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Abstract:

I study the exchange between a boundary current and flanking horizontal
recirculations in a 'sliced-cylinder' rotating tank laboratory experiment. Two flow
configurations are investigated: a single recirculation and a double, figure-8, recirculation.
The latter case involves a hyperbolic point, while the former does not. I investigate the
stirring and mixing under both steady and unsteady forcing.

I quantify the mixing in each case using effective diffusivity, KC~, and a corollary

effective length, Le, as derived by Nakamura (1995, 1996). This approach involves

diagnosing the geometric complexity of a tracer field. Geometric complexity is indicative
of advective stirring. Because stirring creates high gradients, flows with high advective
stirring also have high diffusion, and stronger overall mixing. I calculate effective length
from images of dye in the tank and find much higher values of Leff in the unsteady
hyperbolic cases than in the other cases.

Slight unsteadiness in flows involving hyperbolic points gives rise to a chaotic
advection mechanism known as 'lobe dynamics'. These lobes carry fluid in and out of the
recirculations, acting as extremely effective stirring mechanisms. I demonstrate the
existence of these exchange lobes in the unsteady hyperbolic (figure-8) flow. The velocity
field in the tank is calculated utilizing particle image velocimetry (PIV) techniques and a
time series U(t) demonstrates the (forced) unsteadiness in the flow. Images of dye in the
tank show exchange lobes forming at this same forcing period, and carrying fluid in and
out of the recirculation.

Based on the results of these experiments, I am able to confirm that, at least in this
controlled environment, basic geometry has a profound effect on the mixing effectiveness
of a recirculation. I demonstrate radically increased stirring and mixing in the unsteady
hyperbolic flow as compared to steady flows and flows without hyperbolic points.

Recirculations are ubiquitous in the world ocean; they occur on a variety of scales,
in many different configurations, and at all depths. Some of these configurations involve
hyperbolic points, while others do not. Chaotic advection via lobe exchange may be an
important component of the mixing at multiple locations in the ocean where hyperbolic
recirculation geometries exist.

Thesis Supervisor: Larry Pratt
Title: Senior Scientist, Physical Oceanography Department, Woods Hole Oceanographic
Institution





I. Introduction:

The motivation for this work came from the realization that some basic recirculation

geometries associated with enhanced mixing due to chaotic advection appear in multiple

locations in the oceans. Analytical and numerical studies of geometries involving

hyperbolic points have highlighted the importance of a chaotic advection mechanism known

as 'lobe dynamics' (e.g. Rom-Kadart, et al. 1990, Wiggins 1992, and Miller, et al. 1997).

Hyperbolic geometries arise wherever recirculations (of the same sign) occur next to each

other. Exchange lobes arise whenever a flow with a hyperbolic point becomes slightly

unsteady. These lobes carry fluid in and out of the recirculations, acting as extremely

effective stirring mechanisms. Because stirring creates high gradients, flows with high

advective stirring also have high diffusion, and stronger overall mixing. Lobe exchange

may be an important component of the mixing at multiple locations in the ocean where

hyperbolic recirculation geometries exist.

Recirculations are ubiquitous in the world ocean; they occur on a variety of scales,

in many different configurations, and at all depths. Some of these configurations involve

hyperbolic points, while others do not. There appear to be a series of recirculations along

the course of the Deep Western Boundary Current (DWBC)' in the North Atlantic and these

were the particular features that sparked my interest. In some locations two or more

recirculations line the course of the DWBC, with hyperbolic points between each pair.

These recirculations may have a profound effect on the path a parcel of deep water takes

along the boundary (Fine, 1995). We would like to understand the effects of the

recirculations in order to more fully describe the information pathways and delay times in

the abyssal oceans and their role in the Meridional Overturning Circulation (MOC). In

addition to this particular deep application, many questions remain about the effects of

surface or mid-depth recirculations in the oceans. I wondered whether I could say

something about the mixing that would occur in the region of a recirculation based on

whether or not the basic geometry involved a hyperbolic point.

I study the exchange between a boundary current and flanking horizontal

recirculations with and without hyperbolic geometries. Based on the results of a series of

I use 'dwbc' or 'dbc' to specify the general phenomenon of deep (western) boundary currents and 'DWBC'
to specify the Deep Western Boundary Current in the North Atlantic.



laboratory experiments, I am able to confirm that, at least in this controlled environment,
basic geometry has a profound effect on the mixing effectiveness of a recirculation.

I use a 'sliced-cylinder' rotating tank to produce the boundary current and

recirculations in the laboratory. The single layer of fluid displays a slow interior flow and a
fast 'western' boundary current due to the stress of a differentially rotating lid and the

topographic beta effect of a sloped tank bottom. At low lid rotation rates a single 'Munk'

recirculation lies between the boundary current and the interior (Figure Ila). At higher

forcing a second, 'inertial' recirculation forms 'north' of the first, resulting in a double

recirculation, figure-8, geometry with a hyperbolic point (Figure Ilb). I investigate both

steady and unsteady cases (the unsteady cases are forced by adding a slight oscillation to

the lid rotation).

I diagnose mixing in each case using effective diffusivity, ic' , and a corollary

effective length, L , as derived by Nakamura (1995, 1996). This approach involves

diagnosing the geometric complexity of a tracer field. Geometric complexity is indicative

of advective stirring, and strong stirring results in increased diffusive mixing. This has
been demonstrated numerically by Nakamura (1996) and employed by Nakamura and

others to diagnose mixing in the atmosphere (Nakamura 1995, Nakamura & Ma 1997,
Haynes & Shuckburgh 2000). In this work I calculate effective length from images of dye

in the tank.

In addition, I demonstrate the underlying lobe dynamics that I believe account for
the higher effective diffusivity in the flow with a hyperbolic point. The velocity field is
calculated utilizing particle image velocimetry (PIV) techniques, and a time series U(t)
demonstrates the (forced) unsteadiness in the flow. Images of dye in the tank show
exchange lobes forming at this same forcing period, and carrying fluid in and out of the
recirculation.

I am not attempting to model a particular geographical region, but instead to
investigate generic flow geometries that occurs in many locations. (In the section on

oceanographic observations I highlight the shared characteristics which contributed to our
choice of geometries.) I do not investigate the cause of these deep recirculations, but rather
attempt to elucidate their effects. I essentially create a model in the laboratory tank, and

study the fundamental differences between two generic recirculation configurations.

My final goal is to learn something about the nature of exchange between the wbc,
the recirculation(s), and the interior. What can I say about the mixing along the edges of



the recirculation(s)? Are particles more likely to exit back into the boundary current or into

the interior flow to the east? How quickly and effectively do recirculations homogenize

fluid trapped inside? How does altering the geometry of the recirculation region affect the

mixing characteristics of the flow? What are the dynamics that underlie the mixing?

The rest of this work is presented in the following way. Sections II-III present

background information and relevant oceanographic observations of the deep

recirculations. In section IV I outline the theory of lobe dynamics, which combined with

the observations determined our choice of flow geometries. Section V includes

background information on our laboratory apparatus and procedures. The velocity

calculation and dye pictures depicting the exchange lobes are presented in sections VI and

VII, respectively. Section VIII contains the calculations of effective diffusivity, with

further notes on the effects of the exchange lobes. In Section IX I summarize my findings

and suggest directions for further work in the laboratory. In addition I briefly discuss the

relevance to oceanographic situations and possible ways to incorporate the concepts of lobe

dynamics and effective diffusivity into analysis of oceanographic observations.



Figure Il: Schematic illustration of the two recirculation configurations investigated. Panel
a: a single recirculation lies between a western boundary current and an interior flow. In
the laboratory this 'Munk' recirculation represents the non-hyperbolic case. Panel b: a
double, figure-8, pair of recirculations. This is obtained in the laboratory in a flow regime
where the Munk recirculation and an 'inertial' recirculation coexist. A hyperbolic point is
visible where the streamlines outlining the recirculations intersect.
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II. Background:

Diagnosing the mixing around all types of recirculations is important, but

understanding the recirculations along the deep boundary currents is an especially difficult

and significant problem. This is because the deep boundary currents and surrounding

features comprise the lower branch of the Meridional Overturning Circulation (MOC) 1.

This circulation consists of the poleward transport of warm water near the surface and the

equatorward flow of cold water at greater depths. The transformation of this surface water

into deep water requires rare atmospheric and oceanic conditioning, and thus occurs

sporadically and in only a few locations. It is the deep boundary currents that transport both

this newly ventilated water and older deep waters throughout the world oceans.

The question of the content and characteristics of the deep transport system is

especially important because these deep currents carry information about the climate

conditions at the time of their formation and will eventually feed back this information into

the world's surface waters. As this water upwells thousands of years later it will affect all

sorts of systems from biological communities to weather patterns and the global climate.2

We would like to understand the information pathways and delay times in the abyssal

oceans so that we can describe and predict the Meridional Overturning Circulation more

completely.

One analogue to these laboratory experiments is the important, but little understood,

horizontal recirculations that flank the paths of the deep boundary currents. The most well-

studied part of the deep ocean is the North Atlantic, and throughout this region

investigators have identified deep boundary currents lined by recirculations of various sizes

(McCartney 1992, Schmitz & McCartney 1993, Johns, et al. 1997, Lavender, et al. 2000).

(see figures 01, 02, 03) Although for a combination of historical, political, social, and

economic reasons, much less work has been done in the other oceans, some of the

observations along other dwbcs indicate similar patterns. (for Pacific flows see Wijffels,

etal. 1998. For South Atlantic flows see Stephens & Marshall 2000 and Spall 1994)

I adopt Munk and Wunsch (1998) suggestion and use the term Meridional Overturning Circulation (MOC)
instead of Thermohaline Circulation. The authors hold that since the forcing of this vertical overturning
circulation is not necessarily exclusively thermohaline, the MOC is a more appropriate term.
2 The time it takes deep water to upwell and effect surface waters is still not well known, in the case of
some water that transits the world oceans, it could be much longer than 0(1000) years. For newly formed
water in the 'shallow' branch of the DWBC, the time could be much less than 0(1000) years.



There are a number of ways in which recirculations may affect the transport of deep
water and its interaction with other waters. Recirculations presumably modify both the time

it takes a water parcel to move along the boundary and the exposure of that parcel to other
water masses. Parcels of water which peel off from a wbc into a recirculation and spend
some period of time 'trapped' there before returning to the core flow take a much longer

time to move along the boundary. In addition they are exposed to a different mixing
environment than they would have been otherwise; both the mixing intensity and
neighboring water masses are presumably different due to the presence of the recirculation
(Fine 1995).

Recirculations could therefore explain the disparity between the travel time one
expects along the boundary from direct current measurements and the age of the deep water
along its track as indicated by tracer fields (Fine, ibid.). Recirculations also seem to
explain the regions of homogenized characteristics found at various locations alongside the
dbcs (Fine, ibid.). In addition, the spatial distribution of vertical mixing in the oceans is
still largely unknown, and recirculations may play some role in determining that pattern.
An extreme example arises in the mid-depth water of the Labrador Sea. Various
investigators have postulated that deep convection occurs in particular locations because
water is trapped there for some time by horizontal recirculations. The air-sea dynamics
work more effectively on this trapped water, conditioning it for convection through cooling
(Clarke & Gascard 1983 and Lavender, et al. 2000).

We would like to answer some basic questions about this type of recirculation.
How much time is a parcel likely to spend trapped in a recirculation? Are trapped parcels
more likely to end up exiting into the interior flow or into the boundary current? How
quickly and effectively do recirculations act to homogenize any fluid trapped inside? Do
recirculations with certain underlying geometries tend to entrain and mix more than others?
What are the mechanisms by which all of this exchange occurs? We must find answers to
these questions before we can build even a basic understanding of the deep branch of the
meridional overturning circulation.

Diagnosing the rate of feedback via the deep transport system is especially

important because deep water formation is highly time dependent. For example, during the
early 1990s there was extremely high production of Labrador Sea water in the northern

North Atlantic. A series of observational studies have tracked this strong pulse of newly
formed deep water as it has propagated down the course of the DWBC which hugs the



coast of North America (Curry, et al. 1998 and Molinari, et al. 1998). Others have

investigated the interplay between this formation event and the variability in other deep

water types (i.e. overflow water, etc. see Pickart, etal. 1999). While still others have

investigated the connection between the strength of deep water formation and the strength

of the overturning circulation (Mauritzen & Hakkinen 1999 and Munk & Wunsch 1998).

In order to fully understand the long term affects of the time variability in the MOC we

must be able to predict when anomalous signals will affect the surface properties of the

oceans. This requires piecing together a better understanding of the deep transport system.

If we clearly diagnose the delivery system, we may be able to develop powerful predictive

capabilities.
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III. Oceanographic Observations:

In terms of oceanographic observations I define a horizontal recirculation as a

region where some offshore (or occasionally inshore) return flow transports water derived

from the boundary current water as shown schematically in Figure II. In many cases deep

recirculations have been postulated based on characteristics of the deep boundary current

(dbc) in some region (i.e. otherwise inexplicable changes in transport and or tracer signals

along a section of the boundary current). In most locations return flow has not yet been

measured. In a few cases the return flow has been measured and I describe these cases

below. This physical evidence is often bolstered by details of tracer distribution, which can

indicate recirculations where tracer signals characteristic of the boundary current stretch

toward the interior. These signals can be interpreted as indicating the area of a recirculation

adjacent to the boundary current (e.g. Fine and Molinari, 1988).

Tracer data has also indicated some large-scale effects which have been linked to

recirculations. Namely, the tracer-derived ages for the Deep Western Boundary Current are

much older than the time it would take a parcel to move along the boundary at the observed

current velocities. In her review of relevant tracer measurements, Fine (1995) notes that

the tracer-derived DWBC velocities are 0(1 cm/s) while the observed DWBC velocities are

0(10-50 cm/s). Despite high uncertainty in the tracer-derived ii, this order of magnitude

difference indicates that either significant mixing or horizontal recirculation (or more likely,

both) are involved in the transport of parcels along the boundary.

The deep recirculations seem to occur on a variety of scales and for various

reasons. Many of the smaller 'meso-scale' recirculations, 0(100-400 km), appear to be

due to interactions of the flow with local topography, but the dynamics of other meso-scale

recirculations are mysterious. The larger, 'basin-scale' recirculations, 0(500-1000) km,

fill many of the abyssal plains which comprise the deep ocean floor. In the North Atlantic,

these abyssal plains typically stretch from the continental margin to the mid-ocean ridge in



the zonal direction and are bounded in the meridional direction by smaller ridges or other

topographic barriers. In some locations there appear to be both meso-scale and basin-scale

recirculations in play, with some dbc water recirculating close to the boundary and some

recirculating much further from the boundary. In all of these locations there is some net

throughflow along the boundary in the deep boundary current, but the characteristics of the

water that exits the region may be strongly affected by the presence of the various

recirculations.

The majority of the observations recounted here supply indicative, but not

conclusive, evidence of recirculations. In a few cases, repeated sets of measurements of
different kinds (moorings, hydrographic surveys, floats, and tracers) provide a

preponderance of evidence for recirculation along the DWBC. The most well documented

case of a recirculation abutting a deep boundary current is in the Abaco region - 24-30N in
the western Atlantic. I review the work in this region below, after summarizing some

observations in other areas.

Recent work in compiling float data into Eulerian fields in the Irminger and

Labrador Basins has highlighted meso-scale cyclonic recirculations that are embedded in

the larger, basin-scale looping of the DWBC as it enters and leaves each basin (Lavender,

et al. 2000). The streamlines of this flow are reprinted by permission in Figure 01. The

authors were able to diagnose the mean, mid-depth, horizontal circulation by compiling

drift results from 200 PALACE and SOLO floats at 400, 700, and 1500 m depth. The

resulting velocity field contains a series of cyclonic recirculations with the return flow in the

interior -1/4 the speed of the boundary currents, which is 12 cm/s maximum, and the total
width of the recirculations is 0(1-2) times the width of the boundary current. The highest

velocities and the only clear time dependence (an annual signal in the transport) occurred in
the cyclonic gyre north of the Flemish Cap (50N, 47W) and the figure-eight pair of
recirculations east of Greenland (61N, 37W). Current meter results also show indications
of return flows offshore of the Labrador and Greenland currents (Pickart, et al. 2000 and

Clarke & Gascard 1983).

