB → {pf})|2(2π)4δ(4)(pA + pB −
∑

f

pf ). (A.1)

However, this equation is usually far too general to be very useful. We
are more interested in a few special cases. Notably, 2 → 2 scattering can
be solved completely because there is no free angular dependence left to the
cross-section.

dσ

dt
=

1

16π

|M|2
λ(s,m2

1,m
2
2)
, (A.2)

where
λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, (A.3)

is known as the triangular function1 or sometimes the Källen function in the
literature. For our special case, it can also be written as

λ(s,m2
1,m

2
2) = {s− (m1 +m2)

2}{s− (m1 −m2)
2}. (A.4)

Excellent references on how to correctly understand cross-sections and the
complexity of phase space integrals as well as how to generalize cross-sections
to problems that can be solved by a computer are in the literature [11,177,178].

1
√
−λ(x, y, z)/4 is the area of a triangle with sides

√
x,
√

y, and
√

z.
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A.2 Width

The definition of a decay width of an unstable particle into several final states
can be written,

dΓ =
1

2mA

(∏

f

d3pf

(2π)3

1

2Ef

)

× |M(mA → {pf})|2(2π)4δ(4)(pA −
∑

f

pf ). (A.5)

Once again, we are mostly interested in the decay of a single particle into
two particles. The 1 → 2 decay can be written as

Γ(A→ BC) =
N

16π

λ1/2(M2
A,M

2
B,M

2
C)

M3
A

|M|2, (A.6)

where N = 1/2 if B and C are identical particles and N = 1 otherwise.
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Appendix B

The Clifford Algebra

Some Clifford algebras that we use in physics are the Pauli matrices and the
Dirac γ matrices. The Dirac matrices are often written as defined by the
space-time metric, gµν (ηµν in this work). This is not necessary however and
may confuse their relationship. A Clifford algebra is more general than the
metric.

So-called “modern” books tend to look down upon the Pauli metric (with
an imaginary fourth or zeroth component in its four vectors) as being too
old-fashioned. However, when one introduces the signed Minkowski metric to
calculations there is a choice to be made about the sign of the metric, mostly
negative or mostly positive. Most physicists tend to pick a metric and keep it
with an almost religious fervor.

Perhaps a great deal could be said as to why its important to learn about
the differences in the metrics, but the most practical is that the computer
program form does its traces and contractions in the Pauli metric. One is
free to use whatever metric is convenient as long as one understands the output
of third party programs. This is what lead to the sign error in the (g − 2)µ

calculation, a difference in the definition of the γ5 between the two conventions
that is clearly part of the form documentation.

A detailed discussion of the differences and translations between the dif-
ferent conventions can be found in Appendix B of Ref. [11] and Appendix F
of Ref. [13].
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B.1 Algebra and Group Theory

The Clifford algebra1 is introduced in the Dirac equation for a free particle in
physics,

[iγµpµ −m]ψ = 0. (B.1)

Starting in Euclidean space and the definition of the Clifford algebra,

γiγj + γjγi = 2δij1, (B.2)

we want to find all the inequivalent irreducible representations (irreps) for the
algrebra that are faithful (they are 1:1 and onto in their homotopy) under the
restrictions that

1. i = j, γ2
i = 1 (γi are Hermitian)

2. i 6= j, γiγj = −γjγi, and

3. (−1)γi = γi(−1).

There may be more than one irrep of a given group labelled by the index
ν. So we can write the dimension of the νth irrep, dν . We also know that
if we define the commutator subgroup (an invariant subgroup), C, then the
factor group G/C is abelian and the order of G/C is equal to the number of
inequivalent one-dimensional irreps.

From these restrictions, we can build a complete set of all the independent
group elements. We have

±1,
±γi, 1 ≤ i ≤ d,

±γiγj, 1 ≤ i < j ≤ d,
...

