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Abstract

Thermohaline staircases consisting of a series of well mixed layers approximately
30 m thick are found at depths of 300-500 m in a region of the tropical North Atlantic
spanning 48 0 to 580 W, 80to 170 N. Density ratios (R, - aTz/3Sz) with values near 1
indicate a double diffusive origin for the structure (Schmitt, 1981,1986). Determining
the importance of double-diffusive mixing to the regional advection - diffusion balance
is the subject of this study. Using hydrographic and current meter data collected in
the C-SALT program of 1985 (Schmitt, 1987), we constuct inverse models in both
cartesian and density coordinates and seek bounds on the cross isopycnal mixing in the
staircase region. In cartesian coodinates, the role of diffusion was not well resolved,
probably due to inadequacy of the steady state model in the presence of eddies. By
reformulating the problem in boxes bounded by isopycnals which more closely follow
the layers, and solving directly for cross isopycnal fluxes of salt and heat, the resolution
of the diffusivities was improved. Inversions were done on data from the spring and fall
CTD surveys. The average salt diffusivity in the step region was estimated from the
isopycnal inversions to be nc, = (2.8 + 1.3)cm2 /s in spring and e, = (3.9 ± 2.2)cm2 /s
in fall.
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Chapter 1. Introduction

In the tropical Atlantic just east of Barbados well developed thermohaline staircase

structure has been noticed in hydrographic surveys for over a decade (Boyd and Perkins,

1987). The staircases in this region generally occur between depths of 200 and 800 m

and consist of a series of well mixed layers 5 to 30 m thick, separated by high gradient

interfaces across which the temperature and salinity changes by up to l0 and .2 ppt.

Typical CTD profiles from this region are shown in figure 1.

Staircases are found only in regions having a destabilizing salinity gradient and are

generally understood to be a manifestation of the salt fingering form of double diffusion

(Stern and Turner, 1969, Turner, 1973). In the western tropical North Atlantic the nec-

essary conditions are set up by the confluence of warm, salty Subtropical Underwater

(characterized by a salinity maximum at 150 m) overlying cold, fresh Antarctic Inter-

mediate water (salinity minimum at 800 m). These extrema can be easily identified in

the salinity profiles in figure 1.

Schmitt (1979) has shown that the the strength of the salt fingering depends on

the density ratio, Rp, which gives the relative contribution of temperature and salinity

to the density gradient and is defined by

aTzRP TlS

where a = -(1/p)8p/dT, j = (1/p)ap/dS, and Tz and S, are the vertical gradients

of temperature and salinity. Salt fingering can occur for values of RP between 1 and

about 100 (Stern, 1960), but is strongest for values near 1 (Schmitt and Evans, 1978),

and apparently must be less than about 1.7 for staircases to form (Schmitt, 1981).

Well developed staircases have been found under the Mediterranean outflow (eg. El-

liot et al., 1974), in the Tyrrhenean Sea (eg. Williams, 1974), in the Caribbean Sea

(Lambert and Sturges, 1977) and in a few other regions of strong salinity gradients. Al-

though extensive staircases are not common, much of the Central Water in the world's
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Figure 1. Upper: CTD profiles of temperature, salinity, oxygen and density at 12.4 0 N,
56.5 0 W. A well developed staircase can be seen between 300 and 600 db. Lower: profiles
from a station 100 km west of the station shown above. Staircase structure is barely
discernable at 350 db (from Chandler and Schmitt, 1987).



oceans probably supports vigorous salt fingering, as evidenced by R, values near 2

and irregular finestructure (Schmitt and Evans, 1978). Schmitt (1981) postulated that

double diffusion may be responsible for the form of the T-S relationship of the main

thermocline, which closely follows curves of constant Rp (Ingham, 1966).

The widespread presence of salt fingers inferred from RP values in the Central

Water, coupled with estimates of heat and salt fluxes extrapolated from laboratory

experiments, suggests that the salt fluxes due to double diffusion may be a significant

contribution to large scale mixing and the evolution of water masses (Schmitt and

Evans, 1978). This idea was supported by a study of advection and double-diffusion

in a thermohaline staircase in the eastern Caribbean Sea. Lambert and Sturges (1977)

estimated double-diffusive heat and salt fluxes by applying laboratory flux laws to ob-

served layer characteristics. They found that the vertical flux of salt could be balanced

by the horizontal advection, (assuming small vertical advection with w e 10-5 cm/s).

But advection rates were uncertain (both horizontal and vertical), and because the

intensity of fingering had never been directly measured in the ocean it was not known

whether laboratory experiments could be extrapolated to oceanic conditions.

The 1985 C-SALT field experiment was instigated by R. Schmitt to try to directly

measure the extent and intensity of salt fingering, deduce the fluxes of heat and salt

and to relate them to the large scale distribution of hydrographic properties. The

program included intense surveys of the region just east of Barbados on regional, fine

and microscales. Details of the instruments used and measurements taken are given in

Schmitt (1987). AXBT surveys of the region were done in the spring and fall of 1985

to define the distribution of the staircases. CTD surveys of a dense grid of stations

were done in the spring and fall of 1985. Figure 2 shows the location of the fall CTD

stations relative to the distribution of staircases. The spring survey, done in March

and April from the R. V. Endeavor, sampled interior stations to 2100 m and perimeter

stations to the bottom, which is generally between 4000 and 5000 m, shallowing to



1400 m in the southwest corner. The November survey from R. V. Knorr repeated the

perimeter stations and alternate northeast-southwest transects in the interior. The fall

cruise also included fine and microstructure sampling in the staircase. A mooring with

10 current meters was deployed in the center of the CTD grid during the spring survey

and removed after the fall survey.

Preliminary results of the C-SALT program are discussed in Schmitt et al. (1987).

The layers were found to be horizontally coherent over hundreds of kilometers and

individual layers (identified by thermistors on the mooring) were found to persist for at

least 8 months. Thicknesses of the interfaces between mixed layers ranged from about

.5 to 3 m, which is an order of magnitude greater than the thicknesses predicted by the

commonly used 4/3 power law (Stern, 1976) for the density flux of salt. Measurements

of dissipations and layer thicknesses in the C-SALT study support use of flux laws

based on the Stern number, which give lower fluxes and dissipation rates than the 4/3

power law used by Lambert and Sturges (1977) (Schmitt et al., 1987).

This study focuses on the role of double diffusion in the regional and mesoscale

circulation and distribution of hydrographic properties. Accordingly, we review here the

regional circulation and hydrography. The large scale property distributions, analyzed

by Wiist using the 'core method' (Wiist, 1964), clearly indicate the origin of the salinity

extrema above and below the staircases. A salinity transect through the staircase region

(from Wiist, 1964) is shown in figure 3. The salinity maximum at about 150 m depth

can be traced to its outcrop in the high evaporation region of the Sargasso Sea. Near

800 m depth, the salinity minimum of the Antarctic Intermediate water is traceable

across the equator, through the C-SALT region and into the Caribbean Sea (see eg.

Fuglister, 1960 or Wiist, 1964). Between the depths of these water masses, the water in

the C-SALT region shows T-S characteristics intermediate between those of the North

Atlantic Central Water (NACW) and the South Atlantic Central Water (SACW) (Boyd

and Perkins, 1987, Schmitt et al., 1987).
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General circulation models generally confirm Wiist's ideas about the origins of the

salinity extrema. Shown in figure 4 are diagrams of the large scale circulation produced

by Olbers et al. (1985) using a / spiral technique with the Levitus data set. At 100 m,

near the depth of the subtropical salinity maximum, water moves southwestward from

the Sargasso Sea through the C-SALT region and into the Caribbean Sea. No distinc-

tive currents through this region appear at intermediate depths, where the staircases

form. At 1000 m, the water moves northward along the coast of South America.

Although the water near 500 m looks quiescent on the regional scale, smaller

scale surveys of adjacent regions have found strong currents and eddies. Southeast of

the C-SALT region, near 50 N the northward flowing North Brazilian Coastal Current

(NBCC) turns offshore to form the Equatorial Undercurrent (Metcalf, 1968 and Bruce

and Kerling, 1984). Metcalf (1968) found that northwest of the retroflection, the water

in the 13-240 range (above about 300 m) is supplied by the North Equatorial Current

rather than by the Brazilian Coastal Current, and that the flow of water up the coast

of South America may be disrupted to depths of about 600 m. This diversion of the

NBCC is much stronger in the spring. On the opposite side of the C-SALT region,

east of the Lesser Antilles Mazeika et al. (1980) found strong currents and numerous

eddies to depths of about 700 m (figure 5). Water with T-S properties similar to those

in the C-SALT region was found in an eddy north of Barbados, but this type of water

was not detected entering the Caribbean Sea south of 150N.

In this study we use inverse methods to try to determine the importance of the

double-diffusive fluxes to the regional advection-diffusion balance. Inverse methods

provide a systematic way of incorporating hydrographic and current meter data as well

as dynamical constraints into a self-consistent model of the circulation. The C-SALT

data seems particularly well suited to this type of modeling. The CTD surveys are

synoptic and eddy resolving. We should therefore not be plagued by the sometimes

inconsistant data which arises from non-synoptic coverage of time-dependent flows
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Figure 5. Depth of the sigma theta 27.0 surface from Mazeika et al. (1980). T-S
characteristics of water at staircase depths (80 to 120) looked similar to SACW for all
stations except 36 and 37 in the north central eddy. The T-S diagram for these stations
shows the mixture of NACW and SACW characteristic of the C-SALT region about
200 km to the west.