Lavender, et al. 2000 also note other phenomena associated with these

recirculations. This first is that deep mixed layers and sluggish velocities 0(1.5 cm/s)

occurred during winter time in the region of a cyclonic recirculation in the western Labrador

sea near 56.5N. This is a region where other investigators have found Labrador Sea Water



formation (Pickart, 1998). These results support the suggestion by Clarke and Gascard

(1983) that deep water could be formed in a localized, offshore, cyclonic recirculation.

The second note is that extremely complex trajectories were found near the Flemish

Cap. There are multiple flow components here, as the Labrador Current looping around

the Cap from the north encounters the North Atlantic Current entering the region from the

southwest. The float trajectories from the middle and deep layers bifurcate in this region,

some recirculating north back into the Labrador Sea, a number heading east towards the

Mid-Atlantic Ridge, and one continuing south (presumably in the core of the DWBC). The

resulting "rapid exchange between the boundary current and offshore waters" (Lavender, et

al. 2000, p.68) may be due to a hyperbolic point where the interior recirculation of the

Labrador Sea encounters the larger-scale flow.

A number of basin-scale recirculations have been proposed, and some of these are

shown schematically in Figure 02. I have sketched this cartoon based on the work

outlined below; I have reprinted the bottom topography (with permission) from McCartney

(1992). Examples include a recirculation consisting of both DWBC water and Antarctic

Bottom Water (AABW) in the Guiana basin and a series of recirculations of AABW and

Iceland-Scotland Overflow Water (ISOW) in the basins of the eastern North Atlantic (Van

Aken 2000; McCartney 1992; Johns, et al. 1993; Schmitz & McCartney 1993).

Investigators have proposed multiple explanations for the existence of these recirculations,

including large-scale topographic beta effects, instability of the boundary current, and

specified, non-uniform upwelling. (Nof & Olson 1993; Speer & McCartney 1992; Kawase

1993; Spall 1994).

McCartney (1992) employs hydrographic stations in the Madiera Basin to identify

northward flow in the east at 2.2 Sv with a return flow southward in the west of 0.6 Sv,

resulting in 1.6 Sv of throughflow of the coldest bottom water. Further north McCartney

(1992) combines multiple hydrographic studies and a few current meter results in his

diagnosis of 3.9 Sv flowing northward along the eastern edge of the West European basin

with 1 Sv recirculating at the western edge of that basin.

Further work with inverse models (Gana and le Provost, 1993) and detailed water

mass composition analysis (Van Aken, 2000) has bolstered the evidence for these cyclonic

recirculations. Van Aken (2000) substantiates evidence for recirculations in Madiera and

West European Basins by tracking the southward influence of ISOW (Iceland-Scotland



Overflow Water) as far south as the Madiera Basin at 30N, and proposes a similar feature
in the Iberian Basin.

In addition to these large scale recirculations, the deep boundary current in the
North Atlantic is characterized by huge meanders or intrusions into the subpolar basins. In

all four northern basins (Rockall Trough, Iceland Basin, Irminger Basin, and Labrador

Sea) McCartney (1992) identifies the signature of deep boundary current water looping in
and out of the basins in a cyclonic manner. He does not identify these loops as closed
recirculations, but more recent work indicates a closed recirculation is likely in the Iceland
Basin (personal communication, Cecilie Mauritzen).

Another basin-scale recirculation (possibly made up of a series of recirculations)

was predicted between the equator and 30N in the western Atlantic by Schmitz &

McCartney 1993. This would involve both NADW and AABW contributing to a cyclonic
recirculation, with northward flow along the western flank of the mid-ocean ridge and
southward flow (in the DWBC) along the continental margin. Observational work in
progress (Guiana Abyssal Gyre Experiment, McCartney and Mauritzen, co P.I.s) aims at
directly measuring the northward flow. There are also indications of basin-scale

recirculating components in the Canary Basin/Gambia Abyssal Plain and Brazil Basin.

(Stephens & Marshall, 2000).

In addition to these deep recirculations, there are many surface intensified

recirculations, some of which have very deep signatures stretching almost throughout the
entire water column. Examples include: the Great Whirl in the Gulf of Aden off Somalia,
the Mann Eddy in the Newfoundland basin, the Alboran Gyre north of Morocco in the

Mediterranean Sea, the inertial gyres that lie on either side of the Gulf Stream between
Cape Hatteras and Grand Banks and a similar, but smaller, feature to the south of the
Kurishio. Many investigators have studied the recirculations on either side of the Gulf
Stream, including the entrainment of the DWBC water as it passes through the region
(Hogg, N.G. 1992, Spall 1996 (I&II), and Bower and Hunt 1999 (I&II)). The

recirculations in this region are extremely complex due to the interaction of intense

boundary currents traveling in different directions at different depths, and presumably

involve a number of hyperbolic points, so that chaotic advection may play an important role
in the regional mixing.

MESO-SCALE CASE STUDY: ABACO



The Abaco area east of the Bahamas is a well studied region that demonstrates the

complex structure of the DWBC. The results from a long-standing current meter array

across the DWBC at 26.5N demonstrated a surprisingly high total transport which hinted at

an offshore recirculation (Lee, et al. 1996). Additional work, in the form of hydrographic

and chemical tracer surveys, PEGASUS current profiles, moored measurements,

dropsondes, and RAFOS floats, has refined our understanding of the circulation in this

region (Fine & Molinari 1988; Leaman & Vertes 1996; Johns, et al. 1997). This work has

elucidated meso-scale recirculations and hinted at basin-scale recirculations that contribute

to the high mass flux along the boundary. The many types of measurements in this area

have allowed investigators to state with confidence that this region is characterized by

enhanced advective and diffusive mixing: "the DWBC recirculation gyres, and enhanced

mixing due to topographic influences, appear to be an effective means for ventilation of the

interior and dilution of the DWBC tracer concentrations" (Johns, et al. 1997, p. 2206)

Figure 03 presents approximate streamlines in the region showing the local, meso-scale

recirculation (panel a from Johns, et al. 1997, reprinted with permission) and the bottom

topography in the region (panel b from Leaman and Vertes, et al. 1996, reprinted with

permission, I have added a bold line at the 4500m isobath).

Lee, et al. (1996) present the cumulative data of 5.8 years of moored current meter

measurements from a section along 26.5 N. They calculate a total southward transport of

40 +/- 13 Sv (Sv = Sverdrup is defined as a million cubic meters) in the DWBC.' Of this

total southward boundary flow, they approximate 27 Sv must recirculate somewhere in the

western North Atlantic, as only 13 Sv is required to balance the Meridional Overturning

Circulation at this latitude.

Johns, et al. (1997) detail the portion of this 27 Sv which is recirculated locally in a

meso-scale recirculation (Figure 03a). This recirculation, which the authors diagnose as

carrying 12 Sv, spins most strongly over a 'bump' in the bottom topography which is the

southern extension of the Blake Bahama Outer Ridge (Figure 03b). This bump lies

This total transport was obtained by selectively removing data from periods when the DWBC was in an

offshore position. Their moored array, which stretched to 85 km offshore for most of the 5.8 years, and to

125 km offshore for the last two year deployment, did not capture the full core of the DWBC during these

offshore excursions. (They find the DWBC 'offshore' 32% of the time). They attribute these offshore

excursions to interactions with westward propagating baroclinic Rossby waves with a period of 70-100

days. They also find inshore recirculations of northward flow during these periods when the DWBC is

located further offshore 0(100 km).



between 74-74.5W and 26-29N. The cyclonic gyre stretches from 75.5W-74W (300 km)
and from 25N-29.5N (500 km). Embedded within this recirculation are two smaller

features 0(100 km) which transport 4-8 Sv each.

Tracer signals in the region also support the local recirculation hypothesis, with a

CFC minimum in the DWBC at the depth of the recirculation (indicating dilution by
recirculating interior waters) and high CFC and tritium signals stretching into the interior.

(Fine 1995; Johns et al. 1997). The tracer signals characterizing DWBC water are clearly

found in the cyclonic recirculation where "high but patchy" CFC concentrations suggest "a

complicated mixing zone tending toward homogenization" (Johns, et al. 1997, p. 2198).

Lee et al. (1996) also report time dependence with high energy in the 70-100 day

period resulting in meandering of the DWBC core. The DWBC meanders from an
'onshore' position 0(50 km) from the boundary to an 'offshore' position 0(150 km) on a

time scale of 30-150 days. In addition to the variable location, the transport of the DWBC
core shows a clear annual cycle, which Lee, et al. explain as a barotropic response to

remote wind forcing.

Leaman and Vertes (1996) deployed a total of 23 floats into the three levels of
interest in the DWBC and their findings confirm the existence of a local cyclonic

recirculation during both phases of the DWBC meanders. This indicates that the time

dependence in the core position does not destroy the offshore recirculation. They found
floats moved along the boundary at high velocities (u > 40 cm/s) in the DWBC core, but

were often detoured into recirculations, so that, on average floats moved along the

boundary at 1.97 +/- 0.19 cm/s (which is similar to the tracer-derived speeds and smaller
than the core speeds observed in the DWBC by an order of magnitude).

The authors further found that the San Salvador Spur plays a vital role in steering

the flow. Much like in the region of the Flemish Cap mentioned above, Leaman and Vertes
(1996) found complicated float paths in the region which indicate high eddy activity and

mixing in the flow. Almost all of the floats shoot out from the boundary as the DWBC

rounds the Spur and as they do so their paths bifurcate, with floats North of 24.4N

recirculating North and neighboring paths, just south of this point veering South. They
attribute this evidence of a hyperbolic point in the ocean to a hyperbolic or 'saddle' point in

the local topography.

In addition to fully investigating this meso-scale feature, Johns, et al. (1997)
identify deep flows that suggest connections to basin-scale recirculations. They identify



water that they believe to be DWBC water that was deflected at the Gulf Stream/DWBC

crossover and recirculated in the southern inertial gyre before exiting the recirculation and

joining back up with the DWBC within the study region. They also note a water mass

which may be part of the large-scale recirculation gyre suggested by Schmitz and

McCartney (1993). As noted above, this large scale recirculation composed of NADW and

AABW (or a series of smaller recirculations) would stretch from the equator to 30N. These

elements summed with the meso-scale recirculations would explain the large total long-time

flux in the boundary current found in the initial WOCE study.

The important note here is that the underlying geometry of this flow entails an

offshore recirculation with two embedded recirculations forming a 'figure-eight' within the

larger closed streamlines. As noted in the introduction, this configuration results in a

saddle point or hyperbolic point between two recirculations. This double recirculation

geometry is one of the configurations I study in the laboratory tank. There is also strong

observational evidence for hyperbolic points in the flow where this local meso-scale

recirculation meets the interior flow, particularly at the San Salvador spur.

For our purposes the most important observations of this recirculation include its

size, transport, and stability. The approximate width of this mesoscale feature is 200-400

km (including the full width of the boundary current in the west). The meridional length-

scale is 300-500 km. The embedded recirculations are 0(100 km). The transport is around

12 Sv, with an additional 4-10 Sv due to embedded recirculations. Velocities are

approximately 20 cm/s in the DWBC and 4 cm/s in the offshore return flow over the

Bahama Ridge.

The stability of the feature is uncertain; when the DWBC core moves offshore an

inshore recirculation develops and the measurements of the offshore recirculation during

those times are sparse. Nevertheless, it appears from float tracks that the offshore cyclonic

recirculation is a persistent feature. The period of these DWBC excursions is on the order

of 70-100 days. Which is comparable to a typical 'winding' period 0(150 days) 2 for a

parcel to circulate once around this meso-scale feature. There is also an annual variability

in the DWBC transport: the mean transport is diagnosed at 40 Sv with an annual variation

of +/- 13 Sv.

2I approximate the winding time, T = 0(150 days), by assuming a total path of 800 km, 400 km along the

DWBC at 20 cm/s and 400 km in the interior at 4 cm/s.



SUMMARY OF OBSERVATIONS:

I have noted basin scale recirculations in the Madiera, West European, and Iberian

basins in the eastern North Atlantic. There may also be closed recirculations as the DWBC

loops in and out of the four northern basins of the Atlantic (Rockall, Iceland, Irminger, and

Labrador). In addition to the regions mentioned above, there appear to be basin-scale

recirculations in the Brazil basin and the Guiana basin in the tropical western Atlantic and

there are some indications of recirculating components in the Canary Basin/ Gambia

Abyssal Plain.

The evidence for a meso-scale recirculation off Abaco (25-30N) is now very

strong, while more recent work indicates a chain of meso-scale recirculations in the

Irminger and Labrador basins. Leaman and Vertes (1996) suggest the northern extent of

the Windward Isles as another likely location for a deep meso-scale recirculation along the

DWBC based on topographic similarity to the Abaco region.

We can glean some basic characteristics of recirculations along the deep boundary

currents in the world's oceans from this review of the observational literature. First of all,
in the North Atlantic the huge majority of these features appear to be cyclonic and offshore

of the deep boundary current. These features occur on two different length scales, on the

0(100) km as meso-scale features and 0(500-1000) km as basin-scale features. In both

cases the recirculating flux tends to be O(0.5)the boundary current flux. The meso-scale

recirculations have a width 0(2-3) width of the dbc, while the basin-scale recirculations are
0(10) width of the dbc.

Little is known about the time dependence and detailed structure of these features.
From present measurements, most appear to be persistent features, but their size, transport,
and exact location may be time dependent. In the best-observed recirculation region
(Abaco) the winding time required for one recirculation is on the order of the strongest time
dependent signal in the velocity field. Hyperbolic points presumably exist in some of these

regions, but are difficult to observe directly. Float studies in the Abaco region does

provides direct evidence for a hyperbolic point in the 'gate' at San Salvador Spur (Leaman

and Vertes 1996) and the float study in the Labrador Sea provides similar evidence for a

hyperbolic area near the Flemish Cap (Lavender, et al. 2000).

These meso-scale recirculations appear in particularly interesting configurations

with respect to lobe dynamics. Two or more recirculating features of the same sign lining



the DWBC would meet at hyperbolic points. If there is time-dependence in the right

frequency range, this would indicate that 'turnstile' lobe exchange might be an important

mixing mechanism in these regions.

Some of these observations indicate single recirculations sitting along a section of

the boundary current, while others outline a series of recirculations linked by hyperbolic

points. In this study I explore the differences between these two generic geometries and

show that in a case with some internal variability the mixing is radically affected by the

geometry.
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Figure 01 caption: Streamlines in the Labrador and Irminger seas compiled from float
tracks by Lavender, et al. (2000) (reprinted with permission) indicate a string of cyclonic
recirculations lining the course of the DWBC. Streamlines are calculated from drift tracks
of floats at 400, 700, 1500 m depth, all rectified to 700 m using Levitus climatological
shear.
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Figure 02 caption: Cartoon of basin scale recirculations in North Atlantic. My sketches

incorporate work by McCartney (1992), Gana & Provost (1993), Van Aken (2000),
Stephends & Marshall (2000), and personal communication with Mike McCartney with

respect to present data analysis of flow in Guiana basin. Topography of basins is from

McCartney (1992) (reprinted with permission).