±γiγj · · · γd,

where the ± signs denote separate group elements, not one group element
with all its signs changed. In order to guarrentee that the algebra satifies
the group relations, we have to pick the representation of the group such that
D(e) = D(1) = 1. We can now count the elements to find the order of the
group,

g = 2
d∑

k=0

(
d
k

)
= 2d+1. (B.3)

1Named after W.K. Clifford (1845 − 1879). Clifford was a contemporary of Hermann
Grassmann (1809− 1877) and coined the phrase “mind-stuff.”
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d dν

2 2 Pauli matrices
4 4 Dirac matrices

6 8
...

8 16

Table B.1: Clifford algebras in even dimensions.

Furthermore, we know from group theory that the number of inequivalent
irreps is equal to the number of classes (r) and the sum of (dν)

2 for all ν is
equal to the order of the group. Now we can construct the irreps in even
dimensions (we’ll use them to build the odd dimensions in a moment). We
find

dν = 2d/2, r = 2d + 1, d = even. (B.4)

So for the first few dimensions we have the results of Table (B.1). We will
skip the proof that this irrep is faithful and simply state that it is in even
dimensions.

For the odd dimensions we find,

dν = 2(d−1)/2, r = 2d + 2, d = odd. (B.5)

This is where the problem arrises. We have two irreps that are not one-
dimensional and are left with two faithful irreps to the algebra that are not
faithful to the group. This leads to a problem defining the equivalent of the γ5

matrix in odd dimensions. By construction we can show that it would be equal
to both the identity matrix and the negative identity matrix and therefore does
not exist. Since some definitions of the γ5 involve the Levi-Cevita tensor, we
could also say that you cannot write down a completely anti-symmetric object
in an odd number of dimensions.

We conclude with writing down the explicit form for the representations
of the Clifford algebra in all even dimensions. If we remember that the third
Pauli matrix can be written as the product of the other two (σ1σ2 = iσ3), then
we are ready.

d = 2, D(γ1) = σ1, D(γ2) = σ2. (B.6)

In d = 2n dimensions we have

D(γi) = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
i−1

⊗ σ1︸︷︷︸
i

⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−i

, i = 1 . . . n, (B.7)

D(γn+i) = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
i−1

⊗ σ2︸︷︷︸
n+i

⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−i

, i = 1 . . . n. (B.8)
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If we use the same normalization as the Pauli matrices we would define
γ1γ2γ3γ4 = iγ5, which we are certainly free to do. In this respect, there is no
extra factor of i. However, several conventions exist in the literature including
the Itzykson and Zuber (or chiral) representation and the Bjorken and Drell
convention. Also, some authors count the matrices from i = 0, 1, 2, 3 and some
i = 1, 2, 3, 4.
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Appendix C

Group Theory

We will briefly review the details of the SU(2) and SU(3) groups for reference
in building SM like models.

C.1 SU(2)

The SU(2) group is the group of all unitary 2 × 2 matrices with unit deter-
minant. The group elements are defined as Ta = σa/2, where σa are the Pauli
matrices. The Lie algebra is defined as

[Ta, Tb] = −iεabcTc, (C.1)

where ε123 = +1.

C.2 SU(3)

The SU(3) group is the group of all unitary 3× 3 matrices with unit determi-
nant. These matrices are sometimes called the Gell-Mann matrices. We define
the generators Ta = λa/2 and the Lie algebra as

[Ta, Tb] = ifabcTc. (C.2)

We also have,

{Ta, Tb} =
4

3
δab1 + 2dabcλc. (C.3)

The structure constants fabc are anti-symmetric and dabc are symmetric. The
non-vanishing coefficients are listed in Table (C.1).
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abc fabc abc dabc abc dabc

123 1 118 1/
√

3 355 +1/2
147 1/2 146 1/2 366 −1/2
156 −1/2 157 1/2 377 −1/2

246 1/2 228 1/
√

3 448 −1/(2
√

3)

257 1/2 247 −1/2 558 −1/(2
√

3)

345 1/2 256 1/2 668 −1/(2
√

3)

367 −1/2 338 1/
√

3 778 −1/(2
√

3)

458
√

3/2 344 1/2 888 −1/
√

3

678
√

3/2

Table C.1: Non-vanishing SU(3) structure constants.
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Appendix D

Loop Integrals

Radiative corrections rely on our ability to do loop integrals. Loop integrals are
done by first combining the denominators of an integral and then decomposing
the resulting expressions into scalar integrals.