(see Wunsch, 1978). Since the CTD stations are spaced closely enough to resolve the

eddy field, we might expect the diffusivity in the model to be representative of double-

diffusion rather than a parameterization of sub-grid scale eddies.

We impose mass, heat and salt balance constraints and assume geostrophic dy-

namics. Our model is steady state. Even with spring and fall CTD surveys, we do not

know the detailed time evolution of the fields. From the tracer and dynamic constraints

and the current meter observations, we determine the reference level velocities and in-

vestigate the role of diffusion in the regional dynamics. Inversions are first done using

rectangular boxes bounded by pressure surfaces. We attempt to solve for horizontal

and vertical reference level velocities and separate heat and salt diffusivities. Since the

data are closely spaced we can formulate the inverse problem in finite difference form, as

done by Tziperman (1987) and Olbers et al. (1985). This form allows computation of

tracer gradients which appear in the diffusion terms of the equations. Although neither

of these two previous studies found satisfactory resolution of vertical velocities or dif-

fusivities, Olbers used a non-synoptic data set and Tziperman's data from the eastern

Mediterranean contained sub-grid scale eddies. We expect better resolution with the

C-SALT data set. After finding a solution in the cartesian formulation we reformulate

the problem in boxes bounded by isopycnals and attempt to solve directly for the cross

isopycnal mass, heat and salt fluxes. Thermohaline staircases have been found to more

closely follow isopycnals than isobars, so isopycnals provide a more natural coordinate

system for studying the role of double diffusion.

In Chapter 2, maps of the data on pressure surfaces and isopycnals are presented,

and the geostrophic velocities relative to 1000 m are shown and compared with the

current meter records. The problem of integrating the current meter data with the

hydrographic data is discussed. Chapter 3 includes formulation and results of the

pressure surface inversions for both spring and fall data sets. In chapter 4, the isopycnal



formulation is described and the results of the inversions are presented. Chapter 5

contains a summary and comparison of the two formulations.



Chapter 2. The Data

The available data include spring and fall CTD surveys (including oxygen) of the

control volume shown in figure 2. Station spacing was 56km in the spring. Because the

CTD survey lines run diagonally northeast to southwest, we first map the tracer data

onto a north-east grid to facilitate inclusion of beta in the model dynamics. Interpo-

lation for the mapping was done using the objective mapping scheme of Bretherton,

Davis and Fandry (1976). The mapping procedure is described in section 2.1. Since in-

versions are done using boxes bounded by both isobars and isopycnals, we need to map

the tracers onto regular grids on both isobaric and isopycnal surfaces. A set of maps

of temperature and salinity are made for each type of surface. In section 2.2, tracers

and relative geostrophic velocities on isobars are shown, and section 2.3 contains the

corresponding maps on isopycnal surfaces. In section 2.4 the current meter data are

presented and the use of these constraints on the reference level velocities is discussed.



2.1 Objective Mapping of Tracer Fields

In the objective mapping interp3lation scheme, the value of the field at a point xr

is expressed as a linear combination of the values at neighboring points x .Smoothing

is determined by specifying the correlation function between neighboring points. We

assume for the correlation a Gaussian function of the distance between points, as was

used by Roemmich (1983). The expression for the field 0 at a point xr is, following

Bretherton et al. (1976),

(xr) = + Cr l(I) ) (2.1)

with the summation being over all CTD station locations, _x. € is the objective mean,

a spatial average over all the observations, defined in Bretherton et al. (1976) as

i~ F-j1  (2.2)

Fij is a square matrix containing the expected products of the observed field at points

x and _j,

Fij =< O(xi)(_j) > +bijE (2.3)

where E is the observational error in each measurement. Cir is a matrix containing

the expected products of the measured field and the field interpolated to points (Ir),

Cir =< 0(i)(r)>. (2.4)

The correlation function is taken to be

< ) j) >= 4

where d is the distance between xs and x, and I is the correlation length scale. The

correlation length was chosen to be 100 km, which smooths both data sets to approxi-

mately the distance between stations in the fall survey, and preserves the eddy signal.
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The error, E, in each CTD measurement was estimated to be 0.01k , or about 12%

of the measured field. The resultant variance in the mapped tracer fields is estimated

from (Bretherton et al., 1976)

(1 - Eij Cr.F 1)2

(0(0r) - 1obe (r)) 2 = C,,rr - CiFi 1Cjr + F (2.5)

To keep the mapping error to a minimum in the inversion procedure, we have evaluated

tracer balances only within the region where the resultant tracer variance is less than

about 10%, shown in figure 6.

2.2 Cartesian Mapping

After vertically averaging over 40 db, maps of the tracers are made every 50 db in

pressure down to 700 db, then every 100 db below. The tracers, smoothed horizontally

with the 100 km correlation length scale, are then mapped onto the north-east aligned

grid with spacing of 1/20, or about 55 km, which is close to the original CTD station

spacing in the spring survey.

A schematic of the staggered grid used in the finite difference formulation is shown

in figure 7. Density will be obtained from the mapped temperature and salinity at

the center and upper right hand corner of each cell. Horizontal geostrophic velocities

are computed on the north and south edges (v) and east and west edges (u). Vertical

velocites are computed in the centers of the top and bottom faces of the cells.

Maps of the temperature and salinity fields at 400 and 800 db for spring and fall

CTD surveys are shown in figures 8-11. Although the most noticeable feature is the

eddy field, there is also a north-south gradient in the mean fields, the water being

generally warmer and saltier in the north. Between the spring and fall data sets there

is also a cooling and freshening trend in the mean temperature and salinity fields at

each depth. At 300 db the spring to fall change is about -0.4 0 and -.Olppt and tapers

off to zero near 700 db.
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Geostrophic Velocities

Geost.ophic velocities relative to reference level zo are computed from the inte-

grated thermal wind equations

Urel - py dz
f PO 0 (2.6)

vrel - P p dz.

Velocites were computed from integrals of the density (derived from the mapped trac-

ers) at each 1/2 0 gridpoint. Details of the finite difference scheme are given in section

3.2. The reference level used is 1000m, where, below the core of the Antarctic interme-

diate water, we are assuming velocities are small. The reference level velocities then

should not be much larger than a few cm/s.

The horizontal relative velocity fields at 400 and 800 db are shown for spring and

fall in figures 12 and 13. Both spring and fall fields exhibit energetic eddies embedded

in a generally southwestward flow of a few cm/s. The mean flow at 400 db is small, as

the general circulation models indicate. At shallower depths the mean westward flow is

stronger, as are the eddies. A mean velocity field at 800 db is difficult to discern. The

relative flow at that depth does not exhibit the northward flow of about 2 cm/s that

Olbers et al. (1985) found. The eddies have velocities 1 to 2 cm/s faster in the spring.

We have computed stream lines from the horizontal velocity fields to help visualize the

flow, and a comparison of spring and fall flow fields at 400 db is shown in figure 14.

The stream lines were constructed by integrating v in the eastward direction and u in

the northward direction.
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2.3 Isopycnal Mapping

The 1 db pressure sorted CTD data, temperture, salinity, oxygen and dynamic

height was first running averaged over 10 db in depth, then linearly interpolated in

z for values on the isopycnal surfaces. At the sigma theta levels used in the inverse

model, a0 = 24.5, 26.0, 26.5, 26.8, 26.9, 27.0, 27.1, 27.2, 27.3, and 27.4, tracers were

objectively mapped onto the 1/2 degree square grid. The levels were chosen to define

the thermohaline staircases, which are generally confined between 26.8 and 27.2. Maps

of pressure, temperature and salinity for spring and fall data sets on sigma theta 26.9

are shown in figures 15-18. Figure 15 shows the pressure at sigma theta 27.0 for spring

and fall. On average, each isopycnal surface is about 30 db shallower in the fall than in

spring, reflecting the cooling and freshening trend seen on the pressure surfaces. The

average temperature and salinity on isopycnals does not vary significantly between

spring and fall.

Geostrophic Velocities

Relative geostrophic velocities evaluated on isopycnals were computed from the

dynamic height 4 on isopycnals. 4 was first computed on isobars by summing over the

specific volume anomalies, 6,

€ = - S 6 dpi

then interpolated onto isopycnals and objectively mapped to grid points. Horizontal

velocites (not along-isopycnal) were evaluated from

1 8= _ 1 [ a + ao8z
fx z f a"x a z a (2.7)

1 ao = 1 ao€ + a, OZ
" f az f By + d(zy

The reference level used was sigma theta 27.4, which lies at an average pressure

of 947 db in the spring and 914 db in the fall. This depth is slightly shallower than

in the isobaric formulation. Relative velocities on isopycnals look very similar to those
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at corresponding depths on isobars, hence are not shown. The velocity shear between

sigma theta 26.9 and 27.1 (staircase depths) is generally less than 2 cm/s in both the

spring and fall.