Figure 03 caption : Evidence for meso-scale recirculation in the Abaco region. Panel a:

Steady streamlines in the Abaco region approximated by Johns, et al. (1997) incorporating
almost ten years of long-time current meter moorings and hydrographic surveys (reprinted
by permission). One streamline == 2 Sv. Panel b: Bottom topography in the Abaco

region from Lee, et al. (1996) contours are drawn at 100m for the deep regions (d > 4 km).
I have added a bold contour at 4500m (reprinted with permission).
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IV. Dynamical Systems background:

Now that I have reviewed some of the observations which inspired this study, I

will outline the work on lobe dynamics which highlights the importance of hyperbolic

points in recirculation configurations. This is a brief review, for more detailed explanation

of the theoretical basis for lobe dynamics see the text by Wiggins, 1992. The power of

dynamical systems theory is in interpreting the extremely complex trajectories that arise in

unsteady flows. In any physical system the point of this type of description is to illuminate

underlying geometrical structures in the system's phase space. When the behavior of a

system becomes too complex to describe directly, a description of these structures and how

they transform under varying conditions can be invaluable. In the case of fluid flows this

method is especially intuitive, because the phase space of the system is simply physical

space; the relevant geometry is demonstrated by the steady streamlines of ii(x, y).

In some fluid flows, this geometry involves hyperbolic stagnation points. There

are two types of stagnation points in two dimensional fluid flows: hyperbolic and elliptic.

These are shown in the left and right panels of Figure D1 a. At a hyperbolic point fluid is

both converging and diverging. At an elliptic point fluid is neither converging nor

diverging. In either case, a fluid parcel sitting exactly at a stagnation point has no velocity

and will (theoretically) remain at that point for all time. In the case of a hyperbolic point

however, all fluid parcels in the nearby area are either approaching or heading away from

the hyperbolic point. In fact, the hyperbolic point sits at the intersection of two distinctive

material curves which define the directions of strongest convergence and divergence.

These are termed the 'stable manifold' and 'unstable manifold', respectively.

These manifolds reveal critical information about a flow. In steady flows the

manifolds clearly outline the underlying structures in the phase space (in this case physical

space), so I make the following definitions for a steady case. There are two types of

hyperbolic geometries: 'heteroclinic' and 'homoclinic' (see Figure D1 b & c). In a

heteroclinic geometry, the unstable manifold of a hyperbolic point is also the stable

manifold of a neighboring point. One example of this type of geometry arises when a

number of recirculations (of the same sign) are aligned next to each other, as in Figure

Dib. In a homoclinic geometry the unstable manifold of a hyperbolic point is also the

stable manifold of the same point. One example of this type of geometry is the 'figure-

eight' shown in Figure D1c.



As we can see in Figure D , these manifolds delineate the boundaries between
regions of closed and open streamlines, and are therefore sometimes called 'separatrices'.
Diffusion alone will result in transport across the manifolds in a steady case, so that
recirculating and streaming regions are largely isolated. If the system becomes unsteady
the manifolds themselves will move resulting in a flux between regions via 'turnstile'
exchange (explained below) which can result in intense advective stirring. Note that a
single recirculation lying towards the interior of a boundary current is bounded by a
material curve separating the closed and open streamlines, but there are no hyperbolic
points or manifolds (so there will not be turnstile exchange in this case).

Turnstile exchange occurs in unsteady, periodic hyperbolic flows because the
bounding manifolds become contorted and tangled. In other words, the stable and unstable
manifolds connecting two heteroclinic points or a single homoclinic point no longer
overlap, but actually intersect each other an infinite number of times (see Figure D1 d & e).
By comparing the tangled manifolds with the 'undisturbed' manifolds from the steady

flow, we can better understand the chaotic exchange into and out of recirculation regions.
(Note in the following when I refer to a recirculation, I mean the regions of closed
streamlines outlined by the undisturbed manifolds in a steady state). This process is called
'lobe dynamics'.

The 'lobes' consist of the area between the now tangled manifolds. The fluid
within each lobe is mapped in a predictable way into the space delineated by other lobes. In
this way fluid is carried into or out of the 'recirculations' outlined by the undisturbed
manifolds. There are two kinds of lobes. 'Delivery' lobes carry fluid into a recirculation
and 'retrieval' lobes convey fluid out. In these experiments the fluid in each lobe is
mapped onto the next lobe of the same type after one period of the unsteady forcing. This
process of fluid mapping from inside to outside of a recirculation via lobes is called
turnstile exchange.

Figure D1 shows this process in both a homoclinic and heteroclinic geometry. In
the heteroclinic case (Figure Dlb) the stable manifold of point 'B' (bold) and the unstable
manifold of point 'A' tangle and outline a series of lobes. In the homoclinic case (Figure
D lc) the stable manifold of point A (bold) tangles with the unstable manifold of point A.
Both geometries entail both kinds of lobes, but the delivery lobes are shaded in the
heteroclinic case, while the retrieval lobes are shaded in the homoclinic case. The

darkening shading in each indicates the direction of mapping with time (t = t, + nT, where



T, is the forcing period). Note that lobes are only drawn on one side of the heteroclinic

recirculation, but in reality would occur on both.

Another feature of the unsteady flows depicted in Figure Dl are small closed

trajectories around the elliptic stagnation points within each recirculation. These are

schematic representations of phenomena known as KAM tori. Even when the flow is

unsteady the motion of parcels within a KAM tori is regular in that they never leave the area

of the torus in the x,y,t space. This means that they are restricted to recirculate around the

elliptic point in the x,y plane. The lobes become very contorted within the recirculation,

but never enter these KAM tori, leaving a small isolated region immune to the turnstile lobe

exchange. The size and location of this isolated region within the original recirculation

depends on the type and extent of unsteady forcing. In section VII where I present

evidence for lobes in the laboratory flows, I also show some examples of isolated regions

that may be associated with KAM tori.

This turnstile mechanism provides us with an intuitive and geometric view into the

workings of chaotic advection. It helps explain why chaotic, 'non-integrable' regions

occur first in the neighborhood of the manifolds, as noted by other investigators (see for

example Polvani and Wisdom, 1990). Knowledge of this mechanism could also help us

predict mixing in the area of a recirculation, based on whether the basic geometry contains

hyperbolic points. If there are hyperbolic points, then in the presence of unsteadiness,

lobes will carry fluid in and out of the recirculations acting as extremely effective stirring

mechanisms. Although stirring is a reversible process, it creates very high property

gradients which enhance irreversible mixing. In flows without hyperbolic points, there

will be no manifolds, no lobes, and presumably much less mixing.

It is important to note the type of unsteady flows where this description is useful.

Most analytical treatments of unsteady hyperbolic flows assume a time-scale separation

between the Lagrangian (recirculation) time scale and the Eulerian time scale associated

with the unsteady forcing. This is inherent in the linearization of the equations of motion.

In analytical solutions of linearized systems, investigators can solve for the actual locations

of the hyperbolic points and the locations of the manifolds (see for example, del-Castillo

Negrete and Morrison, 1993). In numerical work, this time scale separation is also often

assumed, but is not necessary, as the manifolds are found empirically by marking patches

of fluid and the hyperbolic points are assumed to lie at the intersections of these manifolds

(see for example, Rogerson, et al. 1999 and Miller, et al. 2001). In the laboratory results
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presented here I identify approximate unstable manifolds by injecting a dye streakline into

the fluid. I do not have the time scale separation in these experiments. As explained
below, the forcing (Eulerian) period is comparable or less than the recirculation

(Lagrangian) period. Although I do not have the time scale separation in these

experiments, the coherent structures (recirculations and hyperbolic point) are persistent and
long-lived relative to the forcing. This implies that in thinking about oceanographic flows,
chaotic advection may be important, even in regions where a time scale separation does not
exist, as long as the coherent structures and associated hyperbolic points are persistent on a

time that is long compared to any unsteadiness. I return to this point in discussing my
laboratory results below.

There are some examples of discussions of oceanographic phenomena using the
language and processes of dynamical systems theory. Losier, et al. (1997) explore the
exchange within the Gulf Stream by comparing RAFOS float trajectories to trajectories of
parcels in a numerically simulated flow field. By viewing the float trajectories in a frame of
reference moving with the phase speed of the primary Gulf Stream meanders, the authors

are able to observe geometric structures in the vicinity of the jet that are predicted by

dynamical systems analysis. (These structures look much like the heteroclinic geometry in
Figure D1.) Further explorations of this jet geometry were carried out by Miller et al.

(1997) and Rogerson, et al. (1999) who explored fluxes between a jet and small

recirculations along its path using periodic and aperiodic forcing in numerical models. del-
Castillo Negrete and Morrison (1993) utilize a similar jet geometry to explicate the

destruction of barriers to mixing in a shear flow. They compare analytical results to a

kinematic numerical flow and laboratory experiments.

Miller, etal. (2001) utilize lobe dynamics to analyze a recirculation to the east of a
meridional island. The authors employ a numerical model to analyze the role lobes play in
potential vorticity exchange and outline the regime in which this type of analysis is useful.
In addition, they observe streaklines indicating exchange lobes in a laboratory tank.

In sections VI and VII I present evidence that exchange lobes arise in the unsteady

hyperbolic laboratory flows. By dying fluid near the unstable manifold of a homoclinic

hyperbolic point, I am able to show the shape and movement of the exchange lobes. The

fluid in each lobe is mapped into the next lobe of the same type at exactly TF, the forcing

period of unsteadiness in the tank. The hyperbolic geometry in the laboratory tank is very
similar to that shown in Figure Dl c & e.
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(Figure D caption: a: Stagnation points: hyperbolic (left) and elliptic (right). b:

'Heteroclinic' hyperbolic points in a steady jet-recirculation geometry. Note the elliptic (M,
N) and hyperbolic (A, B, C) stagnation points and the manifolds. The bold line is a

portion of both the unstable manifold of point A and the stable manifold of point B. c: A

'homoclinic' hyperbolic point in a steady figure-eight configuration. The bold line is a

portion of both the unstable and stable manifolds of hyperbolic point A. d: Contorted

manifolds in an unsteady heteroclinic configuration. Lobes arise between the stable (bold)

and unstable (fine) manifolds. Progressively darker shading marks the position of the

same dyed patch of fluid at times t = t,, + nT,F where T is the forcing period. e) same as

in panel d) but for homoclinic hyperbolic point.)
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V. Lab apparatus & procedure:

I explore two generic recirculation geometries in a rotating tank experiment. In one

case a single recirculation sits between a boundary current and the interior. In the other

case there are two recirculations, which meet at a hyperbolic point. (see Figure Il a & b) I

produce these recirculations in a 'sliced cylinder' rotating tank similar to the original model

introduced by Pedlosky & Greenspan (1967). A schematic of the apparatus is shown in

figure Lab 1. In this section I will briefly discuss the sliced-cylinder apparatus and the

general flow regimes in the tank. I will then outline the particular procedures I employed in

my data collection.

Sliced-Cylinder Apparatus:

The tank is placed on a rotating table that is spun counterclockwise at .2=2 (rad/s).

The tank is 42.5 cm in diameter and is fitted with a sloping bottom and a submerged 'lid'

that is differentially rotated (at a rate AQ) in order to create a 'surface' stress on the

homogeneous fluid. The resulting flow is a single layer on a topographic beta plane forced

by uniform upwelling or downwelling (due to the surface stress of the lid). The mean fluid

depth is H=20 cm with a total change in depth AH=6 cm. The resulting bottom slope

s=O. 15, combined with the standard rotation rate for these experiments produces a

topographic beta, / = fs/H = 3(ms)-f. For the remainder of this work I adopt northern

hemisphere terminology in referring to the shallow (poleward) end of the tank as 'north',

and the deeper end as 'south'. In addition, in discussing the velocity field below I utilize

and coordinate system with +x to the east and +y to the north. I generally ignore any

motion in the +/-z direction, as the flow is assumed to be horizontal except in the frictional

boundary layers.

The transparent, rotating lid fits within the circumference of the tank, supported by

a ring that sits on the top edge of the tank (the top view of the tank is left open for

imaging). I control the rate of rotation of the lid through a computer interface system and a

stepping motor. (Please see Appendix A for the details on this motor control system). In

these experiments the lid is always rotated in the clockwise (anticyclonic) direction. This

results in a surface stress producing uniform Ekman downwelling over a layer thickness:



EK WEK = A 2 EK

where v=.01 (cm / s - 1) is the kinematic viscosity of water, the working fluid, and the lid

rotation range from .0076<A.Q<.2777 (rad/s), (with the majority of experiments performed

in the range: .0173<A2<.048 (rad/s)). Further details on these and other dimensional and

non-dimensional values for the tank are given in Table Lab 1.

With the topographic beta and surface stress, a number of different flow regimes

are conceivable. In all of these experiments the bottom slope is held constant and the lid

rotation rate is variable. At low to moderate lid rotation rates, the interior the flow is close

to the Sverdrup solution as the change in potential vorticity due to the Ekman downwelling

is balanced by vortex columns stretching as they move 'south' across the sloped bottom.

This balance is confirmed by the small value of Us / PEL2 = 0(2 x 10-4).

A return flow must balance this southward flow in the interior, and this occurs in a

narrow boundary current along the western wall of the tank. On the scale of the boundary

current, the surface forcing is unimportant and the structure of current depends on the

primary physical factor balancing the change in topographic beta: inertia, bottom friction, or

lateral friction. In this case the effects of lateral friction (which would give a Munk

boundary layer solution) and bottom friction (likewise a Stommel boundary layer) are

comparable, but S, (at 0.7 cm) is larger than 6s (at 0.5 cm). Therefore the Munk solution

best describes the flow in the tank at low inertial values. At higher inertial values (i.e. with

stronger lid forcing) the primary balance is between the topographic beta and inertia so the
western boundary becomes more jet-like. Here the boundary layer thickness' are defined

as (Pedlosky, 1987):

where rek = 3Ef / D is the inverse of the spin-down time determined by the Ekman bottom

layer and is equal to .0014 (1/s) in this tank. Us is the interior Sverdrup velocity. Again,

please see Table Lab 1 with the dimensional values for this tank. Many previous

investigators have explored aspects of similar experimental flows. Since my goal in this

investigation is to compare two specific flow configurations, I refer readers to previous

work for detailed description of the flow regimes in a sliced-cylinder tank. (Pedlosky &
Greenspan (1967), Beardsley (1969, 1975(11)), Beardsley and Robbins(1975), Pedlosky,



etal. (1997) and Griffiths & Kiss (1999)). Griffiths and Kiss (1999) present an excellent

account of the mechanical and technical details in this type of set-up.

As the lid forcing is increased the flow speeds up and the inertial terms in the

equations of motion become more important than the frictional terms. In our present

notation, this means that 6, 2 8 . The highly inertial boundary current shoots up the

western edge of the tank, separates from the wall, and forms a wave-like pattern across the

northern section of the tank. (see Figure U 1 c-f which is described in the next section) At

6, /,m = 1.10 a set of closed streamlines arises in the tank south of the first large meander in

the inertial jet. This 'inertial' recirculation forms north of the 'Munk' recirculation.

For a small window of lid forcing, (1.10 < S1 / ,m < 1.40) both of these

recirculations: the 'inertial' and the 'Munk' exist simultaneously (see Figure Ul). In cases

with uniform lid forcing (i.e. the closest we get to steady flow) a unique hyperbolic point

exists between these two recirculations, and it is exactly this feature of the flow I

investigate. The balance between the Munk and inertial boundary layer thickness'

determines whether the single or double recirculation configuration exists, so I use the

value 3 = 6, /  M to describe the forcing. This parameter is easily computed as, with the

above parameter settings we find, 8 = 6, / b, = 8.1(A.Q/ Q)A

In order to investigate the flow in the region of a hyperbolic point in an unsteady

case, I sometimes force the lid in an unsteady fashion (so that the lid rotation rate oscillates

slightly around an average value). The lid rotation rate is then:

AQunsteadv = AQ(1 + A,,s, sin(2t / Ti,>))

where A is the average or 'background' lid rotation rate, A,,., is the amplitude of

oscillation, and T,, is the period of the oscillation. Most of the unsteady runs are at

A,, c =0.05, although a few are at values up to A,,c =0.15. The period of oscillation is

always set equal to the time it takes the lid to complete one full rotation because there is

some slight unsteadiness at that period due to imperfections in the glass lid. Therefore

T, = T,,, and is usually on the order of a few minutes.