D.1 Feynman parametrization

In order to use many of the results in dimensional regularization, one must
first combine the denominators in a loop integral into one denominator. This
is done through the introduction of Feynman parameters.

For two denominators, it is very easy to show that,

1

AB
=

∫ 1

0

dx
1

(Ax+B(1− x))2
, (D.1)

which can be proved simply by calculating the integral. For three denomina-
tors, we have the expression,

1

ABC
= 2

∫ 1

0

dx

∫ 1−x

0

1

(Ax+By + (1− x− y)C)3
. (D.2)

This can be generalized, and proven by induction, to the formula,

1

Aα1
1 A

α2
2 · · ·Aαn

n

=
Γ(α1 + α2 + · · ·+ αn)

Γ(α1)Γ(α2) · · ·Γ(αn)

×
∫ 1

0

dx1 · · · dxn
xα1−1

1 xα2−1
2 · · ·xαn−1

n δ(1− x1 − x2 · · · − xn)

(x1A1 + x2A2 + · · ·+ xnAn)α1+α2+···+αn
.

(D.3)
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D.2 Tensor Reduction

We also need to decompose our integrals into scalar integral by removing all
the free tensor indices in the numerator. This is often a very error-prone task
that can only be completely done on the case of one loop diagrams. Two loop
diagrams need a different method to be solved.

Simply put, all the tensor indices are contracted with the basis vectors
available (the particle momenta in our case) and expanded in terms of unknown
functions which are then solved for by means of Gram determinants. More
information can be found in Ref. [114].
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Appendix E

Mathematical Reference

Many special functions appear in particle physics. Here we collect some of
their properties as a reference tool.

E.1 Euler Gamma

To see the poles of the Gamma function, consider this definition by Euler,

Γ(z) = lim
n→∞

1 · 2 · 3 · · ·n
z(z + 1)(z + 2) · · · (z + n)

nz. (E.1)

Γ(1 + z) = zΓ(z) (E.2)

Γ(n) = (n− 1)!, n integer (E.3)

Γ(1/2) =
√
π (E.4)

Euler-Mascheroni constant1

γe = lim
n→∞

1 +
1

2
+

1

3
+ · · ·+ 1

n
− lnn = 0.577215 . . . (E.5)

E.2 Beta function

B(p, q) =
Γ(p) Γ(q)

Γ(p+ q)
(E.6)

1Although this constant has been calculated to thousands of decimal places, the fraction
228/395 is good to six decimal places.
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E.3 Dilogarithms

Integration of Feynman parameters often lead to Dilogarithms. The best ref-
erences on Dilogarithms are Refs. [157,158].

Li2(z) =
z

12
+
z2

22
+
z3

32
+ · · · , |z| ≤ 1 (E.7)

= −
∫ z

0

dz
ln(1− z)

z
(E.8)

E.4 Expansions

Γ(1 + ε) = 1− γeε+
1

2

(
γ2

e + ζ2

)
ε2

− 1

6

(
γ3

e + 3γeζ2 − ψ(2)(1)

)
ε3 + · · · (E.9)
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Landau pole, 15
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Nambu-Goldstone theorem, 9
neutrino masses, 4

physical observable, 39, 55
physical observables, 87

QCD, 24–30
quark model, 24

renormalization, 27
resummation, 40, 111–120

Higgs, 115–120, 135–138
matching, 114

Standard Model, 2, 88
Lagrangian, 2, 19

supersymmetry, 41

Ward-Takahashi identities, 24, 85
weak mixing angle, 12
Wigner-Weyl symmetry, see exact

symmetry

Yukawa coupling, 13
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