2.4. Current Meter Data

The mooring, located at approximately the center of the CTD survey grid, con-

tained 8 current meters within the step region, 335 and 415 m, with 2 additional meters

at 170 m and 850 m. Progressive vector diagrams constructed by H. Perkins of NORDA

for the 350m and 850m records are shown in figure 18. The 8 closely spaced current me-

ters showed very little shear, hence the 350m record is quite representative. The deep

record is also coherent in direction with the shallower ones, but the currents generally

have slightly smaller amplitudes than the shallower ones. The most striking feature

of the current meter records is the strong time variability. This result emphasizes the

obvious difficulty in trying to incorporate such data into a steady state model. In try-

ing to select the most appropriate time interval over which to average the data for the

inversion, we see that not only the duration, but the starting point of the average will

determine the values we obtain.

We have considered three of the many possible schemes for temporally averaging

the current meter data, and tabulate the velocities and standard deviations obtained

with each averaging scheme in table 1. The first method is to average over the time

during which the CTD surveys were done, giving an 11 day average in the spring

(while the spring survey took 18 days, only the last 11 days coincided with current

meter operation) and a 13 day average in the fall.

Another possible averaging scheme is to choose a time interval by scaling arguments

to correspond to the 100 km smoothing of the hydrographic data. With velocities of

about 5 cm/s, this time interval is approximately 30 days, and the starting time was

chosen to center the interval about the CTD survey as much as possible. This procedure
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Time Interval 350 m 415 m 850 m

U,V U,V U,V
Spring 30 day 1(±4) , 1(±4) 1(±3) , 2(+4) 0(±3) , 4(±3)
Spring 11 day -2(±3) , 1(±5) -2(±2) , 3(±4) -2(±2) , 6(±3)

Fall 30 day -13(±5) , 5(±7) -16(±5) , 7(±9) -8(±4) , 6(±6)
Fall 13 day -11(±4), 6(±5) -16(±3) , 10(±5) -6(±4) , 10(±6)

Whole Record -1(+6) ,-2(+9) -2(+8) ,-2(±11) 0(+5) , 0(±8)

Table 1. Current meter velocities at depths 350, 415 and 850 m using the 3 averaging
schemes discussed in the text. Standard deviations are given in parenthesis. Values at
350 m are an average over the 6 instruments between 335 and 365 m. (data courtesy
of H. Perkins of the Naval Ocean Research and Development Activity)

gives very small spring velocities since the current frequently changes direction, and

large fall velocities nearly identical to the 13 day average, since the currents are steadily

northwestward over that interval.

The third interval considered was an average over the entire 244 days of the current

meter records. This gives much smaller velocities which are more consistant with the

magnitude of the thermal wind velocities, but it is not apparent from the current meter

records that even such a long interval represents any real steady state average.

None of these averaging intervals is entirely satisfactory. The long time average

is probably not appropriate since both spring and fall CTD surveys resolve individual

eddies, yet the 244 day interval gives velocities averaged over the passage of several

eddies. We find that with the large variances obtained using this averaging interval,

the current meter observations are not significantly different from the solutions found

without current meter constraints. The same was true for the short term averages in

the spring. In the fall however, the eddy persisting over the mooring for over 30 days

has significantly larger velocities than the relative geostrophic velocites found at the

site (compare figure 13 with table 1). Reference level velocities of 6 to 10 cm/s are

required to satisfy the current meter constraints. Inversions described in section 3.4



indicate that these current meter data may not be consistent with a steady state model

and the 100 km smoothing of the hydrographic data.



Chapter 3. Cartesian Inversions

3.1 Model Dynamics

The basic idea employed is to construct the simplest steady state advection-

diffusion model which is geostrophic, mass conserving, and is consistent with all tracer

and velocity measurements. By incorporating the required constraints on the velocity

field into the tracer advection-diffusion balance, we form a linear system of equations

in the reference level velocities and diffusivities, which can be solved by standard linear

inverse methods. Except for the addition of diffusivity, the formulation of the equations

is similar to that used by Wunsch (1978).

The dynamics imposed are the geostrophic balance

1
fu = - p,

Po1 (3.1)
fv -= -P s

Po

which with the hydrostatic balance

Pz = -9g

yields the thermal wind equations

g

= (3.2)
Vz = f PoP.

We also require mass conservation

us + vy + Wz = 0. (3.3)

The linear vorticity balance,

pv = f w. (3.4)

must also hold since it is derived from (3.1) and (3.3).



The steady state advection-diffusion balance for temperature T, (and similarly for

salinity) can be written using (3.3) in the form

V- (T) - V ( .-VT) = 0 (3.5)

The tensor form is used for the diffusivities to allow parameterization of along and

across isopycnal components rather than just horizontal and vertical. The elements of

the diffusivity tensor can be written (Olbers et al., 1985) as

T. = A 6i,j + (A' - Af) Dij

where

D i= a ia
D - ] aaJ2

AT and AT are along and across isopycnal diffusivities of heat, and dia is the ith

derivative of potential density. The diffusivity can be allowed to vary vertically.

The velocity field is divided into relative and reference components,

u = uo(x, y, zo) + urel
(3.6)

v = vo(X, y, zo) + vrel

and the advection by the relative parts, which are derived from the density fields, are

moved to the right hand side of equation (3.5) to form a linear equation for the reference

velocities.

It is convenient to also define a wret, which contains the vertical structure of w

obtained from the relative horizontal velocities, eliminating the need to solve for w at

each level. Vertical velocity can be partitioned in either of two ways, depending on

whether it is computed from the continuity equation, (3.3) or from the linear vorticity

balance, (3.4). Which ever way w is obtained, an additional constraint on the horizontal

reference level velocities will be needed to insure that all constraints, (3.1), (3.3) and

(3.4), are satisfied by the total velocity field.



Method 1:

w is computed from the continuity equation,

(uX + vy + wz) = 0.

Integrating over z and using (3.6), this gives

W = ref (X,, zo) - (uo, + vo,) )(z - zo) - 0(Ure,x + Vre,,y) dz

from which we can define

wo - Wef - (uo,' + vo,Y)(z - zo)

Wrelt - L(Uret,x + Vre,y) dz. (3.7)

The total velocity field (relative plus reference) then identically satisfies the continuity

equation, but not necessarily the linear vorticity equation (3.4), which using (3.6) and

(3.7) can be written as

P(vo + vrei) = f(wo + wre,)z. (3.8)

Notice that by the thermal wind equations (2.6), the relative velocities separately satisfy

the vorticity equation,

Urel,x + Vrel,y - Px dz - vrel ,

so that from (3.7),

SVrei = f Wret,z- (3.9)

Substituting (3.7) into (3.8), then subtracting off (3.9), we find

V0o = -f (uo,x + Vo,y) (3.10)

is the necessary additional constraint on the reference velocities.

Method 2:



w is computed from the vorticity balance,

pv = f wz.

Integrating in z and using (3.6), we get

W = wref(z, y, ) + V(Z - )+ , d

from which we can define

WO - Wref + - o(z - Z)

Wrel - Vr drez 
(3.11)

With w computed from (3.11), the total velocity field then identically satisfies the

vorticity equation, but does not automatically satisfy the continuity equation. We

therefore need to require

(uo + ureL)x + (vo + vre,)y + (wo + wrel)z = 0. (3.12)

Substituting (3.11) and (3.9) into (3.12), we find the constraint on the horizontal ref-

erence velocities is again equation (3.10).

Although it may appear that the second method is preferable since it avoids dif-

ferentation of the horizontal velocities, it is shown in the next section that in the finite

difference formulation these methods are essentially equivalent. In this study, w will

be obtained from the continuity equation. Since we are using the flux form (3.5) of the

tracer equations (that is, V - (uT) rather than u VT) it seems that mass should be

balanced exactly before we attempt to reduce the tracer imbalances in the inversion.

Any mass imbalance would also cause apparent tracer imbalances.

With the velocity field separated into relative and reference parts, the tracer equa-

tions (3.5) are now linear in the unknowns, u 0o, vo, Wref , AT" and AT . With the



integrated form of the equations, the finite difference formulation is exactly mass con-

serving. Using the Divergence Theorem and the definition of the diffusivity tensor,

(3.5) becomes

(RoT) - ds - AT (bi - Dij) + AT D ~]j ds = (
boundary boundary (3.13)

- J( reT) - ds.
- boundary( T) s.

We will have one equation of the form (3.13) for each tracer in each box at each

level. There is also one constraint equation of the form (3.10) for each horizontal

location:

J/ vo dx dy dz = - f(uo,; + vo,y) dx dy dz. (3.14)

Current Meter Constraint Equations

In this section we describe how the velocities measured at the current meter moor-

ing are included as an additional constraint on the reference level velocities at sur-

rounding points. We require that the total velocity field (relative plus reference), when

interpolated to the location of the mooring, be consistent with the current meter ob-

servations. The interpolation is done by objective mapping as for the tracer fields.