Data Collection Procedure:

The Pulnix camera is attached to a frame rotating with the table so that images are

stationary with respect to the tank. In the resulting images we are looking down on the

tank and only the lid and particles and/or dye appear to be moving. I used neutrally buoyant

particles in the tank for two purposes : first I created 'trajectory' diagram which give a



general qualitative image of the flow and then I calculated the velocity field in order to

quantify the time dependence in the tank. I also injected neutrally buoyant dye into the
flow. Images of the dye were used for qualitative description of the flow and in calculating
the effective diffusivity.

I encountered some amount of trouble with lighting the images well, both getting
enough desired light and blocking out background light. Ideally, all light comes from
sources rotating with the tank, so that no outside light biases the images as the tank spins.

For the particles runs I wanted to see only the laser light in the final images. I used
a 6W Argon ion laser to supply light for the particles runs. The laser itself was water-
cooled and sat away from the rotating table. A fiber-optic cable carried the laser beam onto
the table via a coupling. Once on the table a specialized lens generated a horizontal sheet of
light which shone through tank about 5 cm below the lid.

For the dye runs, I found the images were cleanest when the tank was lit from
below. I therefore positioned two 20W fluorescent light bulbs facing upward below the
tank. For all experiments I utilized black-out cloths suspended from the ceiling and pinned
around the tank to cut down as much as possible on background light. Unwanted light did
not pose a significant problem for the dye runs. Some unsteadiness in the lighting (due to
both the laser and background light) may have affected the velocity calculations from the
particles runs. (I return to this point in describing the velocity data in section VI).

In order to match the density of the particles to the density of the liquid in the tank I

used Pliolite plastic particles p = 1.024 (kg/m') and salt water from a seawater intake

p = 1.022 (kg/m') filtered at 50gtm. These particles are hand ground with a mortar and

pestle and then sorted into size classes using a series of sieves. I chose particles of

(diameter) d > 250.pm for the runs leading to trajectory diagrams and particles of

(diameter) 150ym d 250gm for the runs used for PIV analysis.

For the particle runs the lab routine was as follows. First I pumped the seawater
into the tank. I then prepared whichever particles were necessary and added them to the

tank water. The number of particles in the flow varied between runs, the 'trajectory'
diagrams looked better with a fairly low density while the PIV routine clearly worked
better with a very high particle density. The next step was to arrange the laser lighting,
camera focus, and black-out cloths (as noted above). The VCR or Mv-1000 digital
imaging software was set to record images from the camera. Just before spinning up the
tank, the lid rotation was started.



I allowed 12 minutes spin-up time for all of my experimental runs. This time was

based on empirical evidence gathered from the general nature of the 'trajectory' diagrams of

the flow. Unsteadiness in the flow associated with the spin-up process were not seen after

about 7 or 8 minutes (the time for the fastest topographic Rossby wave to cross the tank is

32 seconds and the calculated spin-up time associated with the Ekman bottom layer (1/rek)

is 70 seconds); twelve minutes allowed a generous margin of error. Once spin-up was

completed I recorded images.

The trajectory diagrams were created by adding together a series of snapshots taken

over some period of time (this process is described below in section VI). In order to

calculate the velocity field I utilized a method known particle image velocimetry (PIV).

This process finds the velocity field implied by the difference in particle locations between

two snapshots taken in close succession (again, see section VI).

In addition to observing the motion of neutrally buoyant particles, I also injected

neutrally buoyant dye into the flow. The dye for these experiments is McCormick red food

coloring p = 1.02391(kg / m'). In order to create a neutrally buoyant dye [relative to pond

water in tank p = 1.022 (kg/m 3) ], I mixed this dye with pond water and fresh water, in the

approximate ratio: dye:pond:fresh = 50:40:10. This mixture sat in a reservoir (on the

rotating table) and was pumped through tygon tubing and into the feed needle by a variable

flow, peristaltic pump. I found the pump worked best if I primed the entire injection

system before filling the tank. This Variable Flow Mini Pump fed the dye flow through a

section of tubing: 1/50" I.D. at a rotor rpm - 0.5. This results in a calculated flow rate of

approximately 6 x 10- 3 (cm /s), which would result in a total input of 8 cm3 over the course

of each run.

The dye was injected for twenty-three minutes in each case used for effective

diffusivity calculations. This time was equal to a single 'winding' time for the slowest case

(r=2.5 cm & = 8, / 8,= 1.00) so that the dye line formed a closed circuit before being shut

off (For more details on effective diffusivity see section VIII). To show the development

of exchange lobes in the tank I simply captured images while the dye was still being

injected. (for details see section VII). In terms of specific procedure, I simply followed

the routine outlined above, skipping the addition of particles, using bottom lighting rather

than the laser, and beginning the dye injection after 12 minutes of spin-up.



Table Lab 1: Constant Dimensional and Non-Dimensional values for sliced-cylinder lab
tank:

/ = 3 (ms)-'

p13= 0.3

8M = 0.7 cm

13= Js/H

X = LIf

Q = 2 rad/s

f = 2Q = 4rad / s

v =.01 cm 2 / s

3s = 0.5 cm

SEK = 0.07 cm

E I2 = .0035 (nd)

(S = r / = 5EKf / PD

EK =(v/ )A

EK = EK /ID

Table: Lab2 Variable Dimensional and Non-Dimensional values for sliced-cylinder lab tank:

A92 (1/s)

AGi
= (nd)

5 L= 8.1
35m

(nd)

wEK = -AK2 3 EK (cm/s)

U s = wEK / S (crn/s)

Uwb = us. L/ 5,,, (cm/s)

US / L2

Re = UL/v (nd)

Ro = Us / JfL (nd)

Ro = AQ/ 22 (nd)

SE (nd)

.0076

.0038

0.50

.00053

.0035

.047

7.3 x 10-'

14

.0173

.0087

0.75

.00120

.008

.107

1.7 x 10-4

,0480

.0240

1.25

.00336

.022

.293

4.6 x 10-4

2.2 x 10- 5 5.0 x 10- 5 1.4 x 10-4

.0019

1.08

.0044

2.47

.012

6.86

L = 40 cm

D =20 cm

s = 0.15

.2777

.0139

3.00

.0194

N/A

N/A

N/A

516

N/A

.070

39.71



TOP VIEW

SIDE VIEW

glass drive lid

sloping bottom

Figure Lab 1: Schematic of 'sliced-cylinder' rotating tank apparatus. The entire tank
system rotates at 9 =2 rad/s, while a differentially rotating glass lid spins at AQ, exerting a
(variable) surface stress on the fluid. The false bottom is sloped to invoke a topographic
beta effect. The resulting flow mimics a subtropical ocean basin with the shallow end of
the tank analogous to the poleward or 'North' direction and the deep end representing the
equatorward or 'South' direction.
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VI. Velocity Calculations and Trajectory Images:

Trajectory diagrams of particles:

In addition to calculating fi(x, y) fields from the images of particles in the tank, I

created trajectory diagrams by adding together a number of images taken over some period

of time. These trajectory diagrams are essentially time exposures of the particle locations

and give a very nice qualitative picture of the flow field. Figure U1 contains a series of

these diagrams throughout a range of 3 = 8 . They depict the transition from the single

Munk recirculation (6 1.10) to a double recirculation geometry (1.10 5 < 1.40) to a

single inertial recirculation (1.40 8). In these cases the lid rotation is steady so that

A(.,c =0, T,, =N/A. Note that the values of 3 for these transitions are approximations based

on the runs I performed; the only transition I mapped carefully was from a single Munk

recirculation to a double recirculation, which occurs at = 1. 10 in the steady case.

At low values of 3 (figure Ul a) the flow looks much like the analytical Munk

solution with a broad, slow, southward interior flow and a thin, fast, northward boundary

current on the 'western' side of the tank. The images do not extend across the full western

boundary current in this figure due to the arrangement of the laser light sheet. (As

mentioned above, I use the directional terms 'north' and 'south' to designate the shallow

and deep ends of the tank, respectively and adopt a coordinate system with +x to the east

and +y to the north.) As I increase the rate of lid forcing to 8=1.00 the ifiertial nature of

the boundary current becomes more prominent, and the recirculation between the boundary

current and the return flow becomes increasingly asymmetric across the west-east axis

(Figure Ul b). Figure Ul c, d show the transition from a single Munk recirculation to a

double 'figure-8' configuration: a Munk recirculation to the south and an inertial

recirculation further north. Panel d, which depicts the flow at 8=1.25 clearly shows the

hyperbolic point between the two recirculations. A single particle sits at or very near the

hyperbolic point for the entire time (t= 120s) (this is marked by the white arrow in the

figure). In the next few panels, as the lid forcing increases further, the inertial gyre grows

in size and eventually shoulders out the Munk recirculation. If the lid forcing is increased



ever higher the inertial gyre continues to grow; at 8=3.00 the inertial gyre fills the entire
northwestern quadrant of the tank.

Figure U2 shows a trajectory diagram for a case with unsteady lid forcing

(8= 1.25, A, =0.05, T,,c= 131s). This image has a somewhat different appearance from

those in Figure U 1, because of the much higher number of particles in the tank and the
laser light over the entire western boundary current. Regardless, we can see that the area
between the two recirculations is not as clean in this unsteady case as it is in the steady case

depicted in Figure U I d. In the steady case a single hyperbolic point exists where the
bounding trajectories of each recirculation intersect. With unsteady forcing this hyperbolic
point moves around with time, so that in this time-exposure image the particle tracks

display complex behavior. This is central to the lobe dynamics described above, and the

images of the lobes in the tank highlight this point. (presented in section VII below)

In order to describe the flow in the laboratory tank in a more quantitative manner, I
employed a method known as particle image velocimetry (PIV) for calculating the velocity

field by diagnosing the movement of the particles.

PIV METHOD:

Particle Image Velocimetry (PIV) is a method of calculating a snapshot of the 2D

velocity field ii(x, y) in an experimental flow. Simply put, PIV involves seeding a flow

with many particles, taking two successive pictures of the flow, and estimating how the
particles have moved between the snapshots. I will present the basic theory and method of
PIV, for a more detailed review see a text on the subject (e.g. Raffel, et al. 1998). First,
the laboratory flow is seeded with neutrally buoyant particles small enough to follow the
flow. Next, the lighting and imaging is arranged. Ideally, only the 2D plane of interest is

lit. There are new methods under development for using PIV to calculate a 3D ii(x, y, z)

field, but the standard method, which I employ here, assumes most of the motion is in the
2D plane of interest (as it should be in this rotating experiment). In this experiment I use a
laser sheet to light a thin horizontal slice of the tank (see lab setup in section V). The flow

is then photographed at t = t, and t = t, + At and the photos are imported into digital image

files.

The velocity field can then be calculated by finding the difference in the locations of

the particles between the two images MA_(x, y); ii(x,y) is approximated by MA(x,y)/At.



The displacement field, Ac(x,y), is found by dividing each image into subregions or

'windows' and comparing corresponding windows in the two images. More specifically,

the statistical correlation is calculated between each set of windows. This can be done

either by actual spatial correlation calculations (which take a long time) or by calculating the

correlation via a transform to the frequency domain (which is a little less precise, but much

faster). The latter method rests on the fact that correlation in the spatial domain is

equivalent to multiplication in the frequency domain.

In the spatial domain one would calculate the correlation between the two windows

directly:
M/12 N/2

R(x,y)= I JIm,(i,j)Im2(i+xj+ y)
t=-M/2 j=-N/2

Here R is a function containing the strength of the correlation between the two image

windows at each displacement (x,y). Each window Im, is M x N pixels. The maximum

peak in R(x,y) will give the displacement Ai(x, y).

I have chosen to calculate the correlation via a transform to the frequency domain.

Once I have my two digital images, I calculate the spatial correlation as follows:

1) Start with matching windows: f(x,y) = pixel values in image I window

g(x,y) == pixel values in image 2 window

2) Check to see that both regions have some particles.

3) Perform FFTs and multiply results (taking complex conjugate of second FFT):

F == FFT(f)

G == (FFT(g))*

H ==F x G

4) Find correlation matrix by inverse transform:

h = FFT-' (H)

5) Find the location of the maximum correlation to sub-pixel accuracy via Gaussian fitting

in x and y: , == peak location(h)

6) Stop and set hA == Al,... or do a second pass.

7) The second pass (which I use in all of the results presented here) involves using the

displacement found during the first pass to improve the choice of windows. I again use

f(x,y) from the first image, but this time choose a window from image 2 that is offset from

x,y by LA,. This improves the likelihood that all of the particles in the image 1 window



show up in the image 2 window, as explained below. Once this new g(x,y+ A,) is chosen

steps 2-6 are repeated.

The above procedure is carried out for all the windows in the image. The number

of windows is determined by the specified window size. In addition to choosing the

window size, I can specify an overlap for successive windows. There are many criteria

that go into choosing the window size and percentage overlap, some of which I discuss

further below. For these results the window size is 36x36 pixels and the overlap is 25%.

The PIV calculations were carried out in Matlab using a code provided to me by Karl

Helfrich.

The challenge in designing a good PIV procedure is in balancing the advantages and

disadvantages of various lab set-up and analysis choices (for more details on these choices

see Willert & Gharib, 1991, and Adrian, 1991). In the lab the size, shape, and number of

particles, lighting, camera settings, and At between images can all be altered. In the

analysis the window size and overlap can be altered and various masking and filtering

techniques can be employed. In any lab experiment their are technical restrictions, but the

basic constraint is the character of the actual flow field. In this case the flow field is

extremely slow. The velocity in the interior of the tank is 0(0.01) cm/s and the velocity in

the boundary current is 0(0.1) cm/s. This slow flow made the choice of At tricky.

Although the PIV analysis should be good to sub-pixel accuracy, the results are

more robust if MAi > 1 pixel, so I wanted to choose a long enough time between snapshots.

Yet, the choice of At has implications beyond displacement; this is where we begin to see

the interplay between all of the alternatives mentioned above. The longer the time is

between images, the lower the chances of a one to one correspondence between particles in

the two images. This is due not only to particles leaving the sheet of laser light due to

velocity perpendicular to the plane, but also to particles spinning such that they are

reflecting light differently. In addition to these factors, computational time and memory

space for storing the digital images became considerations in calculating the long time series

of velocity (for very small At, you need many more images to cover a specified time).

After performing a variety of tests I settled on At of 1 second.'

The Pulnix digital camera captures at a much more rapid rate of 30 frames per second. Testing
demonstrated that frames this close together not only have a very small (subpixel) A.Z, but also produce
extremely noisy results. At At=1/30s the resultant i(x, y) have many inconsistent vectors and fields



Another important consideration was the size of the particles. Ideally, the particles

should be small enough to follow the flow well, yet large enough to show up clearly in the

digital image. I chose to use particles that fell in the size range 180pm d 250pm. I

also wanted a high particle density, as investigations into the accuracy of PIV techniques

have correlated high particle density with better results. I did not attempt to quantify the

number of particles in the flow or the percentage of the image filled with particles, I found

that I could estimate the number of particles I needed simply by watching the appearance of

the flow.

Having decided the particle size and time between images, I then tested different

sizes for the interrogation windows. The choice of window size, like the choice of At

involves balancing a variety of effects. The method of PIV rests on the assumption that

strain and rotation are small compared to translation on the scale of your window. This

means we want a small window. However, we need a window size that is much larger

than the displacement so that few particles leave or enter during the time between the two

snapshots. In addition, the 'Nyquist criteria' implies we should choose 2> Ai~ where £

is the length of a window edge. This is a result of the transformation to the frequency

domain. The Fourier transform involves an infinite integral, so in the course of the FFT

the window is assumed to be periodic (this means any larger displacement will be aliased to

misleading frequencies). Computational time is again a consideration in choosing window

size; the smaller the windows, the more there are, and the longer the computation time. I

settled for a window size of 36 pixels with an overlap of 25%. This resulted in a ii vector

for each 27 x 27 pixel area, but these are not all independent calculations.

PIV Data presentation:

Having assembled a working procedure for PIV analysis I was able to calculate

velocity fields for some of the flows. My main objective in calculating the velocity in the

tank was to diagnose the time dependence in the flow. This required compiling a time

series of many thousands of velocity fields, so for this analysis I chose to sample the

velocity in a small subregion of the flow. I chose the eastern part of the inertial

recirculation because I expected fairly high velocity and strong time dependence in this

calculated at successive times look very different. After testing a series of values I settled on At=ls. This
was the shortest value for which AZx in the region of interest was on the order of 1-2 pixels.



region. These U(t) results are presented below, but first I introduce a few snapshots of

ii(x, y) over the entire western half of the tank.

Figure U3 shows the basic flow field for two cases. The panels a & b correspond

to 8=1.25, A,,,=0.05, T,,, =131 s, while panels c & d correspond to 8=1.00, A,,,c=0.05,

T,,, =204 s (the upper panels show a case with double recirculation, the lower panels with

single recirculation, these correspond to figure U 1 panels d and b, respectively). North is

at the top of each quiver plot. To the right of each quiver diagram is a plot showing the y-

component of the velocity, v(x,y), at three different cross-sections of the flow. Note that

the western boundary current itself is not well resolved in the quiver plots, but does show

as a maximum in the v(x,y) plots. This is in part due to the choice of window size and At,
but is not really a concern since we focus on a different region for our time series. The PIV

analysis produces sensible results, with a boundary current (v>0) near the wall and a return

flow (v<0) in the interior at each cross-section. As we would expect the speeds are higher

in the 3=1.25 case. The magnitudes of these velocities are low, and in fact come from

areas of the flow where Ai < 1 pixel so the uncertainty on the ii(x, y) is fairly high.

Nevertheless, the velocity calculation method manages to capture the broad characteristics

of the flow, even in very slow regions.

I now present a time series of the velocity in order to demonstrate that the unsteady

lid forcing produces a similar unsteadiness in the flow, where: U(t) = u + v2 . In this

case 6=1.25, A,,s,=0.15, T,,c=13 Is. ii(x,y,t) is calculated in the interior branch of the

inertial recirculation. I chose this region because it is the most active area for lobe

formation (see discussion of lobes in section VII below).

Figure U4 shows a quiver plot of ui(x, y) over the entire region with a rectangle

outlining the subregion where I calculated U(t). The outer rectangle specifies the size and

location of the images used as raw input into the PIV routine. The inner rectangle specifies

the region over which U(t) was actually calculated. 2 Also notice there are two sets of

i(x, y) arrows on figure U4. These represent velocity fields calculated at t = t,, and

t = to + T,, /2. They give a qualitative indication of the unsteadiness at the lid oscillation

period.

2 The PIV routine is more accurate if you calculate U over some subsection of your raw image, because on
the second pass the image 2 window can be translated outside of the calculation area.



The time series U(t) as well as the power spectrum density of this time series are

shown in Figure U5. U(t) is given in cm/s over a period of 1060 seconds. One image was

captured every second and i(x, y) was calculated from each pair of images. Each of these

calculations resulted in ii(x, y) with four vectors (see four vectors in inner rectangle in

figure U4). The magnitudes of these four vectors were averaged for each ii(x, y) and then

compiled to give U(t).

Two periods immediately catch the eye in the velocity record and PSD: T = 0(3s)

and T = O(100s). These correspond to the rotation period of the tank, T=z s, and the

oscillation period of the lid, T= 131s. The strength of the peak at T= 131s in the PSD

confirms that the unsteady lid forcing results in variable speed in the tank. From Figure

U4, some variable direction in the velocity is also probable.

Some, if not all, of the signal at the fastest period in U(t), T= ;s, is an artifact of

imperfections in the rotating tank and imaging system. The cable carrying data from the

camera must pass through a rotating coupling so that a signal at the period of rotation is not

at all surprising. In addition to the problem with the camera signal, one can see some rapid

unsteadiness in the laser light, (the whole screen flashes). The light from the laser travels

to the tank through a fiber optic cable which must pass through a rotating optical coupling

in order to pass onto the rotating table. It is unclear how much of the flashing in the laser

images is due to this coupling and how much is due to the camera problem. There could,

of course, be an actual unsteadiness in the flow at T= irs due to some mechanical imbalance

in the rotating table. In all likelihood, the signal in the PIV velocity field at this high

frequency is due to a combination of these effects.

In any case, the time series and PSD clearly show unsteadiness in the flow at the

period of the lid oscillation, T,,c=131 seconds. Unlike at the much faster T=3.14s period,

there is no reason to suspect mechanical or imaging errors contributing to a signal at this

period. In the following section I present images of dye in the tank that indicate the

exchange lobes are dominated by exactly the lid forcing frequency.



Figure U 1: Time exposure trajectory images of particles in the tank illustrating general

flow regimes. Panels a-f correspond to increased lid forcing (6 = 0.75, 1.00, 1.10, 1.24,

1.40, 1.56), and the lid forcing is steady in all cases. All of these images are composites

of 60 snapshots taken two seconds apart, so that the image shows the movement of the

particles over 120 seconds total. Panels a & b show a single 'Munk' recirculation. Panel c

shows the transition to (panel d) a double recirculation. Panel e shows a transition back to

a single recirculation, in this case (panel f) an inertial recirculation.



a. 8=0.75

c. 8=1.1 d. 8=1.25

f. 8=1.55

b. 8=1

e. 8=1.4



Figure U2: Time exposure trajectory diagram for unsteady lid forcing at = 1.25. The

period of the lid oscillation is T,,= 131 s and the normalized amplitude is given by

AOS = .05. The total time shown is 180s (image is composed of 90 individual snapshots

taken at At = 2s). Notice there is no longer a distinct hyperbolic point in this image as

there is in the steady case (Figure Uld), but rather a hyperbolic area between the two
recirculations.





Figure U3: Quiver plots and velocity plots for two cases, panels a & b: = 1.25,
A,, =0.05, T,, =131s (double recirculation) and panel c & d: 8= 1.00, A,. =0.05,
T,sc=204s (single recirculation). The velocities plotted here are averages over 6.2 seconds
which is twice the shortest period described below (T=3.14s). Six image pairs are used
with At= 1.03s between each pair. In quiver plots (a & c) the arrow lengths are arbitrarily
scaled. The velocity v(x,y), the y-component of ii(x,y) is shown in panels b & d as a
function of distance from the western edge of the image.
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Figure U4: Quiver plot for 8=1.25, Aoc=0.15, T,,,c=131s. The velocity vectors are
calculated as in Figure U3. The two sets of ii(x, y) arrows represent velocity fields
calculated at t = t, and t = t,, + T,,, /2. The outer rectangle corresponds to the image area
captured for each ii(x, y) calculation in the time series. The inner rectangle outlines the
actual area over which the velocity was calculated (see footnote in text). Notice the four
resultant velocity vectors within the inner rectangle, these are the vectors that are averaged
into the final magnitude in the U(t) time series.
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Figure U5: a: Time series U(t). Velocity in cm/s over a total of 1060 seconds. The
velocity was calculated using the PIV routine outlined in the text with At= 1s. Four
ii(x, y) vectors were calculated each second and averaged to this U(t) (see Figure U4). b:

Power Spectrum Density (PSD) in cm2 / s shown (solid line) as a function of frequency
(Hz). The PSD was calculated using Thomson's multi-taper method with 4 windows. The
dashed lines represent the 95% confidence interval.
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VII. Dye Evidence for Exchange Lobes:

In the previous section I described the structure of the velocity field in the tank,

emphasizing the time dependence resulting from the unsteady lid forcing. In section IV I

outlined the profound implications this unsteadiness can have on a flow field involving a

hyperbolic geometry; as the stable and unstable manifolds tangle, lobes form the turnstile

mechanism for chaotic advection and radically increased exchange. Here I present images

of dye in the lab tank that indicate the existence of lobes in just such a geometry. This is

done by injecting dye so that it traces the approximate path of the unstable manifold leaving

the hyperbolic region toward the North. Unfortunately, it was not possible to trace out the

shape of the stable manifold, so that we only see half of the lobe boundaries. This is

because we do not know where the stable manifold comes from as it approaches the

hyperbolic point. We can trace the unstable manifold because we know where it leaves the

hyperbolic point. Nevertheless, the structure of the lobes is easy to see, as is the increase

in lobe size as the unsteadiness or the average rotation rate is increased.

The images presented in this section are for the range of 3 = 8 for which a

double recirculation geometry exists with steady lid forcing. As illustrated above in figure

Ul, this figure-eight configuration exists in the (approximate) range 1.10 < < 1.40.

Figure L1 illustrates this basic hyperbolic geometry for a case with 8=1.25 and steady lid

rotation. Because the flow is nearly steady, the dye streaklines trace out approximate

streamlines (with thickening in the line due to molecular diffusion and double diffusion of

the dye mixture). The dye is released continuously into the western edge of the Munk

recirculation. In the upper panel we see a snapshot of the flow nine minutes after the dye

injection is started (this time is arbitrarily set to t=0). The dye, which initially leaves the

needle heading north, (or to the left in this figure), has split upon encountering the

hyperbolic point; some dye has returned to the south in the Munk recirculation and some

dye has continued north to loop around the inertial recirculation. At the time this photo is

taken, this north-looping dye is encountering the hyperbolic point from the other direction.

The lower panel of figure L1 shows the same flow twelve minutes later (the time

above this plot is in units of time normalized by the lid rotation period Tro, ). Now we can

see each recirculation surrounded by dye, with clear fluid in the center. The two

recirculations have quite different appearances; this is due to a number of factors including



the higher volume of dye in the southern recirculation due to injection location and the

lower velocities in the southern recirculation which allow for more diffusion, as it takes

longer for a parcel to transit this slower recirculation. Another asymmetry exists between

the western and eastern edges of the recirculating region; the western edge is darker due to

the newly injected dye and appears smoother than the eastern edge. This is due to the high

velocities in the western boundary current and much slower advection in the interior.

This image of an orderly figure-eight is radically altered when a slight unsteadiness

is added to this flow. As noted above, when the flow is subject to a perturbation the

hyperbolic point no longer remains stationary, and the trajectories bounding the

recirculation (manifolds) begin to oscillate, fold, and intersect each other. The dye leaving

the hyperbolic point to loop around the northern recirculation no longer neatly approaches

the hyperbolic point again on its way south (as it does in Figure L1 panel a). This is

because the dye is tracing the unstable manifold, and is separated from the stable manifold.

The contortions of the unstable manifold are demonstrated in the time series in figure L2.

This collection of images traces the progression of a streakline in the tank where 8= 1.25,

A,,, =.05, and T,,, c =131s. The time printed above each image is normalized by the lid

oscillation period, T,,, with t=0 set arbitrarily at eight minutes after dye injection is started.

The close similarity in the appearance of the streakline at t=O and t= 1.0 confirms that the

periodicity of the exchange lobes is exactly that of the lid forcing.

The separation of the stable and unstable manifolds can be inferred by comparing

the dye lines from the steady and unsteady cases. In the steady case (figure L a) the dye

leaving the hyperbolic point on the unstable manifold (in the western boundary current)

must also lie on the stable manifold because it clearly approaches the hyperbolic point again

on the interior side of the recirculation. In the unsteady case (figure L2a) the dye is never

on the stable manifold, but instead meanders back forth into the interior and into the

recirculation itself. Theoretically, the unstable manifold should oscillate back and forth in

this manner, approaching infinitely close to the hyperbolic point without ever reaching it.

There are a number of additional features to note in figure L2. Although I was

unable to trace the exact location of the stable manifold, it is possible to glean something of

the shape of the exchange lobes from the unstable manifold alone. If we consider the

steady case presented in figure L1 to outline the approximate (Eulerian) average

recirculation for this case, than clearly fluid is being carried into and out of the recirculation

by exchange lobes. The dye that is meandering into the recirculation at t*=O (where



t*=t/ T,,,) is visible inside the recirculation at t*=0.6, and similarly another lobe curling in at

t*=1.0 is visible inside at t*=1.6. The lobes transporting fluid out of the recirculation into

the interior appear at the same periodicity, with the lobe stretching south at t*=1.8

occupying the same place the previous lobe sat at t*=0.8. One interesting note is the

thickening of the dye lines due to subsequent lobes carrying dye inside the recirculation

(compare t*=0.6 to t*= 1.6). This implies that some of the fluid imported into the

recirculation during one period is exported out during a subsequent period. I explore this

further below in a brief discussion of the lobe areas and implied recirculation flushing

times.

The asymmetry between the two recirculations that was evident in the steady case

reasserts itself here more dramatically. While there are huge contortions in the unstable

manifold of the inertial recirculation, the unstable manifold of the Munk recirculation is not

even clearly distinguishable. This is again due in part to a higher volume of dye and more

diffusion in the Munk recirculation, but there are other important factors.

One may be that the winding time necessary for a parcel to complete a recirculation

is much longer in the Munk recirculation than in the inertial recirculation. I can

approximate the winding time by noting when the first dye makes it back to the location of

the needle where it was injected (see figure L4 where the Munk recirculation is almost at

this point). At 3=1.25 at both Aosc=.05 and 0.15 this winding time is approximately

thirteen minutes, or six times the oscillation period. (Note that the winding time is the same

regardless of the amplitude of unsteady forcing, this confirms the persistence of the

coherent structures in this flow, even with large time-dependence). In the inertial

recirculation, the other hand, the winding time (see table 1 and discussion below) is O(1.5)

times the oscillation period. In discussing previous work on these dynamical lobes we

noted that in many cases the forcing period (Lagrangian times scale) is much longer than

the winding time (Eulerian time scale) so that T << T,,,. It is interesting that we see lobes

in the inertial recirculation where T = O(T,,c), and the lack of lobes in the Munk

recirculation may be due to the fact in that region T, >> T,,, c . On the other hand, there

could be lobes forming that are either very small or packed closely together so we cannot

see them in the dye streaklines.

Another time series of unstable manifold behavior is presented in figure L3. Figure

L3 illustrates a case similar to L2, but with stronger unsteady forcing (where 3= 1.25,



Aoc.,=0. 15, and To.c=13 1s). The excursions of the unstable manifold are even more

extreme, presumably resulting in larger lobes and more rapid exchange. At first glance it

appears that the recirculation region itself is larger, but as I discuss below in the discussion

of lobes areas, I do not believe this to be true. As in the previous figure, the periodicity of
the lobes is apparently closely aligned with the forcing period and lobe exchange into and

out of the recirculation is obvious. Again the winding up of the manifold inside the

recirculation implies that some imported fluid will be rapidly exported.

A rough calculation of the area of the lobes was carried out for the two cases

pictured in figure L2 and L3. Both of these runs have the same background lid rotation

rate, but the amplitude of the oscillation around that background was higher in one case.

This calculation was based on the assumption that every lobe must have equal area. This

follows from two separate facts. First, each subsequent lobe replaces the previous lobe of

the same type once every period. (one 'type' is a delivery lobe importing fluid into the

recirculation , the other is a retrieval lobe exporting fluid). Second, unless the recirculation

is growing or shrinking, the same amount of fluid that is imported into the recirculation

must be exported. This leads to the conclusion that every lobe must have the same area if

the flow is periodic.

Figure L4A contains hand-drawn approximations of lobes enclosing (approximately)

equal areas. I started with the images from t= 1.0 in Figures L2 and L3 and found lobes by

drawing a line to approximate the stable manifold approaching the hyperbolic point.' I

placed this line by trial and error, and settled for a line which resulted in approximately

equal areas for the three lobes that are visible in each image. The lines and lobes for the

A,. -C 0.05 case are darkened on the left side of Figure L4 (likewise A,,c =0.15 is shown on

the right). It is important to note that this is a rough calculation as I am guessing the
location of the stable manifold and there are other choices for line location which will result

in equal lobe areas.