At the current meter location, Xm , the velocity is the sum of the relative and

reference velocities:
Ure(Im) + UO(Am) = U(~,m)

(3.15)
Vre(XM) + VO(m) = V( m ).

Expressing Urel (xm) and uo(xm) as a linear combination of the surrounding points,

the expression for u at each depth (and similarly for v) is (again following Bretherton

et al., 1976)
Urel (_) = i + z CiF l( u ' (relj) - 3)

U j (3.16)

I 3



where the sum is over gridpoints lying within 2 correlation length scales of the mooring.

i is the objective mean (2.2) of the relative velocity at each depth, and Ci and Fij are

expected products as in equations (2.3) and (2.4). Here C is a vector since we are

only interpolating to one point, the mooring location. The correlation length scale was

again chosen to be 100 km in keeping with the tracer length scale. Substituting (3.16)

into (3.15), we get equations for the observed current meter velocities in terms of the

relative and reference velocities at grid locations. The constraint equations then can be

written, putting the unknown reference velocities on the left hand side and the known

relative velocities and current meter velocities on the right hand side, as

E C&Ft'1uo(i) = - C i 1 (u.rei (1j) - ii) + u (,x.) - -9

j ;j (3.17)

Z CiFi-'vo(;E) CiFj'(Vrei(x3 ) - F) + V(_m) -
i j I j

Two equations of the form (3.17) are written for each depth where we wish to impose

current meter constraints. We have vertically averaged the velocities over the 8 instru-

ments between 265 m and 380 m, and impose constraints at levels 350 m, 400 m and

at 800 m.

Equations (3.13), (3.14) and (3.17) are written matrix form as Ay = b, where y

is comprised of the reference velocities and diffusion coefficients, A is the matrix of

coefficients, and b contains the advection by the relative velocities. The equations are

written in finite difference form in section 3.2.



3.2 Finite Difference Formulation

In this section capital letters will refer to the velocities computed on the grid.

Refering to figure 7, the horizontal relative geostrophic velocities are computed as

follows:
9 (f P, - P2)

UrelE
Po fM AY

9 (f P4 - f P3)
UrelW =

Po fM AY
g ((3.18)

- (f P1 - f P4)
VrelN =

Po fN AXN

9 (f P2 - f P3)
Vr el S -

Po fs AXs

where

] pj Z p(zk)dzk
f P k=kZo

and i denotes the edge; i = 1 in the northeast corner and increases clockwise.

Finite difference forms for calculating Wre by each method are given to demon-

strate that they are equivalent.

Method 1):

(Wre,, - WreL) AXM AY = -(UE - Uw) AY AZ - (VNAXN - VsAXs) AZ-

Using definitions (3.18) and rearranging gives

gAZ [f Pl(-fN + fM) f P2 (-fM + fs)
WreL - WreL = PO AXM AY fM N fMfs

+ fP3(fM - fs) + fP4 (fN - fM)

fM fs fM fN

Method 2):

WrelU - Wrelt _ (VN + Vs)

AZ fM 2

Using (3.14), this becomes

W AZ - f P - + P2 f PX ff
WtelU - WreL f +  f +  f +  f

2 f f AXN fm fs AXs fm fs AXs fM IN AX ]



We see that the difference between the two methods amounts to the approxima-

tions, AXN ; AXk4 and 3 m (fN - fa)I(AY/2) at the northern edge of the cell, and

at the southern edge, AXs n AXM and p (fM - fs)/(AY/2), and therefore they

are numerically equivalent.

The finite difference form of the tracer balance equations (3.13) with constant

cross-isopycnal diffusivity is as follows:

[(Uo T)E -(Uo T)w] AYAZ + [(Vo T)N AXN - (Vo T)s AXs] AZ

+ [(Wo T)u - (Wo T)L] AXM AY

-ATc[[(DO T + DxT, + DxzTz)E

- (DxTx + DyTy + D=zTz)w] AYAZ

- [(D,,xT + D,,T, + DyzTz)N AXN

(3.19)
- (D,,T, + D,,T + DyzTz)s AXs] AZ

- [(DzT + DazT, + DzTZ)u r

- (DZT, + DzT, + DzzTz)L] AYAXM]

= [(Ure T)E - (Urel T)w] AYAZ + [(Vre, T)N AXN - (Vre T)s AXs] AZ

+ [(Wre, T)U - (Wre T)L] AXM AY.

Capital subscripts, N,S,E,W,U and L indicate the side on which the quantity is evalu-

ated and small subscripts, x,y and z denote (finite difference) derivatives which are not

written out explicitly. Vertical variation in diffusivity can be represented by a sum of

Chebyshev polynomials replacing the constant diffusivities in (3.19),
L

A7 (z) = aTi (z).
1=0

The finite difference form of the vorticity equation constraint, (3.14), is after slight

rearrangement

(UOE - UOW)AYAZ + VON( AXM YAZ+ AXNAZ)

2fm" (3.20)

+ Vos( 2- -AXMAYAZ + AXsAZ) = 0.
2fM



(3.19) and (3.20) and the current meter constraint equations, (3.17) are the equa-

tions to be inverted for the reference velocities and diffusivities.

3.3 The SVD Solution

The constraint equations, (3.13), (3.14) and (3.17), are combined into a linear

system of m equations in the n unknown reference velocities and diffusivities, and

written in matrix form as

Ay = b.

y is a column vector composed of Uo, Vo, and W,,f at each horizontal location, and the

diffusion coefficients AT and AT. The solution is obtained by singular-value decom-

position, which for underdetermined systems provides the minimum length solution,

that is, no structure is introduced which is not required by the data. The advantage

of singular-value decomposition is that in addition to the solution and an estimate of

its variance, one also obtains detailed information about how well individual variables

can be resolved and which equations provide the most information.

Before solving, the matrix must be normalized to prevent unintentional emphasis

on a particular variable or equation. The inversion procedure will preferentially adjust

parameters with large coefficients, and will more exactly satisfy equations with large

coefficients. The columns are therefore normalized by the inverse of the square root of

the column length to encourage the (weighted) solution to come out to be order 1, and

the rows are nondimensionalized by dividing by the row length.

The matrix can then be systematically weighted by column and row. The matrix

was weighted by column to reflect the expected size of each parameter so that within

each equation, the coefficients are all the same order of magnitude. This way, no one

variable dominates the solution. In this problem wref was weighted by 10- 4 , and u,rf,

vref and A, were weighted by 1. In experiments using horizontal diffusion, Al was

weighted by 106. The equations are weighted by row according to the confidence one



has in each constraint. The tracer balance equations have been given equal weight

since there was no apriori reason to prefer a particular tracer or particular depth. The

vorticity constraint was also weighted by 1. Where current meter constraints were

used, those equations were weighted by 0.5 to reflect the large variances in the current

meter observations.

The mathematics of SVD is derived in detail in Lanczos (1961) and in Wunsch

(1978) so we will only outline it here. The basic idea is that the matrix A can be de-

composed into the product of 3 matrices, A = UAVT, where the U matrix is composed

of the m eigenvectors, u, of the m x m matrix AAT, the V matrix is composed of the n

eigenvectors, v, of the n x n matrix ATA, and A is a diagonal matrix containing the k

nonzero eigenvalues, XA, of the coupled U-V system, in order of decreasing magnitude.

Since the v span the n dimensional solution space, the solution, ^ can be expressed as

their linear combination. The solution can be written in the form (Wunsch, 1978)

k UT.y Zn, (3.21)

i=1 i=k+l

The solution is constructed by a summation over terms of increasingly complex

structure, over the k terms corresponding to the k nonzero eigenvalues. In practice, with

noise in the system, the eigenvalues never reach zero and one must choose a cutoff value

for the summation, that is, an "effective" rank of the system. The second summation,

over i = k + 1, n, contains that part of the solution proportional to the v which

are orthogonal to the matrix A, ie, about which A has no information, hence (in the

absence of inequality constraints) is set equal to zero for the minimum length solution.

k is chosen by balancing the increasing variance of the solution with the successively

better fit of the solution to the equations. The residuals, r, defined as r - AA - b,

provide a measure of how well the solution satisfies the constraint equations. Each

additional term reduces the residuals, but at the expense of increased variance of the

solution due to noise in the observations. The choice of effective rank was made by



plotting the average residuals (for all the equations) versus the average variance (for

all the variables) and looking for the optimal rank with regard to residuals and error.

In the next two subsections we discuss how the solution variance is defined and what

constitutes an acceptable level of residuals.

Solution Variance

The variance of the solution has two contributions, that due to noise in the data,

and that due to incomplete resolution. With three assumptions about the noise field,

that the noise has zero mean, is uncorrelated from measurement to measurement and

has average standard deviation of o, Wiggins (1972) has shown that the variance of

the estimate b of the pth variable due to noise in the observations can be expressed as

k V2
< (bp bp)2 >= a 2  A (3.22)

i=1

where a 2 can be estimated from the residuals r at rank k as

2 _ Ir1
mrn- k

Note that the variance due to noise becomes increasingly magnified (as 1/ A?) as the

summation progresses.