The purpose of this exercise was to garner a rough idea of the location of the stable
manifold and to approximate a flushing time for each recirculation. In order to find a

flushing time, I need to know not only the lobe areas, but also the area enclosed by the

'recirculation'. I consider the 'recirculation' to be the area traced by the undisturbed

'I did attempt the reverse of this process, choosing the 'recirculation' outline from the steady case and
testing to see if the resulting lobes had equal areas. The lobes that resulted from this process did not have



manifolds (dye streakline) from the steady case, and this area is shown in black in Figure

L5a. For comparison I show the area enclosed by the 'recirculation' in both of the

unsteady cases from the previous figure (L5 b & c). This is the area enclosed by the

unstable and stable manifolds approximated by the dye streakline and the arbitrary line

chosen for the lobe calculation. Encouragingly, the areas of all three 'recirculations' are

very close at 141 I cm2 (see table Lobes 1). The lobe areas for the slightly unsteady case

were small, requiring about nine lobes to equal the area of the recirculation. For the case

with stronger forcing the lobes were much larger, requiring only three lobes to equal the

total area. If the lobes did in fact deliver and collect fluid from the entire recirculation, these

numbers would imply flushing times of T, = 0(9 x T,,c) for A,,.,c =0.05 and

T, = 0(3 x T,,,) for A,sc=0.15. In reality the flushing is more complicated as the lobes

probably do not fill the entire area inside the recirculation, as discussed below in relation to

invariant KAM tori.

We can compare these flushing times with the winding time necessary for a parcel

to complete a recirculation. We can approximate a winding time from the time series

images. In both figure L2 and figure L3, the parcel of dyed fluid that is just beginning to

form a delivery lobe at t* = 0.2 has wound around inside the recirculation to nearly the

same position by t*= 1.8. This results in an approximate ratio of flushing time to winding

time of T, / T = 6 at forcing amplitude A,,,, =0.05 and T,/ T, = 2 for A,, =0.15. (see

Table Lobes 1)

I will return to noting the actions of these lobes in discussing KAM tori in section

VIII and in my conclusions (section IX). In this section I have shown: 1) lobes formed by

the intersections of the manifolds are mapped onto each other at t= T c, 2) the winding time

for the inertial gyre is O(1.5) the forcing time, while in the Munk recirculation T >> T,,

3) it is possible to approximate lobe areas and flushing times for the 'recirculation' in the

unsteady cases, 4) flushing is much more rapid in the case with higher unsteady forcing.

Having illustrated the lobe mechanism responsible for chaotic advection in these hyperbolic

geometries, in the next section I diagnose the advective stirring (or lack there of) in a

variety of cases by calculating the effective diffusivity from images of the dye.

equal areas. This shows that the 'recirculation' has a different shape in the unsteady cases, although the

shapes resulting from my calculations do have the same area as the steady recirculation.



Table Lobes 1:

Aosc = AQld /lid

0 (steady)

0.05

0.15

Recirculation Area (cm 2 )

13.94

13.76

13.55

Lobe Size (cm 2)

N/A

1.4-1.6

3.5-4.4

Figure L: Dye streakline for a double recirculation (figure-eight) run, 3= 1.25 with
steady lid rotation. Images are at nine minutes and twenty-one minutes after the dye
injection is begun. Time above each figure is normalized by the lid rotation period T,,,
with t=0 arbitrarily chosen at nine minutes. Orientation of the figure is such that the western
boundary current is running to the left along the bottom of the image. The dark line
extending from the edge of the tank into the flow is the dye needle used for injection. The
end of the needle extends into the Munk recirculation, while the inertial recirculation is
further to the left (north).

Tf /T

N/A



t / Tosc = 0

b.

t / Tosc = 5.5



Figure L2: This collection of images traces the progression of a dye streakline in the tank
where 8= 1.25, A,,, =.05, and T,, = 131s. The time printed above each image is
normalized by the lid oscillation period, T, . The entire figure covers two full oscillation
periods, during which the contorted unstable manifold of the inertial recirculation indicates
the shape of the exchange lobes.



t / Tosc = 0

t / Tosc = 0.2 t / Tosc = 1.2

t / Tosc = 0.4 t / Tosc = 1.4

t / Tosc = 0.6 t / Tosc = 1.6

t / Tosc = 0.8

t /Tosc = 1

t / Tosc = 1.8..

t /Tosc 1 .8



Figure L3: Time series of a dye streakline in the tank where 6= 1.25, Ao,c=O. 15, and
T =13 is. The time printed above each image is normalized by the lid oscillation period,
T . The entire figure covers two full oscillation periods, during which the contorted
unstable manifold of the inertial recirculation indicates the shape of the exchange lobes.
This figure is similar to figure L2, but for a case with stronger unsteady forcing.



t / Tosc = 0

t / Tosc = 0.2 t / Tosc = 1.2

t / Tosc = 0.4 t / Tosc = 1.4

t / Tosc = 0.6 t / Tosc = 1.6

t / Tosc = 0.8 t / Tosc = 1.8
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Figure L4: Exchange lobes for two unsteady cases at 6=1.25 and T,,c=13 1s. Hand-
drawn approximations of exchange lobes are shown in black on dye images. Hand-drawn
line approximating stable manifold is also shown on each image (one line is chosen for
each forcing). Panel a-c show the three lobes for A,,,, =0.05. Panel d-f show three lobes
for A,,, =0.15. The area of the black region (cm 2) is listed above each image.



Area = 1.45 cm2

Area = 1.42 cm 2 Area = 3.54 cm2

Area = 4.36 cm 2Area = 1.57 cm2

Area = 3.8 cm2
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Figure L5: Recirculation region for steady case and two unsteady cases. Panel a shows
hand-drawn recirculation from dye streaklines for steady case, A C=O. Panel b-c show
unsteady cases A,,s =0.05 & A,,L =0.15, respectively. The boundary of the recirculation is
drawn along the unstable manifold until intersection with the line from Figure L5 (stable
manifold), and then follows this line back to the hyperbolic point. The area of the black
region (cm 2 ) is listed above each image.
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VIII. Effective Diffusivity Calculations:

Background on Effective Diffusivity:

The overall idea of effective diffusivity is to quantify the mixing in a flow by

diagnosing the geometric complexity of a tracer field. The advection-diffusion equation for

a tracer is rewritten by incorporating the advective stirring into the diffusion term. The

resulting 'effective' diffusion coefficient kf, depends on both the contortion in the tracer

field and the molecular diffusivity.

Nakamura (1995, 1996) derived an expression for effective diffusivity by rewriting

the advection-diffusion equation for a tracer so that the advection term is incorporated into

the diffusion. This is accomplished by first describing the area A(C,t) enclosed by a given

contour C of the tracer (here I adopt the notation used by Haynes and Shuckburgh(2000)).

This area may be non-contiguous and the total A includes all 'islands' in which the tracer

concentration c is greater than or equal to C. Because A(C, t) is a single-valued function,

we can inversely define C(A(C,t),t) as the value of c for which a given area A is enclosed at

the moment t. This allows a rewriting of the advection-diffusion equation as follows.

Our original equation takes the form:

3 c

-+ J[, c] = V -kVc+S (1)

where c represents the concentration of some tracer, the Jacobian represents advection, the

diffusive term represents non-advective transport and diffusion, and S represents a source

or sink term. I will assume S=O and that the flow is two-dimensional, although neither of

these are necessary to the derivation. I also assume that each contour is closed, so that the

boundary of the domain is a constant contour. Then with incompressibility:

V -i =0 li = U(x,y)

we integrate (1) over the Area=A(C,t), and employing Reynolds Transport Theorem, we

can write:

dC(A,t) - d(kL2 ---C(A, t)1 (2)
dt aA "A

where the square of the effective length is given by:



- (CA) 2 (3)

and kf = kL 2 . Again as in Shuckburgh, ((')) denotes average over the area between

adjacent tracer contours and is defined by:

() = dl or, equivalently ((-)) = (-)dA

We can diagnose the interplay between advection and diffusion by studying the
r.h.s. of (2). This term looks like the diffusion term on the r.h.s. of (1), but the

importance of stretching and stirring of tracer contours is explicit in the inclusion of the
effective length. This effective length diagnoses the convolution of the tracer contours, and
will grow large as the fluid is stirred by advection. The effective length is related to the
actual length of the contour by:

LI 2 = L i c)) L2  where )dl
V c dl

so that L,2 = L2 only if the gradient of the tracer concentration is equal everywhere on the

contour. Otherwise the effective length is always longer than the actual length. As a fluid
becomes well-stirred long filaments of tracer appear. These result in high gradients
throughout the well-stirred region. This process is reversible, but any mixing that occurs
across these contours is not. Thus irreversible (diffusive or turbulent) mixing is more

likely in regions of high (advective) stirring. The effective diffusivity kff = kL,2captures

the importance of stirring in bringing about mixing.'

Various investigators have employed this diagnostic to characterize mixing in actual

and numerical flow fields. Nakamura (1996) examines k, in a numerical simulation of

Kelvin-Helmholtz instability. In other work (Nakamura (1995) and Nakamura & Ma

(1997)) calculate kff from satellite measurements and GCM predictions of nitrous oxide in

As both of these processes, stirring creating high gradients and diffusion eroding them, act
simultaneously, complicated feedbacks arise. Nonetheless, unless a fluid is completely homogenous, high
advective stirring will always result in enhanced diffusive mixing. This is obvious in the mathematical
formulation presented above and has been confirmed empirically by Nakamura (1995).



order to characterize the mixing in the southern hemisphere stratosphere. Haynes and

Shuckburgh (2000) employ a kinematic model based on observed (ECMWF) stratospheric

winds to advect a numerical tracer with the advection-diffusion equation given above (2).

Results from these investigations indicate that: 1) effective diffusivity characterizes

the structure of the underlying flow independent of the particular tracer employed, 2) high

values of ku correspond to mixing regions while low values occur in barrier regions, 3)

the magnitude of ke. is dependent on the magnitude of k, but the structure is not (as long as

k is spatially uniform), and 4) when an atmospheric observational velocity field is

continuously applied to calculate k,, = kL,2, the flow is independent of initial tracer

conditions after an adjustment time (of one month). I will return to these points in

discussing my results.

These researchers also clarify the usefulness of this diagnostic. Effective

diffusivity can be calculated from a snapshot of the tracer field and the calculation itself

includes only integrals and derivatives with respect to the area A within contours. This is

advantageous because line integrals (involving edge-finding routines) are difficult to

perform numerically. In addition, the nature of the measurement is such that, although

calculated from a snapshot, it implicitly contains some 'memory' of the flow history. This

is because the tracer contours at any time are the result of all recent stirring, or a series of

recent stirring events. In these experiments a stirring event is a 'turnstile' exchange of a

dynamical lobe. In the work on atmospheric mixing mentioned above, stirring events are

often the result of large-scale wave-breaking. Effective diffusivity is not useful for

diagnosing particular stirring events; it is useful for describing the cumulative effect of

these events. (See Haynes and Shuckburgh (2000) for further discussion of the difference

between this method and other methods based on calculations of particle separation, etc.)



Procedure for Effective Diffusivity Calculations:

In these experiments the tracer is dye injected into the laboratory tank and I calculate

L 2 from digital images of the dye patterns. I prepared and spun up the tank in the manner

described in the laboratory section above. I then began injecting dye into the flow. The

dye was injected at a constant rate for a set period (twenty-three minutes), so that the

volume of dye in each case is approximately equal. The dye was injected along a radius of

the tank, close to the western wall. The distance from the wall could be varied, so that for

some runs I was feeding dye into the western boundary current and for others I was

feeding dye into the Munk recirculation. (This set-up is the same as the one used to

produce the images of lobes presented in the previous section). Some Le2 calculations are

from images taken nine minutes after the dye pump is stopped, others are taken twenty

minutes later. In the latter cases this adjustment time is much longer that the winding time

required for one recirculation of the dye around the entire pattern.

This particular procedure for initializing a tracer field in the tank has a strong effect

on the resultant Le2 . I could have chosen other procedures, such as initializing the tracer

field with some volume of dye distributed over features of interest in the flow (i.e. each of

the recirculations). This particular method proved to be the most experimentally viable, and

allows me to compare 'like' cases where the dye is released in the same location, and also

to show some interesting features of the structure by injecting the dye in slightly different

locations. These results for L,2 are therefore not meaningful in their absolute value, but

rather in their relative magnitude.

In order to guarantee consistency in the calculations, all relevant laboratory and

analysis techniques were carried out in the same manner for every run. Each digital image

was 'masked' in order to remove all dark pixels that were not dye (i.e. the dye injection

needle, the edges of the tank, etc.). I did this by creating a mask from an image taken at the

start of each run before any dye was injected into the flow. I then applied this mask to the

dyed image and use the following procedure to calculate effective length:

U]= +JJ"Vcl2dA

2 dA 2 d(4)

(d 
=2(



where the concentration value c is an integer (0-255) assigned to each pixel location in the

digitization process, C is the chosen contour of concentration (where high values of C

correspond to dark areas of dye), and A is the area enclosed by C, A(C,t).

First, the linear gradient Vc was calculated using centered finite differences (at

edges one-sided differences were used). The remaining calculation was completed in a

step-wise manner, starting at the highest value of C, which corresponds to the darkest dye

and the smallest area. For each value of C the total number of pixels with c > C gave the

area = A(C). The magnitude of IVc2 on these pixels was then summed to approximate the

area integral in the numerator of (4). When A(C) and IVc 2dA had been found for every

value of C (from 255 to 0), the two area derivatives were calculated using centered finite

differences. The last step was a conversion from pixel2 
- cm 2 to give Le2 (cm 2). This

effective length can be plotted as a function of either C or A. We can garner different

information from each and I present plots of both types below.

Results of Effective Diffusivity Calculations:

In this section I present comparisons of L2 for steady and unsteady flows with and

without hyperbolic regions. I find L2is significantly higher is unsteady flows with

hyperbolic regions than in the other cases. This is evidence of the enhanced mixing

generated by tangled manifolds and the associated turnstile lobe exchange. I show this

through a number of comparisons.

First, I compare the effective length for two steady cases: one single recirculation

(without a hyperbolic point) and one double recirculation (with a hyperbolic point).

Because the flow is steady, the change in geometry does not significantly effect mixing,

and the resultant effective lengths are similar. Next, I compare unsteady cases. With

unsteady forcing the effective lengths for double recirculation cases far outstrip those for

the single recirculations. The initial steady comparison clarifies that these differences are

not due to the higher inertia in the double recirculation geometry (8=1.25 for double,

8<1.10 for single). This difference in mixing ability is instead due to the turnstile lobe

exchange. I also present further evidence of the importance of the change in geometry by



showing a plot of L,2 VS. 3 and I end with a note about the spatial distribution of effective

length, and its component terms.

Figure K1 shows the similarity in L,2 for the steady cases. The top panel contains

L,2 plotted as a function of contour value, C. The solid line is for the single recirculation

case (6=1.00) pictured in panel b. The dashed line corresponds to the double recirculation

case (8=1.25) depicted in panel c. In both cases the dye is injected into the western part of
the Munk recirculation. (The asymmetries in the double recirculation case are discussed

above in relation to figure L1). I have noted consistent periodic minima in L,2 that appear

approximately every 12 contour values, but I am unsure of their origin. They do not affect
comparison.

Figure K2 again presents a comparison of effective length for the two geometries,
but here the flow is unsteady with A,.c=0.05. The maximum Le2 for 8=1.25 is more than

three times that for 6=1.00. Here the dye was injected into the western boundary current
outside the Munk recirculation, which gives rise to some interesting contrasts with Figure
K1. The dye was injected for 23 minutes and photos were taken at t=54 minutes. Note

that the dashed line (8=1.25) was calculated from the image shown in Figure K6, panel b.
Because the dye is injected inside the recirculation in K1 and does not mix into the

interior or boundary current, the values of effective length remain low, 0(100 cm). When

the dye is injected into the boundary current (and the flow is unsteady) Le is 0(400 cm) for

the double recirculation and 0(200 cm) for the single recirculation. In addition to these

differences in magnitude, Figure K1 and K2 differ in the distribution of L,2 . When the dye

does not mix much, the longest effective lengths remain at high contour values: the dye is
concentrated and high gradients exist in only a few locations, as in Figure K1. Figure K2,
in contrast, shows the maximum effective lengths at lower contour values, corresponding
to long, lighter, filamented dye regions. We see this shift in distribution of effective length
in other well-stirred cases.

An even more dramatic transition is depicted in Figure K3. In order to compare a

number of unsteady cases, I plot the mean value of L,2 as a function of 8 = 6, / 8, (at

t=32 minutes in panel a & and at t=54 minutes in panel b). In addition, I present the full

range of L,2 for one case at each value of 3 (panels c & d). The open circles are cases with

the dye is injected inside the western part of the Munk recirculation in each case, so that the



dye initially leaves the needle heading north, and then recirculates back south. The

asterisks represent cases with dye injected into the very middle of the Munk recirculation.

We can clearly see a sharp increase in Le2 at the transition to a double recirculation,

hyperbolic geometry around 6=1.13. Because of the existence of the hyperbolic point, the

dye pattern for the double recirculation pattern displays a complex dependence on the

location of the dye injection (even within the Munk recirculation) which I explore this

further below. The uncertainty bars in Figure K3 are based on repeated runs at 3= 1.25

and 8=0.75. The repeat runs at the former value show a much larger spread, so this range

is used as an outside estimate for uncertainty at all values of 3.

Notice in panel d the jump in total area covered by dye in the hyperbolic case,

3= 1.25. This is because only dyed pixels contribute to the calculation of effective length,

and as the dye stretches and diffuses into previously clear fluid, the total area of dyed pixels

increases (and the area of very dark pixels decreases). This is another indication of

increased stirring and mixing in the unsteady hyperbolic case.

Photos of three representative flows are presented in K4. These images are from

three of cases shown in Figure K3. From top to bottom the panels depict 8=0.75, 1.00,

and 1.25, respectively. Notice that the scale is larger on the top panel. The prominent

difference between these photos and those from the steady case is the remnant exchange

lobes evident towards in the interior in panel c. The lobes we saw in the previous section

had a thin, streakline quality, as the images were taken near the beginning of a run, t=0(10

minutes). This image shows the lobes at t=54 minutes, after enough previous lobes have

wrapped up inside the inertial recirculation that new lobes carry out only fluid that has been

imported in at some point since the dye began. The clear fluid in the center of the inertial

recirculation (still there after fifty-four minutes!) is the experimental evidence for invariant

KAM tori. Note that even with unsteady forcing the dye fills a simple recirculation area

(without lobes) in the non-hyperbolic cases.

As further evidence of the difference between the runs with and without hyperbolic

points, I present two contrasting cases in Figure K5. I compare cases with steady and

unsteady forcing in a single recirculation geometry (top panel) and double recirculation

geometry (lower panel). Effective length is plotted as a function of contour value C and

the scale on both plots is the same. We can clearly see unsteadiness has a negligible effect

on the single recirculation and a large effect on the double recirculation. In addition, this

figure contains independent measurements of L,2 from three experiments at the same



parameter settings and dye injection location (blue lines on bottom panel). These give some
idea of the uncertainty in this calculation. All three of these cases have a mean and
maximum value that is much higher than the steady case (as evidenced in Figure K3), but
their detailed structure is not consistent. This is due to a number of factors. In some cases
the tank water was used for more than run so that the contrast of the dye water to tank
water was somewhat variable. This accounts for the low values of effective length in the
range 10<C<60 for case q4: background color in the tank made the light, wispy part of the
dye pattern somewhat indistinguishable. There is also some uncertainty in the

measurement of Ar (injection location) and some variation in the rate at which dye is
pumped into the tank, and these may be the reasons that case q6 has low effective lengths at
the highest values of C (darkest dye). These runs are meant to encompass all such
experimental and laboratory variables affecting reproducibility.

In Figure K6 I illustrate the effect of injecting dye in different locations. Panel a
shows mean effective length as a function of Ar (injection location). Open circles
represent unsteady, hyperbolic cases (6= 1.25 and A,,, =0.05). Crosses represent

unsteady, non-hyperbolic cases (6<1.25 and A., =0.05). All of these measurements are at

t=54 minutes. Ar is measured in cm from the western tank wall. Photos in panels b, c, &
d show dye patterns for runs at Ar=2.5, 3.9, and 5.0.

Panel b depicts the sole case with dye injected in the western boundary current,
outside of the Munk recirculation (Ar=2.5). This image encapsulates the effect of turnstile
lobe exchanges every 131 seconds for fifty-three minutes. As the dye first left the needle it
traveled in a large circulation path outside of both recirculations, but the lobe exchange
proceeded to work the dye further and further in towards the hyperbolic point and into the
recirculations. The role of the lobes in this stirring is confirmed by runs at the same Ar in
steady hyperbolic cases and unsteady non-hyperbolic cases, during which the dye remained
on an outer path for the entire run.

The rest of the circles in panel a represent eight cases with the dye injected at

various locations within the Munk recirculation, (Ar>3.0). As mentioned above, these dye
patterns display a rich behavior in this hyperbolic case that is not apparent in the single

recirculation cases. At Ar=3.5, dye was injected in western Munk recirculation (dye

headed north initially). At 3.5 < Ar : 4.5 dye was injected into middle of Munk
recirculation and initial dye movement was very slow and in both directions. At Ar 2 5.0



the dye was injected into the eastern part of the Munk recirculation, and the dye moved

south from the needle.

Most of the runs when dye was injected into the Munk recirculation look very much

like the run in panel d (see discussion below). The only notable exception to this 'typical'

appearance is the case presented in panel c (Ar=3.9). During this interesting run, the dye

was injected into the middle of the recirculation and remained almost completely isolated

within the very center of the Munk recirculation. Faint wisps of dyed fluid did leak out into

a pattern similar to that in panel d, but these are very hard to see, and were not distinct

enough in the digital image to effect L,2 . This case results in low L,2. I presume this

pattern is due to the invariant KAM tori. If in this case I happened to inject dye inside an

invariant tori, it should never get out into the surrounding fluid, except by molecular

diffusion.

Panel d depicts a typical dye pattern for these cases. The photos in panels b & d are

astonishing in that they could almost be negatives of each other. The dye fluid in panel b

clearly marks lobes that initially carried fluid into the recirculations, while the dye in panel d

marks fluid that was exported out. Also note the small patch of clear fluid in the middle of

the inertial recirculation in panel d and the similarity between the clear region Munk

recirculation in panel b and the dyed fluid isolated in the same area in panel c. These

patterns are presumably related to the invariant KAM tori mentioned above.

We can acquire some further intuition into the structure of effective length by

considering its components. Figure K7 presents a deconstruction of L,2 for a run at

6= 1.25 and A,,, =0.05 and dye injected into the western part of the Munk recirculation.

Effective length is plotted in panel b. The linear gradient contribution, (IVc12) (see eq. 3),

is plotted in panel c and the area gradient contribution, (C A)-2, is plotted in panel d.

These terms are scaled as is L.2, so that Vc 2)(dCA = L 2 ( ). The magnitude of

the linear gradient term is clearly much larger, but the area term plays an important role at

the highest contour values. This maximum in the area term (panel c) at C=145 corresponds

to the dark regions inside the Munk recirculation and ringing the inertial recirculation (the

contours on Figure K7a are at C = 50,100, and 145). In these regions the linear gradients

are low, but there is a large jump in the area inside contours as one leaves these dark

regions and moves into the wispy, lighter contours. I suspect the linear gradients are low



and the area gradients are also low because these dark regions have become largely

homogenized. The maximum values of the linear gradient term at lower values of c

correspond to the highly contorted dye patterns in the newest exchange lobes (80 < C <
120), which are surrounded by the high gradients indicative of advective stirring. The

maximum value of L 2 (25<C<80) occurs in the older lobes which are wrapped up on the

very outside of the dye pattern. These lobes were initially due to very high advective

stirring, but now have slightly lower values of (IVcI2) and higher values of (dC )-2

than the newer lobes. I think this is due to some amount of diffusion across the high

property gradients. This hints at the complicated interplay between advection and diffusion
that results in well-mixed regions of fluid.

Figure K8 presents the same information as Figure K7, but here the dye is injected
in the western boundary current, outside of the Munk recirculation (this is the photo shown

in Figure K5b). The dye is much more well-mixed in this case, with highly striated

regions visible to the naked eye. This is shown in the magnitude of effective length, which

is 0(2-3) times the magnitude of Le2 in Figure K7. In sharp contrast to the previous case,

here the shape of L 2 as a function of C is almost completely determined by the (dC )-2

term.

In this section I have presented calculations of effective length, L,2, for steady and

unsteady flows with and without hyperbolic regions. I have shown that Le2 i significantly

higher is unsteady flows with hyperbolic regions than in the other cases. This is evidence
of the enhanced mixing generated by tangled manifolds and the associated turnstile lobe

exchange. Through use of the effective diffusivity diagnostic, kff, I have quantified the

effects of chaotic advection in a laboratory flow.

Figure Kl: Panel a presents a plot of Effective Length as a function of contour value C.
Effective Length squared Le2 in cm2 is compared for the two different geometries (single
and double recirculation) in the steady case. The dye was injected for t=23 minutes, these
photos and calculations were taken at t=54 minutes. The cases correspond to 8= 1.00
(solid line) and 8=1.25 (dashed line) and are calculated from the dye images in panels b &
c, respectively. In both cases the dye is injected near the edge of the southern Munk
recirculation.
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Figure K2: Effective length squared, L42(cmn2), as a function of contour value C for two
unsteady cases ( A,,, =0.05) with dye injected outside the recirculation in the boundary
current: a single recirculation at = 1.00 and a double recirculation at = 1.25. The dashed
line represents a hyperbolic, figure-8, flow; the solid line represents a non-hyperbolic flow.
The dye was injected for 23 minutes and photos were taken at t=54 minutes. Note that the
dashed line (6=1.25) was calculated from the image shown in Figure K6, panel b.
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Figure K3: Effective length squared, Le2 (cm 2 ), in unsteady cases presented as a function
of S (panels a &b), contour value (panel c), and area (panel d), where As c =0.05 in all
cases. Mean of L,2 calculated at t=32 minutes and 54 minutes are shown in panels a & b,
respectively (dye was injected for 23 minutes in all cases). Open circles represent cases
with dye injected into the western or eastern part of the Munk recirculation and asterisks
represent cases with dye injected into the very center of the Munk recirculation. The
uncertainty bars in Figure K3 are based on repeated runs at 6=1.25 and 6=0.75. In
panels c & d solid lines represent all single recirculation cases with 3 < 1.13, and the
dashed line represents the double recirculation case, 3= 1.25.
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Figure K4: These photos depict the change in structure of the dyed fluid as the lid forcing
is increased in unsteady cases (AoS =0.05). Photos correspond to cases in Figure K3c at
6=0.75, 1.00, and 1.25. Compare with the photos for steady case in Figure K1.
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Figure K5: Top panel: L,2 ( cm 2 ) in single recirculation, non-hyperbolic geometry, as a
function of contour value. Dye is injected within Munk recirculation at 6= 1.00. (steady
case is solid line, unsteady (A,,L =0.05) dotted). Bottom panel: Same as top panel, but for
double recirculation, hyperbolic geometry (= 1.25). Multiple (dash/dot) lines represent
three experiments at the same parameter settings.
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Figure K6: a. Mean Effective length as a function of injection location Ar for unsteady
cases ( A,,,c=0.05 for all cases). Hyperbolic cases (= 1.25) are open circles. Non-
hyperbolic cases (3<1.25) are crosses. Ar is measured in cm from the western tank wall.
Panel b shows dye injected in western boundary current (Ar=2.5). Panel c & d show dye
injected into the center and eastern parts of the Munk recirculation. (Ar=3.9 & 5.0).
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Figure K7: Breakdown of quantities contributing to effective length. Photo of run at
6= 1.25 and AMe =0.05 with dye injected in the western part of Munk recirculation with
overlaid contours at C=50, 100, and 145 is shown in panel a. This photo is used for

L,2 calculation (panel b). The linear gradient contribution, (IVc12) (see eq. 3), is plotted in

panel c and the area gradient contribution, (d %A , is plotted in panel d. These terms are

scaled as is L 2, so that lVc 2)x(CA) 2== Lc2C
/ A = (m)

100
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Figure K8: Same as Figure K7 but for a case with dye injected into the western boundary
current outside of the Munk recirculation. In this case contours in panel a are at C= 25, 75,
and 100.
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IX. Conclusion:

This thesis work was motivated by the question: Does the existence of a hyperbolic

point in a recirculation geometry radically increase the mixing in a flow? The experimental

results and analysis presented above indicate that of the two recirculations investigated, the

figure-8, hyperbolic geometry clearly results in higher mixing. Furthermore, this mixing is

due in large part to chaotic stirring by exchange lobes. Since the increased mixing in the

figure-8 geometry is due to the manifolds associated with a hyperbolic point, one important

question for future work is whether a similar type of chaotic advection occurs near

hyperbolic areas in the oceans. In this conclusion I first summarize my results, then make

some comparisons with the oceanographic observations mentioned in Sections II & III, and

finally suggest directions for possible future work.

I investigate two flow geometries in a sliced-cylinder rotating tank experiment: a

single recirculation and a double, figure-8, recirculation. The double recirculation flow

contains a hyperbolic point while the single recirculation does not. I compare these two

flows with both steady and unsteady forcing (introduced by rotating the lid at a constant or

variable rate). In the steady case, the double recirculation has a homoclinic geometry, with

the unstable manifolds of the hyperbolic point coinciding with the stable manifolds of that

same point. When some time dependence is introduced we expect that the stable and

unstable manifolds will no longer coincide, but will instead intersect (theoretically an

infinite number of times) and form exchange lobes. The single recirculation does not have

a hyperbolic point and therefore should have neither manifolds nor exchange lobes.

I demonstrate the existence and importance of these exchange lobes in the

hyperbolic laboratory flow. Their existence is shown by dying fluid near the unstable

manifold of the double recirculation. In the steady case this dye streakline traces out a

simple curve around the boundary of the inertial gyre, confirming that the stable and

unstable manifolds coincide. In the unsteady case the dye streakline forms a series of

meanders, first bending into, and then out of, the inertial recirculation. Although I am

unable to show the exact location of the stable manifold in this case, the meandering dye

clearly indicates the location and movement of the exchange lobes. In unsteady single

recirculation cases similar dye streaklines do not result in looping patterns; without a

hyperbolic point there are no exchange lobes.
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Further confirmation that the dye streakline indicates lobes in the hyperbolic case is
supplied by a time series of velocity in the tank. The time series and associated power
spectrum density clearly show unsteadiness in the flow at the lid oscillation (forcing)
period. The loops in the dye streakline are mapped onto each other (indicating exchange
lobes mapped onto the space occupied by the previous lobe) at exactly this period.

Although I am not able to trace the stable manifold directly in the laboratory, I am
able to draw a line approximating the portion of the stable manifold approaching the
hyperbolic point. This line is drawn so that the resulting lobes enclose equal areas, as they
should in a periodic flow. A 'recirculation' boundary can then be identified for the
unsteady cases by tracing the unstable manifold up to the first intersection with the line
approximating the stable manifold, and then following that line. The resulting recirculation
areas are approximately equal to the steady recirculation area, regardless of the amplitude of
unsteady forcing.

I find that the size of the resulting exchange lobes is strongly dependent on the
amplitude of the unsteady forcing. Using the lobe areas and the recirculation areas I
calculate approximate flushing times, which represent the time to replace all fluid that is

exchanged. I approximated ratios of flushing time to winding time: T / Tw = 6 at forcing

amplitude A,,. =.05 and T, / T -= 2 for A,,sc=0.15. The much larger lobes in the case with

stronger time dependence (A,,,c=0.15) give rise to a very short flushing time. These rapid

flushing times testify to the vital role lobes can play in homogenization of the recirculation
and exchange between the recirculation and other regions. In addition, I observe a region
inside the recirculation which is unaffected by the lobes and remains unmixed (and
unstirred) with its surroundings; the size of this region is much smaller in the case with
stronger unsteady forcing. This inner region is surprisingly persistent, considering the
efficiency of dye mixing in the rest of the fluid, and may be related to invariant KAM tori.