The resolution matrix VVT provides a measure of how well individual parameters

are resolved, that is, whether they are being determined individually or in combination

with other nearby parameters (see Wiggins, 1972 or Wunsch, 1978). The resolution

of a particular variable is indicated by the corresponding diagonal term in VVT. A

value of 1 on the diagonal signifies perfect resolution of that variable. The error due

to failure to resolve can be expressed as

< (b - b) 2 >= [(VVT - I)btrue]2  (3.23)

where the magnitude of bt,,e can be assumed to be of order 1, since the matrix has

been weighted for this result. The closer that VVT is to the identity matrix, I, the



Depth Expected Error Eddy Variability Seasonal Variability

AT,AS AT,AS AT,AS

250 2.1 , .35 2.0 , .50 -1.0 , -. 20

350 1.2 , .20 1.5 ,.30 -. 5 ,-.10
400 .8 , .10 1.0 , .20 - .4 ,-.05
500 .7 , .10 1.0 ,.15 -. 4 ,-.06
700 .4 , .02 .5 , .05 -. 1 , .00

800 .2 , .01 .4 ,.02 -. 2 ,-.01

Table 2: Expected magnitude of temperature and salinity residuals as a function of
depth (computed in the appendix). Also tabulated are expected error in the equations
from the eddy time variability (estimated from the tracer maps) and the long term
time variability (from differences in the mean temperature and salinity from spring to
fall) at each depth.

smaller the resolution error. The total solution variance then is the sum of the two

effects, (3.22) and (3.23):

k V2

< (, - b > + [(VVT - I)bt,,,] 2  (3.24)
i=1 i

We choose the effective rank, k, such that the standard deviation of the solution is

generally smaller than the magnitude of the solution, to the extent that the data will

permit.

Residuals

Ideally, for a steady state problem with no errors in the observations, the residuals

could be reduced to zero by a model incorporating all relevant dynamics. However

the errors in the CTD data, and consequently in the relative velocity field will pro-

duce irreducible residuals. The expected size of these residuals due to observational

error is estimated in the appendix, and tabulated as a function of depth in table 2.

Residuals of the conservation equations are expressed in terms of the temperature and

salinity imbalances (in degrees and ppt) which would accumulate over 6 months per

unit volume.



For a term to be neglected in the advection-diffusion equation, it must be smaller

in magnitude than the expected error, that is, below the noise level. The validity of

neglecting the time derivative term can be examined by estimating the contributions

from both the seasonal change in the average tracer fields, and the local change due

to eddies. The seasonal average change is only about half the expected error and

is therefore probably negligible (table 2), but the eddy variability is about the same

magnitude as the expected error and may be significant in the advection-diffusion

equation. At 400 m depth, the expected residuals due to error are about 0.8 degrees

and 0.08 ppt over 6 months, while the possible change in the temperature and salinity

fields due to an eddy passing through the control volume is about 1 degree and .2

ppt. The values of eddy variability in table 2 are probably upper bounds since they

were estimated using the strongest gradients in the mapped region. Since we have no

information about the paths of individual eddies, we omit the time derivative term, but

must check the validity of any steady state solution by making certain that the final

residuals are consistant with the original assumptions. We check that the temperature

and salinity residuals are randomly distributed in space about a zero mean. Structure

remaining in the residuals after the inversion signifies that the model is not including

all the relevant dynamics. We also average the residuals for each tracer at each depth

and compare the resultant standard deviations with the expected error in the equations

given in table 2. The magnitudes must be comparable for an acceptable solution.



3.4. Results of Inversions

Six levels were chosen for evaluation of the tracer balances. Additional levels were

found to be redundant. The levels used are centered at 250, 350, 400, 500, 700 and

800 db (figure 19). This distribution avoids the upper layers which may be affected by

unknown surface fluxes, and gives good coverage in the step region and in the Antarctic

Intermediate water below. The 350 and 400 db levels were chosen because the current

meter records suggested that there might be significant shear in this pressure interval,

but were actually found to provide redundant information in the inversions.

Our starting model which will be adjusted by the inversion procedure is that of zero

reference level velocities. Values of the horizontally averaged temperature and salinity

residuals at each level are given for this initial model for spring and fall data sets in

table 3. Comparing the standard deviation of the starting residuals with the expected

error at each depth (table 2), it is clear that the starting model generates unacceptably

large residuals distributed about a large negative mean. The data requires, at the least,

a non-zero reference level velocity. The spring initial residuals are somewhat larger than

the fall residuals, indicating that larger adjustments to the initial model are required.

The results from the fall and spring data sets will be presented separately.

We will present the results of 3 inversions for the fall data set, and 2 for the spring.

The first model for each data set will be adiabatic, that is without diffusivities. The

residuals are checked for consistency with the original assumptions, that is, a random

distribution about zero mean and an average magnitude consistent with the estimated

error in the original equations. Solutions will then be sought with vertically varying

cross isopycnal diffusivities of heat and salt. Finally, for the fall data set, solutions

with the addition of the 30 day averaged current meter constraints will be presented.

Fall Solutions

Temperature and salinity balances in 9 boxes (shown in figure 6) at 6 depths along

with 1 vorticity constraint in each box gives a system of 117 equations in 34 unknown



100
200
300

- 400
-C 500

600
Q' 700

800
900

1000

Step
Region

Reference
Level

Figure 19. Profile of grid on which tracer balances were evaluated.



Fall

Depth T Residuals S Residuals

250 -1.49 (6.79) -.32 (1.31)
350 -1.39 (4.02) -.27 ( .74)
400 -1.46 (2.98) -.26 (.53)
500 -. 69 (2.12) -. 10 (.36)
700 -. 31 (.90) -.05 (.10)
800 - .08 (.69) .01 (.10)

Spring

250 -4.86 (8.61) -.89 (1.64)
350 -3.92 (6.69) -.69 (1.23)
400 -4.20 (5.57) -.79 (1.09)
500 -1.68 (2.16) -.39 (.49)
700 - .43 (1.92) -.11 (.23)
800 -. 10 (1.60) -. 02 (.19)

Table 3: Initial residuals for
parentheses.

fall and spring data sets. Standard deviations given in

reference velocities. For the first solution found, the adiabatic one, the effective rank

of the system was chosen to be 31. Resolution of all the variables, as measured by

diagonal elements of VVT (equation 3.23), is close to 1 (in general, > .8).

The horizontal reference level velocities and their standard deviations from (3.24)

are shown along with the total velocity field at 400 db in figure 20. Reference level

velocities in general act to reduce the largest geostrophic velocities at 400 db (compare

figure 20 with figure 13). The balance of terms in the temperature and salinity equations

averaged over all the boxes is shown in figure 21. The balance is such that the sum of the

horizontal advection terms (term 3) balances the vertical advection (term 4), leaving

spatially averaged residuals (squares) distributed about small mean values (compared to

the estimated error in table 3). This average profile of the terms is quite representative

of the balance in any individual box. The final distribution of residuals appears to

be randomly distributed in space. Profiles of the final residuals of the temperature



equations (salinity residuals are similarly distributed) are shown for each of the 9 boxes

in figure 22. The standard deviations of the temperature and salinity residuals at each

depth are shown in figure 23 and appear to be consistant with the expected error in

table 2.

Although the balance of terms is between horizontal and vertical advection, vertical

velocities individually have very large error bars (figure 24). We found vertical velocities

between 10 - 4 and 10-3cm/s, one to two orders of magnitude larger than the value that

Lambert and Sturges (1977) assumed for their estimates of the advection-diffusion

balance in the Caribbean. But variances of the vertical velocities, (coming about

equally from the variance on wo, equation (3.24), and from the error in w,rl estimated

in the appendix) are so large as to make the values generally indistinguishable from

zero. At the chosen rank, the diagonal elements of VVT corresponding to wo are near 1,

signifying that vertical velocity is well resolved. However, examination of VVT at earlier

ranks shows that the horizontal reference velocities are almost completely resolved

before the vertical velocity enters the solution. Vertical velocity in this formulation

is used to further reduce the residuals that remain after the horizontal velocities are

determined.

Although the adiabatic solution seems to be consistent with the data used, we will

add to the model vertically varying cross-isopycnal diffusivities to compare their magni-

tude with previous estimates. The addition of six Chebyshev polynomials (0th through

5th order) for both the heat and salt diffusivities adds 12 unknowns, for a system of

117 equations in 46 unknowns. The effective rank is increased to 39. The solution for

horizontal reference velocities is practically indistinguishable from the adiabatic case

so is not shown. The balance of terms in the advection - diffusion equation (figure 25)

is slightly altered, with the vertical advection term reduced in magnitude and about

the same size as the cross-isopycnal diffusivity. Although the vertical velocities are

slightly smaller in this diffusive model, the error bars are even larger. The diffusivity
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Figure 21. Balance of terms in the T and S equations averaged over the 9 balance boxes
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per unit volume. Positive values correspond to cooling and freshening. 1(dotted)
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profileEs for heat and salt are shown in figure 26. The error bars may provide useful

upper bounds on the diffusivities.

The distribution of residuals looks random, much the same as figure 22. While

the standard deviations are only slightly smaller than the adiabatic case (figure 23),

the means are more evenly distributed about zero, and the solution can be considered

a slight improvement over the adiabatic case. No substantial reduction of residuals is

found, since the residuals were already reduced to the noise level by reference velocities

alone. It seems that the CTD data cannot distinguish between vertical transfer by

advection or by diffusion and is equally well satisfied by either solution.

We have attempted to find a solution for the fall data consistant with the 30 day

(or, almost equivalently, the 13 day) average current meter velocities. As the current

meter observations imply much larger velocities than the thermal wind velocities for

the fall period, reference level velocities on the order of 10 cm/s are required. As found

before, the main difference in the adiabatic and diffusive solutions is in the relative

importance of vertical velocity and diffusivity, both of which have large uncertainties.

We will show only the results of the diffusive model.

Applying current meter constraints at 3 levels, 350, 400 and 800 db, adds 6 equa-

tions, for a system of 123 equations in 46 unknowns. The effective rank was chosen to

be 31. Not only the solution (figure 27), but also the magnitude of the resultent resid-

uals is about an order of magnitude larger than without the current meter constraints.

The error bars on the diffusivities are much larger (+10) than without the current

meter constraints, even though the effective rank is much smaller. The distribution of

residuals still looks random, but the mean values are no longer nearly zero (figure 23),

but about .5 degree and .2 ppt, and the standard deviations are very large (compare

figure 23 with table 3). Even increasing the effective rank to 45 is not sufficient to

reduce the residuals much further. It appears that this steady state model using the
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hydrographic data is inconsistant with the strong eddy present in the fall portion of the

current meter record.

Spring Solutions

In general, the spring solutions exhibit larger residuals with greater scatter, im-

plying that the spring data is less consistent with a steady state model. This result

may be due to the fact that balance boxes contain stronger eddies in the spring than

in the fall, which can be seen both in temperature and salinity gradients (figures 8-11)

and in relative velocities (figures 12-14). We first seek the best adiabatic solution for

the spring data set and find that it does not fit the model as well as the fall data did.

We then add diffusivities to see if this improves the residuals. Only slight improvement

in the solution was obtained.

The adiabatic system again has 117 equations and 34 unknowns. The effective

rank of the adiabatic solution was chosen to be 28. The reference level velocities and

velocity field at 400 db are shown in figure 28. As seen in the fall, the reference

level velocities are antiparallel to the strongest eddy velocities and act to reduce eddy

intensity (compare figure 12). The spatially averaged balance of terms (figure 29) is

similar to that for fall, but noisier. The residuals are about twice as large in the spring,

yet still fairly randomly distributed. The standard deviations of the spatially averaged

residuals, figure 30, are still the same order of magnitude as the estimated error in the

equations, although for salinity, the standard deviations about twice as large as the

expected error.

To see if the residuals could be reduced further, we again added vertical profiles of

heat and salt diffusivities, for a system of 117 equations and 46 unknowns. The rank

was chosen to be 37.

The balance of terms (figure 31) is such that diffusivity is larger than vertical

advection for both T and S equations above 550 m. However, this is probably not a

significant result, because both w and the diffusivities (figure 32) have larger standard
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deviations than those found in the fall. The averaged temperature and salinity residuals

at each level have somewhat reduced mean values over the adiabatic model, but still

have only marginally acceptable standard deviations (figure 30).

Summary of Cartesian Inversions

In both spring and fall, the balance of terms was horizontal advection balanced by

the sum of vertical advection and cross-isopycnal diffusivity, neither of which were well

constrained by the inversions. The horizontally averaged horizontal advection term

acted to increase the temperature and salinity at each level. Together the diffusion and

vertical advection terms acted to cool and freshen the water.

The fact that the addition of further complexity in the model, that is diffusivity,

does not have much effect on the residuals suggests that the residuals are more con-

trolled by the missing time derivative term than by diffusivity. Diffusivity provided a

slight reduction in residuals. The primary parameters in reducing the residuals were

the horizontal reference velocities. This could be seen by examining the diagonal ele-

ments of the VVT matrix at various stages in the summation of equation (3.21). The

inversion first used the horizontal velocities to reduce the residuals, then W and c were

engaged later in the summation to try to further reduce the remaining residuals.

The fall data are apparently consistent with an adiabatic steady state model, as

long as we do not impose the current meter constraints. The inversion using just the

tracers acts to reduce eddy velocities and to bring the solution closer to a steady state

model, while the current meter constraints push the solution the opposite way. The

large barotropic component of flow (about 10 cm/s) indicated by the current meter

data is insufficiently constrained by just one mooring. If additional moorings had been

used to delineate the structure of the flow at 1000 m, this information might have

been a useful constraint in the inversion, and may even have allowed a time dependent

model.
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The spring data are less consistent with a steady state model, probably due to

the stronger eddy velocities and stronger tracer gradients in the region where balances

were evaluated. In the tracer maps at 800 db, eddies can be seen in the spring data

but not in the fall. The diffusivities were less well constrained in the inversion of spring

data, perhaps because the balance boxes included fewer staircases than they did in the

fall. The top of the staircase corresponds roughly with sigma theta 26.8, which lay at

about 240 db depth in the fall and 270 db in the spring. The uppermost tracer balance

level, centered at 250 db, would have contained staircase structure only in the fall. The

horizontal distribution also favored the fall data set. In the spring, well developed steps

were seen in only the eastern half of the region where balances were sought, so that west

of about 56 0 W, only irregular steppiness was seen in the CTD profiles. In contrast, in

the fall profiles, well developed steps were present over the entire area where balances

were evaluated.

In order to better define an average advection and diffusion for the region, attempts

were made to smooth out the eddies using objective mapping (with a 500 km correlation

length scale) to obtain long term average tracer and velocity fields. Unfortunately,

inversions using this smoothed data set did not yield any useful estimates regarding the

importance of diffusion because the smoothed data were easily fit by a purely adiabatic

model and lacked any resolution of the diffusivities. Tziperman (1987) discusses why

inversions using time averaged data sets may not be expected to provide meaningful

estimates of higher order terms such as vertical velocity and diffusivity. He argues that

these parameters a and w are unreliable because they are determined from the residuals

left after the primary parameters, u and v have been determined. Small adjustments in

the horizontal velocities cause large changes in the structure of the remaining residuals.

Without smoothing however, it is difficult to define an average advection through the

region.



Chapter 4. Isopycnal Inversions

4.1 Model Dynamics

As in the previous formulation, we seek the simplest steady state, geostrophic model

which is consistant with the observations. The advection-diffusion equation will be

a slightly modified version of equation (3.5). In the cartesian formulation the cross-

isopycnal transfer had 2 components: the component of w normal to isopycnals, and the

turbulent mixing, c(z). With that parameterization, we found that we did not obtain

satisfactory resolution of either w or c. We now reformulate the problem to simplify the

treatment of cross-isopycnal transfer. Rather than dividing w into relative and refer-

ence components as before, we will solve directly for cross isopycnal velocity, w* at each

level. Double diffusive mixing will be represented by unknown cross-isopycnal fluxes,

F, which are non-zero only between sigma theta levels 26.8-27.2, where thermohaline

steps are found. Double diffusive heat and salt fluxes will be related by

FT = -Fs.

as suggested by Schmitt (1981). y is taken to have an average value of .7 in the

step region, so that with 6 = 7.5 - 10- 4 and a = 2.0 - 10- 4 , the flux ratio used is

Fs = 0.38FT. Double diffusive fluxes can be allowed to vary horizontally, if necessary.

This model can also include turbulent diffusion along and across isopycnals, as in

the previous formulation, if the inversions indicate that this term is necessary. The

turbulent diffusion, c, would be the same for heat and salt.

Using the continuity equation, the temperature (and similarly for salt) advection-

diffusion equation now looks like

V. (uT) - V. (c VT) + V FT = 0. (4.1)



We divide u and v into relative and reference parts (Wret = 0), and compute the relative

parts from the dynamic heights on isopycnals according to equations (2.7). Moving the

terms containing the unknowns, uo(x, y), vo(x, y), w*(x, y, z), FT(z), (and rc(z)), to the

left hand side, and terms containing the relative velocities to the right hand side, then

integrating over each box, we get an equation analagous to (3.13):

o (o-T)"- de- L(x'VT)"- ds+/ Fr' da = - L  (uetT)" ds.boundary (T) ds boundary (.VT) ds+boundary FTd ndary eT) ds.

(4.2)

Since we are allowing w* to be set by the inversion rather than computing it

from the continuity equation as before, the total velocity field is not automatically

nondivergent. We must impose the continuity equation as a separate constraint,

fboundary u- ds = 0. (4.3)

We have tried to make a model with the advective transfer across isopycnals spec-

ified by the cross isopycnal components of the horizontal velocity. These components

are given by u - u. Vh, where Vh is the normal to an isopycnal surface. Although the

velocities were horizontally nondivergent and in finite difference form would have con-

served mass exactly in rectangular boxes, boxes bounded by isopycnals do not conserve

mass. The mass imbalances led to large and irreducible tracer imbalances and we could

not find a satisfactory solution with acceptable residuals. In order to conserve mass

and obtain a satisfactory solution we must allow the model to determine the necessary

cross isopycnal mass fluxes, w*. The equations used in the inversion, (4.2) and (4.3)

are expressed in finite difference form in the next section.