In general, these laboratory results are in line with previous analytical and numerical
work on lobe dynamics. One interesting feature of these experiments is that the forcing

period is equal to or less than the winding time, T,, required for a parcel to circumnavigate

a recirculation T, = O(,,.,). Chaotic advection is generally favored when the characteristic

Eulerian time scale, here T,,,, is much less than the Lagrangian time scale, here T, . This

time scale separation is consistent with coherent structures and persistance of hyperbolic
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trajectories over many cycles of parcel motion. However, there is not a formal requirement

that T << T,,, and, indeed, T, = O(T,,) in this laboratory experiment.

The complex dye patterns in the hyperbolic cases are dramatic demonstrations of the

effects of chaotic advection. The dye is stretched and folded into highly contorted patterns

in the hyperbolic cases, while in the non-hyperbolic cases the dye simply recirculates

around a small area. In order to quantify the results of strong or weak advective stirring on

the mixing ability of the flows, I employed a diagnostic known as effective diffusivity, IKef

and a corollary known as effective length, L,.

The squared effective length was calculated from images of dye in the tank. The

results clearly show that in steady flows the effective length is relatively low and not

strongly influenced by the existence of a hyperbolic point. With even slight time

dependence in the flow, this ceases to be true and the effective lengths for the hyperbolic

cases were much larger than those for the single recirculation. The initial steady comparison

clarifies that these differences are not due to the higher inertia in the double recirculation

geometry (8= 1.25 for double, 6<1.10 for single), but are instead due to enhanced stirring

generated by tangled manifolds and the associated turnstile lobe exchange. In addition to

comparing the mean value of effective length for different geometries, I briefly note the

spatial distribution of L2 through a discussion of the dependence of effective length on

contour value.

At the outset of this thesis I outlined a series of questions about recirculations

between a fast boundary current and a slow interior flow. The results outlined above allow

me to answer many of these questions with regards to the laboratory flow and make some

suggestions about analogues in the ocean. I can now identify how altering the geometry of

the recirculation region affects the mixing characteristics of the flow: introducing a

hyperbolic point into an unsteady flow drastically increases the advective stirring and the

overall mixing. I can also identify the important dynamics that underlie the mixing in these

laboratory flows as chaotic advection and diffusion (both molecular diffusion and double

diffusion of the tank water and the dye mixture).

I also asked other questions about the mixing along the edges of the

recirculation(s). Are particles more likely to exit back into the boundary current or into the

interior flow to the east? How quickly is the fluid inside the recirculations homogenized.

The answers to these questions are very different in the unsteady hyperbolic case than in

the non-hyperbolic and/or steady case. In the former case, the mixing is determined by the
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efficiency with which the lobes exchange fluid with the interior and boundary current and
stir fluid within the recirculation. In the latter cases the exchange with outside regions and

homogenization within the recirculation are both slow processes, largely dependent on

diffusion and the ballistic effects of varying recirculation speed at different distances from
the center of the recirculation.

In a periodic flow with homoclinic geometry (my figure-8 case), the lobes on either
side of the recirculation must have equal area, so that equal amounts of fluid should be
exchanged with both the boundary current and the interior. It appears, however, that the
lobes have very different shapes on either side of the recirculation, so that while they

transport equal amounts of fluid, the fluid is transported far into the interior, and only

barely into the boundary current. Although I did not observe the entire lobe outlines, I
confirmed that the lobes did not reach far into the boundary current by injecting dye outside
of the figure-8 into the boundary current. In these cases dye only mixed into lobes on the
interior side of the recirculations. This confirms that while the same amount of fluid should
come from (and be delivered to) the wbc and interior, only fluid on the very edge of the
wbc makes it into the recirculations, while fluid far into the interior can be captured in the

lobes. This particular homoclinic geometry has some behaviors in common with the

heteroclinic jet geometry explored by other investigators, but also shows some interesting
differences.

In a heteroclinic geometry (with periodic forcing) the lobes on either side of the
recirculation need not be the same size. Rogerson, et al. (1999) tracked lobes numerically
in a heteroclinic jet geometry and found large lobes reaching far into the 'interior' (region
away from the jet) and small lobes which did not stretch far into the jet. The authors also
found invariant regions within the recirculations (presumably KAM tori), but due to the
difference in lobe sizes, the invariant regions sat much closer to the jet edge of the
recirculations, whereas the immune regions in these homoclinic experiments appear
approximately in the middle of the recirculating region.

We would like to distill information from lab results that would be useful in both
interpreting past observations and planning future work. Almost all deep oceanographic

observations are Eulerian in nature (i.e. point measurements such as current meters or
hydrographic surveys). There are Lagrangian observations, namely float studies, but these
are rare in the deep ocean. Part of the purpose of this work was to take a step toward being
able to say something about Lagrangian effects (of chaotic advection) given a Eulerian
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(mean ) flow field. Theoretically, if we know the mean streamlines of a flow (basic

geometric configuration) and the dominant unsteady time scales, we may be able to say

whether we expect chaotic advection by lobe exchange to be important, without having to

observe it directly. In addition, we would like to be able to do the reverse, that is go from

complicated Lagrangian float track data to some picture of the Eulerian field. In locations

where floats display hyperbolic behavior, the ideas of chaotic advection might help

interpretation of complex tracks.

Needless to say, neither task is simple. The oceans are far more complicated than

the laboratory for many reasons, including the existence of multiple (and changing) time

scales and water masses. Nevertheless, I believe this work has made a contribution toward

answering the question of whether chaotic advection could occur near hyperbolic points in

the ocean. First, I have shown that exchange lobes arise in a periodic fluid flow when the

unsteady time scale is on the order of the Lagrangian time scale or winding period. This is

important since many time scales exist in the real ocean, and often unsteadiness occurs on a

period that is comparable to the local Lagrangian time scale.

Second, I was able to find the approximate shapes of lobes. My results confirm

earlier work in the heteroclinic jet geometry which indicates that stirring should reach much

further into interior than into jet. This information could be helpful in interpreting tracer

measurements. For example, these results would indicate that it would take a relatively

long time for a signal to mix from the boundary current into the recirculation, but once there

the signal would quickly spread throughout the recirculation and into the interior of the

basin. This hypothesis could be tested in the ocean by comparing the time at which a tracer

anomaly arrives at different offshore locations. This is done in the Abaco region by

Molinari, et al. 1998. Their figure 1 shows the time at which an anomalous LSW salinity

and potential temperature signal arrived at various locations within the DWBC and local

meso-scale recirculation, and may in fact indicate that the tracer spreads more rapidly

throughout the recirculation and into the interior than it did in initially moving from the

DWBC into the recirculation. Further work with this sort of data with lobe dynamics in

mind could prove fruitful.

Third, I was able to show the effects of chaotic advection in high values of effective

diffusivity. Since ~ic is a global measurement, it may be an easier diagnostic to apply to

oceanographic data, than a local, lobe-finding effort. Of course, the question remains, if

high values of K.,, are found, are they related to chaotic advection or some other efficient
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mixing process? It may be possible to answer that question by analyzing the spatial

distribution of ic. Due to uncertainty in the L, 2(C) functions, I did not attempt a detailed

analysis of the spatial distribution of icef, but work by Nakamura (1995, 1997) and

Haynes & Shuckburgh (2000) have successfully focused on identifying barriers to mixing

by analyzing the spatial distribution of Ke,. This could be helpful in identifying chaotic

advection since the spatial distribution of effective diffusivity or other measurements such

as parcel separation or variance in the velocity field will show clear spatial inhomogeneity

in fields dominated by chaotic advection. Effective diffusivity (or effective length) could be
calculated from tracer data collected in the ocean if the horizontal resolution was high

enough.

It seems likely that there are some regions in the ocean where chaotic advection

might be a vital mechanism for mixing. Any region characterized by persistent coherent

structures involving hyperbolic points may be influenced by lobe dynamics. Examples

might include the region near the Flemish Cap where the interior circulation of the Labrador

Sea meets the North Atlantic Current and the area around the San Salvador Spur at 24N.

Float tracks in both of these regions display extremely complex, and in some cases

hyperbolic, behavior. Further analysis would be required to determine whether chaotic

advection is important in these areas.

There were some questions about these tank recirculations which I was unable to

answer. These were: How is the travel time of a fluid particle affected by the presence or

absence (and type) of a recirculation? What are statistics of individual particle trajectories?
What are the Lyapunov exponents for these flows? Future work attempting to answer

these questions would be valuable and could be done by tracking the paths of individual

particles in a laboratory flow. Experiments incorporating unsteadiness on multiple time

scales might also be interesting.

The long term goal of this type of work is to decide whether chaotic advection is an

important mechanism in stirring oceanic flows. One could imagine organizing

observational programs for direct observation or re-analyzing existing data sets, in addition

to performing further laboratory experiments. If we were able to identify the effects of

chaotic advection in one region, we might be able to extend the results to other recirculation

regions, based on underlying flow configuration, unsteady time scales, etc. without direct

observations. Eventually, we would like to be able to say something about the complicated

Lagrangian trajectories excited by chaotic advection given a Eulerian mean flow and the
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relevant unsteady time scales. We would also like to be able to say something about the

Eulerian flow given the complex Lagrangian trajectories. The methods of dynamical

systems, in particular the chaotic advection mechanism of lobe dynamics, could prove

useful in meeting both of these goals.
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Appendix A: Programming of oscillating lid forcing

In this appendix I outline the mechanical apparatus and FORTRAN code used to
force the rotating lid on the sliced-cylinder laboratory tank. I first outline the mechanical
system. The differentially rotating lid of the tank is forced via a band connected to a drive
wheel. This drive wheel is rotated by a Superior Electric precision gear-head motor (model
SE23-100-M000). The motor receives commands from a Toshiba T5200/100 computer via
a MetraByte DASH-16 interface card (model 14048 REV.D3 PC6542). The motor step
distance is fixed, but by specifying the time between steps through the computer system we
are able to control the angular velocity of rotation.

For this application we desire a sinusoidal oscillation of the lid about a steady
background rotation:

A iuteady = A.(1 + A,,, sin(2,t / Toc))
Where A~ is the (user specified) background lid rotation rate in radians/sec and Aoc and
T,Sc are the amplitude and period of oscillation, respectively. I control the lid motion via a

FORTRAN code programmed to calculate time intervals between motor steps. I achieve the
sinusoidal variation about a steady state by specifying a periodic variation in time intervals
about a fixed time interval. The FORTRAN code (modified from a code originally
developed by J. Salzig and 0. Bokov) thus allows control of both the amplitude and the
period of the oscillation.

The code translates the user specified rotation into total number of motor steps by:
400

steps = oangle(radians) x -- x grr x drr x cycles
2r

where 'oangle' is the (user specified) total angular distance (of the lid) per oscillation, the
factor 400 gives the number of motor steps per gear rotation, 'grr' specifies the gear ratio
between the motor and the drive wheel, 'drr' specifies the drive ratio between the drive
wheel and the lid, and 'cycles' is the (user specified) number of oscillations. For these
experiments oangle = 2n so that T,,,c is always equal to the time it takes the lid to rotate
once. Initially other oscillation periods were used, but unsteadiness was always observed
at the rotation period, presumably due to some small imperfections in the glass lid. To.
'Cycles' is determined for each run depending on the desired run time.

The code then calculates the motor velocity in steps/sec needed to drive the steady
component of the lid rotation rate (or background rotation rate for the oscillating case):

v steps 1AK2 x 400 x grr x drr
v sec 27r

where, as above, AQ is the (user specified) lid rotation rate in radians/sec. I choose this

rotation rate in order to control 6 = , which is related to the Reynolds number of the

flow in the tank (see main text). The time to wait between each step is just the inverse of
this motor velocity: to = 1/von* For the steady case the motor movement is then
accomplished by looping through the total number of steps, each time sending a 'step'
command to the motor after a specific number of ticks on the computer clock. Our clock is
set to 100 kHz so that a step command is sent after ticks = t x 100,000.

For an oscillating velocity profile the sinusoidal component is determined from the
user specified ' Ao,,' or amplitude of oscillation as a percentage of the background rotation
rate. This component is: v' = vcon x AS,c x sin(m). Here m represents integers from 1 to
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n/4 and n is calculated by determining the minimum array size needed to capture a sine
wave of the desired amplitude(see below). Since t' = 1/ v' I can calculate the time steps
needed to arrive at a new velocity combining the steady and oscillating components:

V 1 1 t' + t
V V+- = c)n

t l t' t't

As for the steady case the motor movement is then accomplished by looping through the
total number of steps, each time sending a 'step' command to the motor after
ticks = t x 100,000 where t = 1/ v.

In constructing the actual iterative process I needed to balance two computational
limitations. I could have fully calculated the necessary time to wait upon each loop though
the stepping process, but this would have slowed the stepping process too much. I could
also have calculated and stored the entire time wait array in advance, but because the
number of motor steps required to accomplish one oscillation cycle is of order one million,
this array proved too large for memory. I instead balanced these needs by creating a
shortened command array of time steps values. This works because the amplitude of the
oscillation is small compared to the background stepping rate and the 'step' command is
given after an integer number of ticks. The necessary range is calculated using the length
of one full oscillation nz = step/ cycles by finding the maximum oscillation time step value:

-1

tmax= conx amp x sin (n 4  1)2
nz

and then finding the maximum and minimum number of ticks between steps associated
with that tm x . (i.e. ticksmax = 100,000 x ta x x tc,l/(ta x + to,)). This range of ticks then

determines the length array such that each integer value between these two is represented.
This array is produced initially and then stretched over the length of the full array during the
iterative process. In addition only one quarter of a wavelength of the sine wave is
contained in the array and is simply mirrored in the looping process as the movement is
activated.

Appendix B: Initial recirculations forced by topography in tank

In the initial stages of this investigation I considered creating recirculations along
the course of the western boundary current in a few different ways. First, I attached a
short 0(4 cm), full-depth, meridional barrier to the western wall of the tank. As the
western boundary current negotiated this obstacle it separated from the end of the barrier
and rejoined the western wall further north, so that a cyclonic recirculation formed north of
the barrier. I decided against this particular geometry because most of the observations of
recirculations along the deep western boundary currents in the ocean were offshore of the
currents. I was very interested in the interactions between the current, recirculations, and
interior flow, which this geometry did not allow.

My next attempt was to force recirculations over bumps attached to the bottom of
the tank. I chose cylinders or hemispheres a few cm in diameter and investigated the flow
with one or two bumps sitting offshore of the western boundary current. These obstacles
effectively constrained columns of fluid (Taylor columns) and the result was small-scale
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offshore recirculations. The problem with this arrangement was in fact the effectiveness of
the Taylor constraint. Very little exchange appeared to occur between the recirculating fluid
and the fluid in the boundary current. Since it was this exchange I wished to investigate, I
decided to utilize the recirculations that arise naturally in the rotating sliced-cylinder tank.
There were some clear advantages to forcing the recirculations topographically. The two
topographic recirculations were much more symmetric than the inertial and Munk
recirculations. In addition I could investigate both the single and double recirculation
geometry at identical forcing parameters (where as forcing a single Munk recirculation
required 3 = 1.00, while the double recirculation required 3 > 1.13).

Further investigation of these topographic recirculations would prove very
interesting, especially since a number of the recirculations observed along the actual deep
boundary currents in the ocean appear to be indirectly (i.e. over bumps or depressions) or
directly (i.e. by sidewalls)constrained by topography. I found the smoothest recirculation
flow when I used hemispherical bumps. In addition, the bumps needed to be transparent,
since in order to see the dye I lit the tank from below. I actually obtained the majority of
these bumps at commercial stores, where I found cat toys, plastic Easter eggs, and
packaging in the necessary shapes.
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