4.2 Finite Difference Formulation

As in the cartesian model, we use a staggered grid in the horizontal plane as shown

in figures 17.a and 17.b. Only the vertical grid is different. A profile of the new grid is

shown in figure 33. The sigma theta range from 26.0 to 27.4 has been divided into 4

boxes in which tracer balances are evaluated. The mean depths of the uppermost and

lowermost isopycnals are 158 db and 947 db in spring (137 and 914 db in fall), so that

this model represents a much coarser grid in the vertical than did the cartesian grid.

The levels were chosen to isolate the staircase structure in the 2 center boxes and to

have one box above and one below the staircases. Double diffusive fluxes are sought

at levels 26.8, 27.0 and 27.2, which define the upper extent, the middle and and lower

extent of the staircases. Cross isopycnal velocity W* is solved for at the 5 interfacial

levels of the 4 boxes.

Equation (4.2) is written in finite difference form, excluding the turbulent diffusion,

as

[(Uo T AZ)E - (Uo T AZ)w] AY + [(Vo T AX AZ)N - (Vo TAX AZ)s]

+ [(W* T)u - (W* T)L] AXM AY + [(FT)U - (FT)L] AXM AY

= [(Ure T AZ)E - (Urel T AZ)w] AY + [(Vre T AX AZ)N - (Vre, T AX AZ)s].
(4.4)

Capital subscripts, N,S,E,W,U and L indicate the side on which the quantity is eval-

uated. AZ is computed from the pressure on isopycnals and is different on each side

of the box. The mass balance equation (4.3) would be written the same way, except

T is replaced by 1 and the double diffusive flux term does not appear. This isopycnal

formulation greatly simplifies the form of the advection-diffusion equation.
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4.3 Results of Isopycnal Inversions

With equations evaluated for teemperature, salinity and mass conservation at 4

levels and 9 horizontal boxes, we have a system of 108 equations. At each horizontal

location we solve for Uo, Vo and 5 W*'s . In addition there are 7 peripheral horizontal

reference velocities and 3 values of double diffusive flux for the grid, for a total of

73 unknowns. We will discuss here the solutions using the fall and spring data sets

for comparison with the results of the inversion in cartesian coordinates. The model

does not include turbulent diffusivities, as we found that the model has enough free

parameters with W*(z) and that additional parameters were not required by the data.

Although the model could in principle include current meter constraints, in light of the

results of the cartesian inversions, those constraints will be omitted here.

The mass balance equation was given 10 times the weight of the tracer equations

to insure that the temperature and salinity residuals were not artificially increased by

mass imbalances. This weighting scheme improved the residuals for all of the equations.

The columms multiplying W* and F were weighted by 10- 3 so that coefficients were

all the same order of magnitude. All other variables were weighted by 1. We also found

that subtracting the mean temperature and salinity values at each box and balancing

the tracer anomalies, T' and S', improved the final residuals. This is because in the

flux form of the equations, u - VT is replaced by V - (uT), which contains T(V - u).

Any inadvertent mass imbalances are therefore multiplied by T or S, so use of T' and

S' minimizes the effect of 'leaky' boxes. Mass imbalance was not a problem in the

cartesian formulation where the continuity equation was satisfied identically.

Fall Solution

The rank was chosen to be 61. Initial and final residuals are shown in Table 4.

Reference level velocities and velocities at sigma theta 27.0 are shown in figure 34. The

reference level velocity is slightly more eastward than the cartesian solution, but the

velocity in the steps (ao=27.0) looks very similar to that at 400 db (compare with figure



20). About the only difference is that where the isopycnal surface is much shallower

than 400 m, as in the southwest corner, the velocities are larger.

The cross-isopycnal velocity is shown in figure 35. In this formulation, the diago-

nal elements of VVT as the summation (3.21) progresses indicate that W* is resolved

together with the horizontal reference velocities, rather than after the horizontal ve-

locities have already been determined. Error bars are smaller than those on vertical

velocities in the cartesian formulation. W* is not consistant in sign, even in the step re-

gion, and horizontally averaging gives values less than 1 x 10-4cm/s at each depth. We

have also computed the cross-isopycnal component of the horizontal velocities, u - Vh,

to compare its magnitude with W*. As seen in figure 35, there does not seem to be

much correlation.

The values of double diffusive buoyancy heat fluxes for the bottom, middle and

top of the step region are as follows:

top: aFT = (5.4 ± 4.2) x 10- 8 cm/s

middle: aFT = (-0.2 ± 2.0) x 10- cm/s

bottom: aFT = (-6.4 ± 5.4) x 10- s cm/s

Correspondingly, buoyancy salt fluxes IFs = 7.7 x 10-8 cm/s on the top, and PFs =

-9.1 x 10-8 cm/s on the bottom. These were resolved independently of W*, and

the divergence is better resolved than the individual fluxes. The value of 3,3F, is

(.54 ± .3) x 10-11s-1.

The balance of terms in individual boxes is generally horizontal advection balancing

cross-isopycnal advection. The horizontal averages of both of these advection terms,

shown in figure 36, is much smaller than the unaveraged terms. The slope of the flux

term can be ignored since the middle value has such large variance, only the average

flux over the layers is determined. The positive value of the double diffusion term

signifies that the time derivative of T and S is negative, that is cooling and freshening,



Fall

Sigma Theta T Residuals S Residuals

26.5 .15 (4.44) .05 (1.39)
26.9 -.76 (3.54) -.19 (.89)
27.1 -.53 (2.93) -.11 (.61)
27.3 -.05 (.84) -.01 (.13)

26.5 .04 (1.55) .05 (.47)
26.9 -.34 (2.18) .02 (.49)
27.1 -. 11 .73) .02 (.14)
27.3 .09 (.56) .01 (.10)

Spring

26.5 -.03 (4.68) -.00 (1.46)
26.9 -.87 (3.37) -.21 ( .85)
27.1 -3.23 (9.32) -.66 (1.90)
27.3 -.10 (1.25) -.01 ( .20)

26.5 .15 (2.06) .03 ( .33)
26.9 -.23 ( .53) .05 ( .22)
27.1 -.25 (1.21) -.01 ( .38)
27.3 .02 ( .46) .02 ( .09)

Table 4: Initial and final residuals for fall and spring inversions. Standard deviations
given in parentheses.

which is the expected role of double-diffusion in turning NACW into the mixture of

NACW and SACW observed in the C-SALT region.

Spring Solution

The rank of the solution was chosen to be 65. Velocities at sigma theta 27.4 and

27.0 are shown in figure 37. Again, the velocities look quite similar to the cartesian

solution (figure 28). The balance of terms averaged over all the boxes is shown in figure

38. The residuals (table 4) are about the same magnitude as the fall isopycnal solution,

and are somewhat smaller than the spring solution in the cartesian inversion. Cross-

isopycnal velocity again looks rather randomly distributed in space and has error bars



IV a a a a

56 30 'W 55 30 W 54 30 'W

a .

F

56830 "W 55a30M

LongLtude
54' 30 'W

Figure 34. Reference level velocities (27.4) and velocities at sigma theta 27.0 for the
fall isopycnal inversion. Standard deviation of the reference velocities is about 0.6-0.9
cm/s.

14a N

15 N

0 d p

Depth - 27.0

[] 0 m

13a N

12 a N

11 N

10 Nl
58'30 'W

15a N

140 N

13 N

57 30 'W

12 a N

I10 NE

0 5
cm/sec

0 a

Oepth - 27.4

53030 'w

53830 'W
10 N I

58'30 'W 57930 fW



26.4

26.6-

26.8-

27.0-

27.2-

27.4-

26.4-

26.6-

26.8-

27.0-

27.2

27.4'
.0

26.4,

26.6,

26.8

27.0

27.2

27.4
!.0

26,4

26.6

26.8

27.0

27.2

27.4
-2.0 -1.0 0.0 1.0

W-veLocLt.

26.4

26.6

26.8

27.0

27.2

27.4

2.0

-17
2.0

x IC

0

.,
r

-no
.)

0)

on

Figure 35. Fall cross-isopycnal velocity profiles in each of the 9 balance boxes. Standard
deviation indicated by error bars. Cross isopycnal component of the horizontal velocity
(u Vh) marked by X's.

26.4-

26.6-

26.8-

27.0-

27.2-

27.4'

26.4

26.6

26.8

27.0

27.2

27.4

26.4

26.6

26.8

27.0-

27.2

27.4 
-2.0 -1.0

26.4-

26.6

26.8

27.0

27.2

27.4
-2.0 -1.0

1.0 2.0

I
/

0.0
I I

1.0 2.0
I I - .1.



26.4

26.6
. 26.8

0 27.0

" 27.2

27.4 I
-2.0 -1.0 0.0 1.0 2.0

T terms

26.4

O 26.6

26.8-

o 27.0
n
J 27.2

27.4
-0.5-0.3 -0.1 0.1 0.3 0.5

S Terms

Figure 36. Fall balance of horizontally averaged terms. Positive terms correspond to
cooling and freshening. 2(dotted line)= horizontal advection; 3(dashed line)= cross
isopycnal advection; 4(solid line)= double diffusion; Residuals indicated by squares.
Note scale is twice as large as used in cartesian figures. Standard deviation of the
residuals is indicated by error bars.



smaller than the values of W*. The values obtained for the buoyancy heat fluxes are

very close to those obtained in the fall inversion:

top: aFT = (3.6 ± 3.4) x 10- 8 cm/s

middle: aFT = (0.8 ± 1.8) x 10'- cm/s

bottom: aFT = (-6.0 ± 4.8) x 1O- cm/s

Correspondingly, fFs = 5.1 x 10-8 cm/s on the top, and PFs = -8.6 x 10-8 cm/s on

the bottom. As in the fall, the flux divergence is better determined than the individual

fluxes and IPF, has a value of (.42 ± .2) x 10-is-1.

Summary of Isopycnal Inversions

Spring and fall solutions gave similar results, unlike the situation found in cartesian

coordinates where the spring solution had larger residuals. Both isopycnal solutions

had horizontal advection acting to increase temperature and salinity in the step region,

and double diffusion acting to cool and freshen the water. Cross-isopycnal advection

was not consistent in sign, acting in the same sense as horizontal advection in the fall,

and in both senses in the spring. W* had an average magnitude of about 5 x 10-4cm/s,

and had smaller error bars than the cartesian vertical velocity.

Spring and fall inversions gave similar estimates of the buoyancy salt flux diver-

gence, aF, 8 = (.42 ± .2) x 10-"s - 1 in spring and (.54 ± .3) x 10-' 1 s-1 in fall.

This average value for the C-SALT staircase is roughly half the size of the Lam-

bert and Sturges's (1977) value, 93aF, = 1.33 x 10-"s - 1 for the Caribbean region.

We can obtain a rough estimate of the corresponding salt diffusion coefficients from

F, ~~a 2  using the buoyancy salt flux divergence and average salinity gradi-

ents between sigma theta 26.9 and 27.1. We get r., = (2.8 ± 1.3)cm 2 /s in spring and

l, = (3.9 ± 2.2)cm 2 /s for the fall data, compared to Lambert and Sturges's estimated

5.7cm 2 /s. These results support the finding of Schmitt et al. (1987) whose analysis of

the C-SALT staircase indicates that Lambert and Sturges's (1977) estimates of double

diffusive fluxes (based on the 4/3 power law) may be overestimated.
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Chapter 5. Summary and Conclusions

In order to compare the results of the cartesian and isopycnal inversionis, we Efrst

review the physics represented by each formulation. Although comparison would be

more straightforward if the physics were identical, the cartesian inversions were done

first, and the results of that model were taken into account in designing the isopycnal

model.

In the diffusive cartesian model, we had a system of 117 equations in 46 unknowns.

Constraints imposed were conservation of heat and salt at 6 depth levels, and a linear

vorticity balance. Mass balance was assured by using the continuity equation to com-

pute w (z). At each horizontal location, we solved for u0 , vo and wo, and solved for

a horizontally averaged ~-T(z) and cs(z). We found that horizontal advection (which

increased temperature and salinity) was balanced by the sum of vertical advection and

diffusion (which decreased temperature and salinity). Individually however, both the

vertical advection and diffusion had very large error bars. The horizontal reference

velocities were the primary parameters used in the inversion to reduce the residuals.

We also found that the spring solution was noisier than the fall, having both larger

residuals and larger error bars on w and rc.

The isopycnal formulation consisted of a system of 108 equations in 73 unknowns,

significantly more free parameters than the cartesian model had. The constraints im-

posed at each horizontal location were mass, heat and salinity balances at 4 adjacent

depth levels, which covered the same depth range as the 6 cartesian levels. Rather

than using the finite difference form to solve for (poorly resolved) diffusion coefficients,

we solved directly for fluxes. Instead of imposing analytic constraints to determine the

vertical structure of the vertical velocity, we allowed the solution to directly determine

cross-isopycnal velocity at each level. We also solved for reference velocities uo and vo

at each horizontal location. Horizontally averaged double-diffusive fluxes of heat and

salt, related by the ratio -y, were sought between sigma theta 26.8 and 27.2, the levels



where staircases are found. The inversion used all the parameters together to reduce

the residuals, rather than using primarily horizontal velocities, as was found in the

previous formulation. The horizontal velocities were similar to the cartesian solution,

but had slightly larger error bars. Horizontal advection acted to increase temperature

and salinity, and double diffusion had the opposite effect, as expected. Double-diffusive

flux divergence was similar in the spring and fall inversions. Cross-isopycnal velocity

had a magnitude of about 5 x 10-4cm/s, varied in sign and had smaller error bars than

the cartesian vertical velocity. The smaller error bars are partly due to the fact that

w* was determined directly, so that the error bars have no contribution from the error

in computing the divergence of the horizontal velocities.

With the isopycnal model, we have better resolution of the double diffusive fluxes,

probably due to better isolation of the staircase structure in the vertical, and more

effective parameterization of cross-isopycnal processes. Diffusive fluxes confined to the

steps and related through the flux ratio, -, better represent the expected effects of dou-

ble diffusion than the turbulent diffusivities in the cartesian model. These turbulent

diffusion coefficients were non-zero outside the staircase depths, where physical inter-

pretation is not obvious since sub-grid scale eddies are not expected to be significant.

In the cartesian inversion of the spring data, the turbulent diffusion coefficients took

on large negative values in the uppermost level where staircases were not present. The

role of these negative diffusion coefficients in the solution may have been to reduce the

residuals caused by the large eddy variability seen on the shallow pressure surfaces (see

e.g. table 2).

Inversions using either cartesian or isopycnal layers gave similar estimates of hori-

zontal reference level velocities. The reference velocities acted to reduce the strength of

the eddy field and to bring the solution closer to a steady state model. The current me-

ter constraints, on the other hand, emphasized the barotropic eddy field. With just one

current meter, the horizontal structure of the eddy field was insufficiently constrained,



and the inversion could not find a solution which was consistent with the tracer data.

In order to usefully include current meter constraints, it would be necessary to have

enough current meters to delineate the eddy field, which in this region necessitates a

spacing of about 100 km.

We were only partly successful in determining the regional advection-diffusion

balance in the C-SALT staircases. The horizontally averaged balance of terms in all

of the solutions suggests that horizontal advection is a major process in bringing in

heat and salt, and that diffusion acts to cool and freshen this water. It is not possible

to conclude that these are the dominant processes in this region, since the vertical

advection also seems to be at least an order of magnitude greater than that assumed

by Lambert and Sturges (1977) for the northeastern Caribbean Sea.

It is difficult to define an average velocity in a region dominated by energetic ed-

dies, but the horizontal advection term determined by these inversions is probably a

reasonable spatial average. Attempts to estimate long term average diffusion using

spatially smoothed data and the cartesian formulation were unsucessful. This was

probably due to the fact pointed out by Tziperman (1987) that estimates of secondary

parameters (ie., those determined from the residuals left after the primary parameters

have been determined) are unreliable. Since in the isopycnal formulation, both hori-

zontal and across-isopycnal velocities are primary parameters, it may be worthwhile

to attempt further inversions using the isopycnal formulation with smoothed data to

obtain meaningful average values of cross-isopycnal processes.



Appendix: Error estimates
The error associated with the RHS of each equation is primarily due to the errors

in computing the geostrophic relative velocity. Expressing the total velocity as the
sum of the "correct" velocity u, plus an uncertainty, Au, and similarly for the mapped
tracer c, the advection term can be written as

V - (uc + Auc + uAc + AuAc).

Neglecting second order terms, the error can be approximated by the terms:

V . (Auc + uAc).

The error in the velocity is due to the cumulative errors in the mapped density
from which it is computed:

Aurel g a N

fPo ey (ZPidzi)i= 1

Assuming the errors in p at each level are independent and of constant value a, the
error due to the sum can be expressed as:

A(Z pi dzi) = zi a

where the overbar indicates the RMS average. The estimated error in each of the
horizontal velocities is then

A=-gdz
fpody

The average value of a was estimated to be about 5 - 10-6 by inspection of (Pmap -
Poba) IPobs.

The error in w, which is computed from the continuity equation as the sum of 4
terms involving horizontal velocity, can be approximated by

dz -4AU.
Aw = (d- Au) _ 9 10-4.

The error in the RHS due to error in the relative velocities can be expressed as
(including multiplication by 6 months to get units of temperature or salinity)

8 s (CE - CW)dt (Au) ; 1.56 10 (CE - CW
dz 6mo dx

Similarly for the vertical velocity term:

At a (FAw) - 1.56 107s AW (CU - CL)
az 6mo dz

The RMS sum of the (assumed) independent errors gives the expected error on the
RHS of each equation for each depth level:

err(RHS)2 ; (1.4 . Au. ACEW) 2 + (1.4 - Av . ACNs)2 + (.31 .10 4 . Aw . ACL) 2 .

These error estimates are tabulated for each depth in Table 2. The units are the
change in temperature and salinity in each control volume which would be expected to
accumulate over 6 months just due to errors in the relative velocities.
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